
DEX: Scaling Applications
Beyond Machine Boundaries

Sang-Hoon Kim

FISS‘19 @ KAIST

May 10, 2019

In collaboration with 



Trends in Data Centers and Business

• Data volume keeps growing exponentially

• Machine learning and data analytics demand results within a 

short latency

è Increasing demand for high-performance scale-up machines

– With extreme processing power and memory capacity in a single 

machine

2FISS'19 @ KAIST



Microprocessor Trend

• 42 years of microprocessor trend data

3

[https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data]

Increased complexities in scaling interconnects and coherence protocols

è Limit # of cores and processors in a single machine

Limited single thread 

performance

• Thermal and power budget

• Dark silicon effect

Fast increase in core counts

FISS'19 @ KAIST



Evolving of Network Technology

• Core network bandwidth is doubled in every 18 months

• InfiniBand, RoCE, Omni-Path, Gen-Z, …

– High bandwidth (~600Gbps), low latency (~300ns)

• Approaching to those of processor interconnect

– Access remote memory directly through RDMA

è Blur the boundaries between local and remote machines

4FISS'19 @ KAIST



Towards Multi-Machine Era

Single 
processor

Multi-
processor

Single 
machine

Multi-
machine

FISS'19 @ KAIST 5



Towards Multi-Machine Era

• Have been discussed for decades

– Single system image (SSI)

– Distributed shared memory (DSM) systems

• But, failed to win popularity

– Bad performance due to slow network

– Complicated programming models and memory semantics

– Oftentimes require complete rewrite using custom APIs

– Lack of flexibility in resource utilization

6FISS'19 @ KAIST



Lessons Learnt from the Past

• Programming model should be intuitive to understand

• Should be applicable to existing applications with a 
minimal modification
– Cost(developers) >>>>>> cost(hardware)

• Many applications are (probably) already scale-ready
– Multithreaded applications for multicore systems are common

– Performance critical applications already implement data sharing 

and placement in mind

• E.g., NUMA studies have provided great insights and techniques

7FISS'19 @ KAIST



DEX

• Distributed Thread Execution Environment

– Better utilize scattered resource in a rack-scale setup

• Allow to migrate/relocate threads to any node at anytime
– Intuitive way to scale application performance

• Support programming models as-is
– Guarantee the sequential data consistency

– Fully support native thread synchronization primitives

• glibc POSIX thread(pthread) objects/operations and Linux futex

– Eliminate application’s burden

8FISS'19 @ KAIST



Using DEX

• To migrate a thread, just call a function

9

0 1 2 3

coresPerNode = 2

Run on

node 0

Run on

node 1

4 5

Run on

node 2

OpenMP

threads

Application Multithread Mod. LoC Application Multithread Mod. LoC

Simple Grep pthread PARSEC Blackscholes pthread

Kmeans pthread

NPB Common Polymer Common

BT OpenMP (15) BFS pthread

EP OpenMP (1) BP pthread

FT OpenMP (7) PageRank pthread

FISS'19 @ KAIST



Using DEX

• To migrate a thread, just call a function

10

Application Multithread Mod. LoC Application Multithread Mod. LoC

Simple Grep pthread +2 PARSEC Blackscholes pthread +2

Kmeans pthread +2

NPB Common Polymer Common +18 -18

BT OpenMP (15) +38 -4 BFS pthread +6 -2

EP OpenMP (1) +2 BP pthread +12 -11

FT OpenMP (7) +28 -7 PageRank pthread +7 -5

Took ~3 days for a Ph.D. student

Mostly for 

replacing 

NUMA APIs to 

their general 

counterparts

For 

converting 

multiple 

parallel 

regions

0 1 2 3

coresPerNode = 2

Run on

node 0

Run on

node 1

4 5

Run on

node 2

OpenMP

threads

FISS'19 @ KAIST



Migrating Execution

• Essentially performing context switch across machines

• At origin: Save the execution context

– Leverage in-kernel thread/memory information

saved during system call entry

– A user-level runtime collects the register set

• At remote: Restore the context on a thread

– Create a user thread and setup in-kernel data structures

– Inject the execution context

– Return from the kernel space

è Resume execution as if returned from system call

11

Exec.

contexts

Exec.

contexts

Origin Remote

FISS'19 @ KAIST



Migrating Execution

• Challenge 1: Callee-save registers and FP/XMM registers

– Not saved during system call entry

– User-level runtime collects those registers at the origin

– Restore at remotes before resuming the original code

• Challenge 2: Frequent migration

– Create a remote worker and fork remote threads from it

• 812 us à 236 us

– Leave memory data behind after back-migration

12FISS'19 @ KAIST



Distributed Thread Execution in DEX

Node 1 (Origin)Node 0 (Remote) Node 2 (Remote)

