
Enlightening the I/O Path:
A Holistic Approach for Application Performance

appeared in FAST'17

Jinkyu Jeong
Sungkyunkwan University

Data-Intensive Applications

2

Relational

Key-value

SearchColumn

Document

Data-Intensive Applications

• Common structure

3

Storage Device

Operating System

T1

Client

T2

I/O

T3 T4

Request Response

I/O I/O I/O

Application

Application
performance

* Example: MongoDB
- Client (foreground)

- Checkpointer

- Log writer

- Eviction worker

- …

Data-Intensive Applications

• Common structure

4

Storage Device

Operating System

T1

Client

T2

I/O

T3 T4

Request Response

I/O I/O I/O

Application

Application
performance

* Example: MongoDB
- Server (client)

- Checkpointer

- Log writer

- Evict worker

- …

Background tasks are problematic
for application performance

Application Impact

5

• Illustrative experiment
• YCSB update-heavy workload against MongoDB

Application Impact

6

• Illustrative experiment
• YCSB update-heavy workload against MongoDB

0

10000

20000

30000

0 200 400 600 800 1000 1200 1400 1600 1800O
p
er

at
io

n
th

ro
ug

hp
ut

(o
p
s/

se
c)

Elapsed time (sec)

CFQ

Regular
checkpoint task

30 seconds latency
at 99.99th percentile

0

10000

20000

30000

0 200 400 600 800 1000 1200 1400 1600 1800O
p
er

at
io

n
th

ro
ug

hp
ut

(o
p
s/

se
c)

Elapsed time (sec)

CFQ CFQ-IDLE

Application Impact

7

• Illustrative experiment
• YCSB update-heavy workload against MongoDB

I/O priority does
not help

0

10000

20000

30000

0 200 400 600 800 1000 1200 1400 1600 1800O
p
er

at
io

n
th

ro
ug

hp
ut

(o
p
s/

se
c)

Elapsed time (sec)

CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO

Application Impact

8

• Illustrative experiment
• YCSB update-heavy workload against MongoDB

State-of-the-art
schedulers do
not help much

What’s the Problem?

• Independent policies in multiple layers
• Each layer processes I/Os w/ limited information

• I/O priority inversion
• Background I/Os can arbitrarily delay foreground tasks

9

What’s the Problem?

• Independent policies in multiple layers
• Each layer processes I/Os w/ limited information

• I/O priority inversion
• Background I/Os can arbitrarily delay foreground tasks

10

Multiple Independent Layers

• Independent I/O processing

11

Storage Device

Caching Layer

Application

File System Layer

Block LayerAb
st

ra
ct

io
n

Buffer Cache

read() write()

FG FGBG

BG FG BGBG

reorder

What’s the Problem?

• Independent policies in multiple layers
• Each layer processes I/Os w/ limited information

• I/O priority inversion
• Background I/Os can arbitrarily delay foreground tasks

12

I/O Priority Inversion

• Task dependency

13

Storage Device

Caching Layer

Application

File System Layer

Block Layer

Locks

Condition variables

I/O Priority Inversion

• I/O dependency

14

Storage Device

Caching Layer

Application

File System Layer

Block Layer

Outstanding I/Os

15

100 ms latency at
99.99th percentile

0

10000

20000

30000

40000

0 200 400 600 800 1000 1200 1400 1600 1800O
p
er

at
io

n
th

ro
ug

hp
ut

(o
p
s/

se
c)

Elapsed time (sec)

CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO RCP

• Request-centric I/O prioritization (RCP)
• Critical I/O: I/O in the critical path of request handling
• Policy: holistically prioritizes critical I/Os along the I/O path

