
System Security Overview 
with an Emphasis on Security Issues for 

Storage and Emerging NVM (Part 2)

Byoungyoung Lee (이병영)

byoungyoung@snu.ac.kr

Seoul National University

1



Part1. Bugs in File Systems
Semantic inconsistency inference

Fuzzing

Part2. Attacks and Defenses
Ransomware

Cold boot attacks

Side-channels

2

Outline



The CIA Principle in Security

• Confidentiality
• Ability to hide information from unauthorized access

• Integrity
• Maintaining consistency, accuracy, and trustworthiness of data

• Availability
• Information requested is readily available to authorized entity

3



Defenses

• Many defense schemes
• Access control
• Encryption
• Authentication
• Authorization
• Firewall
• Intrusion detection system
• etc.

• Which defense schemes should you need?
• It depends on an attack model.

4



Attack Vectors

• Privilege escalation attacks
• Exploiting software bugs

• Exploiting hardware bugs

• Ransomware

• Cold boot attacks

• Side-channels

5



Part1. Bugs in File Systems
Semantic inconsistency inference

Fuzzing

Part2. Attacks and Defenses
Ransomware

Cold boot attacks

Side-channels

6

Outline



Ransomware

7

A random notification: 
users files have been 

encrypted

Pay ransom to recover 
user files

“FlashGuard: Data recovery [CCS 17]”



Candidate Defenses against Ransomware

• Malware detection
• Damage has already happened when ransomware is detected

• Journaling & log-structured filesystem
• Ransomware with kernel privilege can destroy data backups

• Networked & cloud storage
• Increased storage cost

• Can be stopped by ransomware

8



Threat Model of Ransomware

9



Threat Model of Ransomware

9



Threat Model of Ransomware

9



Threat Model of Ransomware

9

Traditional security solutions 
does not work



Threat Model of Ransomware

9

Traditional security solutions 
does not work

Need low-level solutions 
at the disk layer



Defense Solutions in SSD

• Defenses implemented in flash-based SSD
• Without relying on software-based solutions

• FlashGuard: Data recovery [CCS 17]
• Leveraging existing features in SSD: out-of-place update and garbage collection

• Retain pages caused by ransomware encryptions

• SSD-Insider: Attack detection [ICDCS 18]
• Detection based on behavior characteristics

• Recovery of infected files using intrinsic delayed deletion features of NAND flash

10



Part1. Bugs in File Systems
Semantic inconsistency inference

Fuzzing

Part2. Attacks and Defenses
Ransomware

Cold boot attacks

Side-channels

11

Outline



Disk Encryption (Encrypted File Systems)

12



Trust Models in Encrypted FS

• Memory hierarchy with trust models (when OS is trusted)

13

CPU Registers

CPU Cache

Random access 
memory

Flash / Hard drives



Trust Models in Encrypted FS

• Memory hierarchy with trust models (when OS is trusted)

13

CPU Registers

CPU Cache

Random access 
memory

Flash / Hard drives

Trusted



Trust Models in Encrypted FS

• Memory hierarchy with trust models (when OS is trusted)

13

CPU Registers

CPU Cache

Random access 
memory

Flash / Hard drives

Trusted

Untrusted



Trust Models in Encrypted FS

• Memory hierarchy with trust models (when OS is trusted)

13

CPU Registers

CPU Cache

Random access 
memory

Flash / Hard drives

Trusted

Untrusted Encrypted data



Trust Models in Encrypted FS

• Memory hierarchy with trust models (when OS is trusted)

13

CPU Registers

CPU Cache

Random access 
memory

Flash / Hard drives

Trusted

Untrusted

Encryption key

Encrypted data



Trust Models in Encrypted FS

• Memory hierarchy with trust models (when OS is trusted)

13

CPU Registers

CPU Cache

Random access 
memory

Flash / Hard drives

Trusted

Untrusted

Encryption key

Encrypted data



Trust Models in Encrypted FS

• Memory hierarchy with trust models (when OS is trusted)

13

CPU Registers

CPU Cache

Random access 
memory

Flash / Hard drives

Trusted

Untrusted

Encryption key

Encrypted data



Attacking DRAM

• Physical attacks against DRAM
• What happen if DRAMs are detached from DIMM slots?