High-speed low-latency interconnect

Remote thread

(2) Multiple

thread relocationOriginal threads

Remote

threads
(5) Exclusive page

access for writes

(4) Shared page access

for reads

(3) On-demand

VMA info fetch

View from

applications

Actual execution

(1) Single thread

migration

Rack 0
Writable page

Readable page

VMA

Invalid page

Process A

1 20 3

1 20 3

3’ 2’

0’

13FISS'19 @ KAIST



Providing Consistent Memory View

• The origin controls the ownership and data

– Origin owns all pages in the beginning

– Contact origin to get ownership and data for pages

• Read-replicate, write-invalidate protocol at page granularity

– To exploit the common cases in memory-intensive workloads

• Implemented in the virtual memory system in operating 

system

– Transparent to the application’s perspective

14

Exclusive No permissionShared

Origin

Remote 0

Remote 1
R2

W1R1

Revoke

R3

Local

Shared Exclusive

Write

Read

Write

Read

Write

Read

FISS'19 @ KAIST



Taming Concurrent Page Faults
• Optimistic fault handling in Linux necessitates fault handling rollback

• Coalesce multiple faults and handle with a single operation

• Leader : First thread initiating a page fault handling

for a page at a moment

– Actually execute the fault handling operation for the page

• E.g., bring the page from remotes, fix up page table, 

flush TLB, …

• Followers: Utilize the leader’s outcome

– Wait for the completion of the leader’s fault handling

• Otherwise, wait or retry

15

Local

write

Local

read

Remote

read

0
x

b
e

e
f0

0
0

0
x

b
e

e
e

0
0

0

0
x

b
e

f0
0

0
0

… …

FISS'19 @ KAIST



Providing Consistent Memory View

• Challenge 1: Per-page metadata management

– Owner(s), permission, copy-on-write status (for data section)

• Index with MSBs of virtual addresses with a radix tree

– The faults that are being processed

• Hashmap

• Challenge 2: VMA synchronization

– malloc and free (essentially mmap and munmap) manipulate VMAs

– Threads tend to have localized VMA accesses

– Lazy VMA Synchronization

• Perform VMA operations at the origin

• Only the result of munmap that shrinks VMA is broadcasted

16FISS'19 @ KAIST



Kernel Features Across Machines

• Practically infeasible to reimplement every kernel feature 

distributed

• Adopt work delegation pattern

– Leverage the original threads at the origin that are put to sleep

– Remote threads forward stateful operations to their original threads

• Futex, socket/file descriptors, …

– The operations are performed at the origin serialized

– Result is forwarded to the remote

• One InfiniBand roundtrip incurs only negligible overhead

– Can systematically implement as a wrapper layer

17FISS'19 @ KAIST



Leveraging RDMA

• RDMA over InfiniBand is different from traditional 

communication over TCP/IP

– I/O buffers should be mapped to an DMA-able address space

– Should be also registered to a memory region for remote access

– Mapping and association take long, incurring a high overhead on 

latency-sensitive memory traffic

18
[http://www.hpcadvisorycouncil.com/events/2014/swiss-workshop/presos/Day_1/1_Mellanox.pdf]

