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Data-Intensive Applications

• Common structure
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Background tasks are problematic
for application performance



Application Impact
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• Illustrative experiment
• YCSB update-heavy workload against MongoDB
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• Illustrative experiment
• YCSB update-heavy workload against MongoDB
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• Illustrative experiment
• YCSB update-heavy workload against MongoDB

I/O priority does 
not help 
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• Illustrative experiment
• YCSB update-heavy workload against MongoDB

State-of-the-art 
schedulers do 
not help much



What’s the Problem?

• Independent policies in multiple layers
• Each layer processes I/Os w/ limited information

• I/O priority inversion
• Background I/Os can arbitrarily delay foreground tasks
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Multiple Independent Layers

• Independent I/O processing
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What’s the Problem?

• Independent policies in multiple layers
• Each layer processes I/Os w/ limited information

• I/O priority inversion
• Background I/Os can arbitrarily delay foreground tasks
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I/O Priority Inversion

• Task dependency
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I/O Priority Inversion

• I/O dependency
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100 ms latency at 
99.99th percentile
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• Request-centric I/O prioritization (RCP)
• Critical I/O: I/O in the critical path of request handling
• Policy: holistically prioritizes critical I/Os along the I/O path

Our Approach



Challenges

• How to accurately identify I/O criticality

• How to effectively enforce I/O criticality
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Critical I/O Detection

• Enlightenment API
• Interface for tagging foreground tasks

• I/O priority inheritance
• Handling task dependency
• Handling I/O dependency
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I/O Priority Inheritance

• Handling task dependency
• Locks

• Condition variables
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I/O Priority Inheritance

• Handling I/O dependency
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Handling Transitive Dependency

• Possible states of dependent task
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Handling Transitive Dependency

• Recording blocking status
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Challenges

• How to accurately identify I/O criticality
• Enlightenment API
• I/O priority inheritance
• Recording blocking status

• How to effectively enforce I/O criticality
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Criticality-Aware I/O Prioritization

• Caching layer
• Apply low dirty ratio for non-critical writes (1% by default)

• Block layer
• Isolate allocation of block queue slots
• Maintain 2 FIFO queues
• Schedule critical I/O first
• Limit # of outstanding non-critical I/Os (1 by default)
• Support queue promotion to resolve I/O dependency
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Evaluation

• Implementation on Linux 3.13 w/ ext4
• Application studies

• PostgreSQL relational database
• Backend processes as foreground tasks
• I/O priority inheritance on LWLocks (semop)

• MongoDB document store
• Client threads as foreground tasks
• I/O priority inheritance on Pthread mutex and condition vars (futex)

• Redis key-value store
• Master process as foreground task
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Evaluation

• Experimental setup
• 2 Dell PowerEdge R530 (server & client)
• 1TB Micron MX200 SSD

• I/O prioritization schemes
• CFQ (default), CFQ-IDLE
• SPLIT-A (priority), SPLIT-D (deadline) [SOSP’15]
• QASIO [FAST’15]
• RCP
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Application Throughput

• PostgreSQL w/ TPC-C workload
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Application Throughput

• Impact on background task
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Our scheme improves
application throughput 
w/o penalizing 
background tasks
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Application Latency

• PostgreSQL w/ TPC-C workload
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Summary of Other Results

• Performance results
• MongoDB: 12%-201% throughput, 5x-20x latency at 99.9th

• Redis: 7%-49% throughput, 2x-20x latency at 99.9th

• Analysis results
• System latency analysis using LatencyTOP
• System throughput vs. Application latency
• Need for holistic approach
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Conclusions
• Key observation

• All the layers in the I/O path should be considered as a whole with I/O 
priority inversion in mind for effective I/O prioritization

• Request-centric I/O prioritization
• Enlightens the I/O path solely for application performance
• Improves throughput and latency of real applications

• Ongoing work
• Practicalizing implementation
• Applying RCP to database cluster with multiple replicas
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Thank You!

• Questions and comments
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