Our Approach

Challenges

• How to accurately identify I/O criticality

• How to effectively enforce I/O criticality

16

Critical I/O Detection

• Enlightenment API
• Interface for tagging foreground tasks

• I/O priority inheritance
• Handling task dependency
• Handling I/O dependency

17

I/O Priority Inheritance

• Handling task dependency
• Locks

• Condition variables

18

FG
lock

BG I/OFG
inherit

BG
submit

complete
FG BG

unlock

FG
wait

BG

register

BG

inherit

FG BGI/O
submit

complete

wake

CV CV CV

I/O Priority Inheritance

• Handling I/O dependency

19

Block Layer

Q admission stage

I/O

I/O

Sched queueing stage

I/O

Non-critical I/O tracking

Descriptor
Location
Resolver
Sector #

PER-DEV
ROOT

NCIO NCIO

NCIO NCIO

delete on
completion

Handling Transitive Dependency

• Possible states of dependent task

20

FG
inherit

BG BG

Blocked
on task

I/OFG
inherit

BG

wait wait

Blocked
on I/O

FG
inherit

BG
wait

Blocked at
admission stage

Handling Transitive Dependency

• Recording blocking status

21

FG
inherit

BG BG I/OFG
inherit

BG FG
inherit

BG
retryreprio

I/O is
recorded

Task is
recorded

inherit

Challenges

• How to accurately identify I/O criticality
• Enlightenment API
• I/O priority inheritance
• Recording blocking status

• How to effectively enforce I/O criticality

22

Criticality-Aware I/O Prioritization

• Caching layer
• Apply low dirty ratio for non-critical writes (1% by default)

• Block layer
• Isolate allocation of block queue slots
• Maintain 2 FIFO queues
• Schedule critical I/O first
• Limit # of outstanding non-critical I/Os (1 by default)
• Support queue promotion to resolve I/O dependency

23

Evaluation

• Implementation on Linux 3.13 w/ ext4
• Application studies

• PostgreSQL relational database
• Backend processes as foreground tasks
• I/O priority inheritance on LWLocks (semop)

• MongoDB document store
• Client threads as foreground tasks
• I/O priority inheritance on Pthread mutex and condition vars (futex)

• Redis key-value store
• Master process as foreground task

24

Evaluation

• Experimental setup
• 2 Dell PowerEdge R530 (server & client)
• 1TB Micron MX200 SSD

• I/O prioritization schemes
• CFQ (default), CFQ-IDLE
• SPLIT-A (priority), SPLIT-D (deadline) [SOSP’15]
• QASIO [FAST’15]
• RCP

25

Application Throughput

• PostgreSQL w/ TPC-C workload

26

0

2000

4000

6000

8000

10GB dataset 60GB dataset 200GB dataset

Tr
an

sa
ct

io
n

th
ro

ug
hp

ut

(t
rx

/s
ec

)

CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO RCP

37%
31%28%

Application Throughput

• Impact on background task

27

Our scheme improves
application throughput
w/o penalizing
background tasks

-5

5

15

25

35

0 200 400 600 800 1000 1200 1400 1600 1800

Tr
an

sa
ct

io
n

lo
g
 s

iz
e

(G
B)

Elapsed time (sec)

CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO RCP

Application Latency

• PostgreSQL w/ TPC-C workload

28

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 1000 2000 3000 4000 5000 6000

C
C
D

F
P[

X
>
=
x]

Transaction latency (msec)

CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO RCP
100

10-1

10-2

10-3

10-4

10-5

300 msec
at 99.999th

Our scheme is effective
for improving tail latency

Over 2 sec
at 99.9th

100

10-1

10-2

10-3

10-4

10-5

0th

90th

99th

99.9th

99.99th

99.999th

Summary of Other Results

• Performance results
• MongoDB: 12%-201% throughput, 5x-20x latency at 99.9th

• Redis: 7%-49% throughput, 2x-20x latency at 99.9th

• Analysis results
• System latency analysis using LatencyTOP
• System throughput vs. Application latency
• Need for holistic approach

29

Conclusions
• Key observation

• All the layers in the I/O path should be considered as a whole with I/O
priority inversion in mind for effective I/O prioritization

• Request-centric I/O prioritization
• Enlightens the I/O path solely for application performance
• Improves throughput and latency of real applications

• Ongoing work
• Practicalizing implementation
• Applying RCP to database cluster with multiple replicas

30

Thank You!

• Questions and comments

31