FISS'19 @ KAIST



Leveraging RDMA

• One approach does not fit all

– Large messages (e.g., page data) are mapped/registered on 

demand

• Memory copy >>> DMA map/RDMA region registration

– Small messages (e.g., control messages) use a pre-allocated,

pre-DMA-mapped, and pre-registered circular buffer

• Memory copy <<< DMA map/RDMA region registration

• Asynchronous messaging

– Increase parallelism in handling requests

19FISS'19 @ KAIST



Reducing False Page Sharing

• Behavior analysis tool helps to identify false page sharing

– Analyze page fault events collected in profiling mode

– Pinpoint to the location in code

• # of faults, type of faults, type of program objects

20FISS'19 @ KAIST



Reducing False Page Sharing

• Behavior analysis tool helps to identify false page sharing

– Analyze page fault events collected in profiling mode

– Pinpoint to the location in code

• # of faults, type of faults, type of program objects

21

Application Multithread Mod. LoC Application Multithread Mod. LoC

Simple Grep pthread +2 PARSEC Blackscholes pthread +2

Kmeans pthread +2

NPB Common Polymer Common +18 -18

BT OpenMP (15) +38 -4 BFS pthread +6 -2

EP OpenMP (1) +2 BP pthread +12 -11

FT OpenMP (7) +28 -7 PageRank pthread +7 -5

Took 3 days for a Ph.D. student

FISS'19 @ KAIST



Reducing False Page Sharing

• Behavior analysis tool helps to identify false page sharing

– Analyze page fault events collected in profiling mode

– Pinpoint to the location in code

• # of faults, type of faults, type of program objects

22

Application Multithread Mod. LoC Application Multithread Mod. LoC

Simple Grep pthread +21 -12 PARSEC Blackscholes pthread

Kmeans pthread +6 -3

NPB Common +1 -1 Polymer Common +86 -67

BT OpenMP (15) +5 -2 BFS pthread +10 -4

EP OpenMP (1) +2 -1 BP pthread +13 -10

FT OpenMP (7) +1 -1 PageRank pthread +32 -30

Took 4 days for the Ph.D. student

FISS'19 @ KAIST



Implementation

• Based on Linux kernel v4.4.137

– Working on x86-64 and arm64

– Use InfiniBand VERB for control messages and RDMA for pages

• Available at https://github.com/ssrg-vt/popcorn-kernel

23

Component Lines of code

Kernel 10,114

Common libraries 1,202

Thread migration 2,058

Page migration 2,561

VMA handling 1,077

Communication layer 3,028

User-space library 370

Total 10,484
FISS'19 @ KAIST



Evaluation

24

• 8x Silicon Mechanics R353.v6 (Intel Xeon Silver 4110 (8 cores), 48GB)

• Mellanox ConnectX-4 HCA, SX6012 switch

FISS'19 @ KAIST



Evaluation

6 not scale

3 scale-ready

Isolate per-thread

I/O buffers

Replicate variables

for iteration ranges

Invert rank value 

propagation

Isolate per-thread

vars and buffers

25

x5.40

x10.06
x2.16

• 8x Silicon Mechanics R353.v6 (Intel Xeon Silver 4110 (8 cores), 48GB)

• Mellanox ConnectX-4 HCA, SX6012 switch

FISS'19 @ KAIST



Evaluation

2 not scale (-3)

1 perform better (+1)

6 scale linearly (+2)

Isolate per-thread

I/O buffers

Replicate variables

for iteration ranges

Invert rank value 

propagation

Isolate per-thread

vars and buffers

x5.40

x1.12

x10.06 x8.45

x7.32 x2.93

x2.16

26

• 8x Silicon Mechanics R353.v6 (Intel Xeon Silver 4110 (8 cores), 48GB)

• Mellanox ConnectX-4 HCA, SX6012 switch

FISS'19 @ KAIST



Can Further Improve Runtime?

• libMPNode to accelerate OpenMP applications on DEX

– PMAM co-located with PPoPP’19

• Hierarchical synchronization and thread organization

– Per-node leader performs global operations whereas others perform 

local operations

– Process reduction in the same way

27Barrier performance Application PerformanceFISS'19 @ KAIST



Exploit ISA Affinity

• Key ideas

– Different ISA, different execution profile (ISCA’14)

– Exploit the ISA affinity to optimize performance and/or energy

• Popcorn Linux for heterogeneous-ISA datacenters 

(ASPLOS’17, HotOS’17)

– Mostly compiler and runtime work to support cross-ISA migration

– Available at https://github.com/ssrg-vt/popcorn-compiler.git

28FISS'19 @ KAIST



Popcorn Linux Overview

29

Application

source (.c)

DEX /

Popcorn Kernel

DEX /

Popcorn Kernel

Popcorn

Runtime

Popcorn

Runtime

Popcorn compiler 

toolchain

Process

Popcorn

Multi-ISA

Binary

Process

Compiler: Generate multi-ISA binary

Runtime: Transform dynamic, 

ISA-specific program states

Kernel: Migrate execution and 

provide a distributed execution 

environment

FISS'19 @ KAIST



Exploit ISA Affinity

• Scheduling HPC Workloads on Heterogeneous-ISA 

Architectures (Poster on PPoPP’19)

30FISS'19 @ KAIST



Leverage Popcorn Linux Further

• Counter attacks exploiting architecture-specific 

vulnerabilities

– SFMA co-located with EuroSys’19

• Cross-ISA execution for optimizing SIMD execution

– SYSTOR’19

• Office of Naval Research, SBIR Solicitation N192-095

– Multi-Instruction Set Architecture (ISA) Processing with a Peripheral 

Component Interconnect express (PCIe)

– Acquisition for PEO IWS 1.0 AEGIS Integrated Combat System

31FISS'19 @ KAIST



Ongoing Work
• What will be the best for I/O in DEX?

• Make the memory consistency protocol scalable

• Thread placement and scheduling

• Improve RDMA over InfiniBand

– Keep DMA mapping for frequently migrated pages

– Leverage high bandwidth as well as low latency

• Provide a programming model that allow (slightly) more modification 

and optimization

– Too simple à little chance to optimize

• Incorporate non-volatile memory devices 

– E.g., Intel Optane DC Persistent Memory

FISS'19 @ KAIST 32



33

Thank you!
�����

Sang-Hoon Kim

sanghoonkim@ajou.ac.kr

http://sslab.ajou.ac.kr

FISS'19 @ KAIST