• Should data be retained? Probably not.

• DRAM cell has to be refreshed
• If detached, a data value in a capacitor decays over time

• Can we slowdown decay?

14



Cold Boot Attack: Slowing Decay by Cooling

15

-50°C: less than 0.2% decay after 1 minute

“Lest We Remember: Cold Boot Attacks on Encryption Keys [USENIX Security 08]”



Security Implications of Cold Boot Attack

16

CPU Registers

CPU Cache

Random access 
memory

Flash / Hard drives

Trusted

Untrusted

Encryption key

Encrypted data



Security Implications of Cold Boot Attack

16

CPU Registers

CPU Cache

Random access 
memory

Flash / Hard drives

Trusted

Untrusted

Encryption key

Encrypted data



Security Implications of Cold Boot Attack

• Encryption keys stored in DRAM can be leaked

• Demonstrated attacks in [USENIX Security 08]
• Windows BitLocker

• MacOS FileVault

• Linux dm-crypt

• Linux LoopAES

• TrueCrypt

17



Security Implications of Cold Boot Attack

• Encryption keys stored in DRAM can be leaked

• Demonstrated attacks in [USENIX Security 08]
• Windows BitLocker

• MacOS FileVault

• Linux dm-crypt

• Linux LoopAES

• TrueCrypt

17

“the emergence of non-volatile DIMMs that fit into 
DDR4 buses is going to exacerbate the risk of cold 
boot attacks.” [USENIX Security 08]



Countermeasures against Cold Boot Attack

• Encryption key and states only present in registers/cache
• TRESOR [USENIX Security 11]

• Linux kernel patch 

• The AES encryption algorithm and its key management solely on CPU

18

CPU Registers

CPU Cache

Random access memory

Flash / Hard drives

Trusted

Untrusted



Countermeasures against Cold Boot Attack

• Sensitive data always leaves CPU as encrypted
• Software-only solution

• Leverage iRAM or locked L2 cache [ASPLOS 15]

• Hardware solution  Fully encrypted memory
• Hardware-assisted Trusted Execution Environments

• Intel SGX, AMD Secure Execution Environment, RISC-V Keystone [USENIX Security 16]

• Encrypted channel
• InvisiMem [ISCA 17]

• ORAM-based memory controllers
• ObfusMem [ISCA 17], SDIMM [HCPA 18]

19



Part1. Bugs in File Systems
Semantic inconsistency inference

Fuzzing

Part2. Attacks and Defenses
Ransomware

Cold boot attacks

Side-channels

20

Outline



Side-Channels

• Definition from Wikipedia

21

“Any attack based on information gained from the 
implementation of a computer system, rather than 
weaknesses in the implemented algorithm itself 
(e.g. cryptanalysis and software bugs)”

“Timing information, power 
consumption, electromagnetic leaks or 
even sound can provide an extra source of information, 
which can be exploited.”



Timing attacks

• This may happen for website login
• Your (plain) password is compared at the server side

22



Timing attacks

• This may happen for website login
• Your (plain) password is compared at the server side

22



Timing attacks

• This may happen for website login
• Your (plain) password is compared at the server side

22



Cache Side-Channel

• Timing channels in CPU Cache

23



Cache Side-Channel

• Timing channels in CPU Cache

23

Cache miss



Cache Side-Channel

• Timing channels in CPU Cache

23

Cache miss

Request



Cache Side-Channel

• Timing channels in CPU Cache

23

Cache miss

Request

Response



Cache Side-Channel

• Timing channels in CPU Cache

23

Cache miss

Request

Responsei



Cache Side-Channel

• Timing channels in CPU Cache

23

Cache miss

Request

Responsei

Cache hit



Cache Side-Channel

• Timing channels in CPU Cache

23

Cache miss

Request

Responsei

Cache hit

DRAM access, 
slow



Cache Side-Channel

• Timing channels in CPU Cache

23

Cache miss

Request

Responsei

Cache hit

DRAM access, 
slow

No DRAM access,
much faster



Cache Side-Channel

• Flush+Reload attack

24

Shared memoryAttacker Victim

cached

Shared memory

Fast if victim accessed data, 
slow otherwise

cached



Cache Side-Channel

• Flush+Reload attack

24

Shared memoryAttacker Victim

Shared memory

Fast if victim accessed data, 
slow otherwise



Cache Side-Channel

• Flush+Reload attack

24

Shared memoryAttacker Victim

Shared memory

Fast if victim accessed data, 
slow otherwise

flush



Cache Side-Channel

• Flush+Reload attack

24

Shared memoryAttacker Victim

Fast if victim accessed data, 
slow otherwise

flush



Cache Side-Channel

• Flush+Reload attack

24

Shared memoryAttacker Victim

access

Fast if victim accessed data, 
slow otherwise



Cache Side-Channel

• Flush+Reload attack

24

Shared memoryAttacker Victim

Shared memory access

Fast if victim accessed data, 
slow otherwise



Cache Side-Channel

• Flush+Reload attack

24

Shared memoryAttacker Victim

Shared memory

access

Fast if victim accessed data, 
slow otherwise



Meltdown: Out-of-order execution

• Out-of-order execution
• Out-of-order instructions leave micro-architectural traces

• Storing values in cache

• Give such instructions a name: transient instructions

25



Meltdown

26

• Permission check for transient instructions is only done 
• when committing them

• Suppose we are running a user-level program below



Meltdown

26

• Permission check for transient instructions is only done 
• when committing them

• Suppose we are running a user-level program below



Meltdown

26

• Permission check for transient instructions is only done 
• when committing them

• Suppose we are running a user-level program below

Fetching a kernel address. 
Should not be allowed.



Meltdown

26

• Permission check for transient instructions is only done 
• when committing them

• Suppose we are running a user-level program below

Fetching a kernel address. 
Should not be allowed.

Permission checks will be done later



Meltdown

26

• Permission check for transient instructions is only done 
• when committing them

• Suppose we are running a user-level program below

Fetching a kernel address. 
Should not be allowed.

Permission checks will be done later



Meltdown

26

• Permission check for transient instructions is only done 
• when committing them

• Suppose we are running a user-level program below

Fetching a kernel address. 
Should not be allowed.

Permission checks will be done later

kernel's data value will be stored in array, which 
can be retrieved using flush+reload



Mitigating Meltdown

• Kernel Page Table Isolation
• KAISER [ESSoS 17]

27



Side Channels in SGX

• Page fault
• Controlled Channel Attack [S&P 15]

• Cache
• Software Grand Exposure [WOOT 17]

• Branch prediction
• Branch shadowing [Security 17]

• Transient out-of-order execution
• Foreshadow [Security 18]

• Bus snooping

 All of these are about memory access

28



SGX's Threat Model

29

SGX CPU 

Cache MEE



SGX's Threat Model

29

SGX CPU 

Cache MEE

Only CPU is trusted

All the rest are untrusted



SGX's Threat Model

29

SGX CPU 

Cache MEE

Any data leaving CPU is 
encrypted by Memory 
Encryption Engine (MEE)

Only CPU is trusted

All the rest are untrusted



Attacking SGX

30

SGX CPU 

Cache MEE



Attacking SGX

30

SGX CPU 

Cache MEE

Bus snooping:
Access patterns 
are still visible



Attacking SGX

30

SGX CPU 

Cache MEE

Bus snooping:
Access patterns 
are still visible

Monitor syscalls:
Access patterns 
are still visible



Attacking SGX

30

SGX CPU 

Cache MEE

Bus snooping:
Access patterns 
are still visible

Monitor syscalls:
Access patterns 
are still visibleCache side channels



Why Does Access Patterns Matter?

31

Client

Server

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)



Why Does Access Patterns Matter?

31

Client

Server

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Request: C



Why Does Access Patterns Matter?

31

Client

Server

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Request: C

Response: Ek(Apple)



Why Does Access Patterns Matter?

31

Client

Server

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Request: C

Response: Ek(Apple)

Server learns client asked for “C”

How to make client’s query private?



Easy Solution: Ask Everything

32

Client Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server



Easy Solution: Ask Everything

32

Client

Request: A,B,C,D,…,G

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server



Easy Solution: Ask Everything

32

Client

Request: A,B,C,D,…,G

Response: Ek(Bluberry), 
Ek(Tomato), …, Ek(Cherry)

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server



Easy Solution: Ask Everything

32

Client

Request: A,B,C,D,…,G

Response: Ek(Bluberry), 
Ek(Tomato), …, Ek(Cherry)

Secure but too much overhead

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server



Better Solution: Ask k tuples [S&P 98]

33

Client Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server



Better Solution: Ask k tuples [S&P 98]

33

Client

Request: A,C

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server



Better Solution: Ask k tuples [S&P 98]

33

Client

Request: A,C

Response: Ek(Blueberry), 
Ek(Apple)

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server



Better Solution: Ask k tuples [S&P 98]

33

Client

Request: A,C

Response: Ek(Blueberry), 
Ek(Apple)

Provides k-1 ambiguity
- So called k-anonymity [S&P 98]
Limited security guarantees
- See l-diversity [ICDE 06], t-closeness [ICDE 07]

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server



Oblivious RAM (ORAM): Idea Sketch

34

Client Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server



Oblivious RAM (ORAM): Idea Sketch

34

Client
Request: A,C,D Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server



Oblivious RAM (ORAM): Idea Sketch

34

Client
Request: A,C,D

Response: Ek(Blueberry), 
Ek(Apple)
Ek(Banana)

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server



Oblivious RAM (ORAM): Idea Sketch

34

Client
Request: A,C,D

Response: Ek(Blueberry), 
Ek(Apple)
Ek(Banana)

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server

Shuffle



Oblivious RAM (ORAM): Idea Sketch

34

Client
Request: A,C,D

Response: Ek(Blueberry), 
Ek(Apple)
Ek(Banana)

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server

Shuffle

Write-back: A: Ek(Apple), 
C: Ek(Banana)
D: Ek(Blueberry)



Oblivious RAM (ORAM): Idea Sketch

34

Client
Request: A,C,D

Response: Ek(Blueberry), 
Ek(Apple)
Ek(Banana)

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server

Shuffle

Write-back: A: Ek(Apple), 
C: Ek(Banana)
D: Ek(Blueberry)

Ek(Apple)



Oblivious RAM (ORAM): Idea Sketch

34

Client
Request: A,C,D

Response: Ek(Blueberry), 
Ek(Apple)
Ek(Banana)

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server

Shuffle

Write-back: A: Ek(Apple), 
C: Ek(Banana)
D: Ek(Blueberry)

Ek(Apple)

Ek(Banana)



Oblivious RAM (ORAM): Idea Sketch

34

Client
Request: A,C,D

Response: Ek(Blueberry), 
Ek(Apple)
Ek(Banana)

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server

Shuffle

Write-back: A: Ek(Apple), 
C: Ek(Banana)
D: Ek(Blueberry)

Ek(Blueberry)

Ek(Apple)

Ek(Banana)



Oblivious RAM (ORAM): Idea Sketch

34

Client
Request: A,C,D

Response: Ek(Blueberry), 
Ek(Apple)
Ek(Banana)

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server

Shuffle

Write-back: A: Ek(Apple), 
C: Ek(Banana)
D: Ek(Blueberry)

Ek(Blueberry)

Ek(Apple)

Ek(Banana)

Key-Value mapping always changes



Path ORAM [CCS 13]

35

ORAM Client ORAM Server

Position Map

Stash



Path ORAM [CCS 13]

35

ORAM Client ORAM Server

Position Map

Stash

Tree-like data structures
- Client: Position map, stash
- Server: ORAM Tree with real/dummy nodes



ORAM-based solutions for Memory Access

36

SGX CPU 

Cache MEE



ORAM-based solutions for Memory Access

36

SGX CPU 

Cache MEE

Bus snooping:
Access patterns 
are still visible



ORAM-based solutions for Memory Access

36

SGX CPU 

Cache MEE

Bus snooping:
Access patterns 
are still visible

Monitor syscalls:
Access patterns 
are still visible



ORAM-based solutions for Memory Access

36

SGX CPU 

Cache MEE

Bus snooping:
Access patterns 
are still visible

Monitor syscalls:
Access patterns 
are still visibleCache side channels



Mitigation:
ORAM-based Memory Controller

37

SGX CPU 

Cache
ORAM
Server

ORAM 
Client

ObfusMem [ISCA 17], SDIMM [HPCA 18]
- ORAM-based Memory Controller



Mitigation:
ORAM-based Memory Controller

37

SGX CPU 

Cache

Patterns are secured 
using ORAM protocols

ORAM
Server

ORAM 
Client

ObfusMem [ISCA 17], SDIMM [HPCA 18]
- ORAM-based Memory Controller



Mitigation:
ORAM-based Memory Controller

37

SGX CPU 

Cache

Patterns are secured 
using ORAM protocols

ORAM
Server

ORAM 
Client

ObfusMem [ISCA 17], SDIMM [HPCA 18]
- ORAM-based Memory Controller



Mitigation:
Place Trust in DRAM

38

SGX CPU 

Cache MEE

Bus snooping

InvisiMem [ISCA 17]
- Place trust in DRAM
- All address and data bus traffics are encrypted
 Note: SGX only encrypts values in data bus

- Communication patterns are normalized



Mitigation:
Place Trust in DRAM

38

SGX CPU 

Cache MEE

Bus snooping

InvisiMem [ISCA 17]
- Place trust in DRAM
- All address and data bus traffics are encrypted
 Note: SGX only encrypts values in data bus

- Communication patterns are normalized



Mitigation:
Place Trust in DRAM

38

SGX CPU 

Cache MEE

Bus snooping

InvisiMem [ISCA 17]
- Place trust in DRAM
- All address and data bus traffics are encrypted
 Note: SGX only encrypts values in data bus

- Communication patterns are normalized



Mitigation:
Place Trust in DRAM

38

SGX CPU 

Cache MEE

Bus snooping

InvisiMem [ISCA 17]
- Place trust in DRAM
- All address and data bus traffics are encrypted
 Note: SGX only encrypts values in data bus

- Communication patterns are normalized



Mitigation:
Place Trust in DRAM

38

SGX CPU 

Cache MEE

Bus snooping

InvisiMem [ISCA 17]
- Place trust in DRAM
- All address and data bus traffics are encrypted
 Note: SGX only encrypts values in data bus

- Communication patterns are normalized



Mitigation:
ORAM-based File System

39

SGX CPU 

Cache

Patterns are secured 
using ORAM protocols

ORAM 
Client

ORAM
ServerObliviate [NDSS 18]

- ORAM-based File System



Mitigation:
ORAM-based File System

39

SGX CPU 

Cache

Patterns are secured 
using ORAM protocols

ORAM 
Client

ORAM
ServerObliviate [NDSS 18]

- ORAM-based File System



Mitigation:
ORAM-based File System

39

SGX CPU 

Cache

Patterns are secured 
using ORAM protocols

ORAM 
Client

ORAM
ServerObliviate [NDSS 18]

- ORAM-based File System



Obliviate [NDSS 18]: 
Memory charm against the OS

Program

ObliviateEnclave Application

Disk

40



Obliviate [NDSS 18]: 
Memory charm against the OS

Trusted Proxy

Program

1. FS Syscall
interceptor

ObliviateEnclave Application

Disk

40



Obliviate [NDSS 18]: 
Memory charm against the OS

Untrusted Proxy

Trusted Proxy

Program

1. FS Syscall
interceptor

2. Message 
Queues

ObliviateEnclave Application

Disk

40



Obliviate [NDSS 18]: 
Memory charm against the OS

Untrusted Proxy

Trusted Proxy

Program

1. FS Syscall
interceptor

2. Message 
Queues

3. Encrypted IPC

Untrusted 
Service

ObliviateEnclave Application

Disk

40



Obliviate [NDSS 18]: 
Memory charm against the OS

Untrusted Proxy

Trusted Proxy

Program

1. FS Syscall
interceptor

2. Message 
Queues

Trusted 
Service

3. Encrypted IPC

Untrusted 
Service

ObliviateEnclave Application

Disk

4. Trusted Service bridges 
the gap between FS and 

ORAM

40



Obliviate [NDSS 18]: 
Memory charm against the OS

Untrusted Proxy

Trusted Proxy

Program

1. FS Syscall
interceptor

2. Message 
Queues

Trusted 
Service

3. Encrypted IPC

Untrusted 
Service

ORAM client

FS Metadata
5. Data Oblivious 

Metadata Handling

ObliviateEnclave Application

Disk

4. Trusted Service bridges 
the gap between FS and 

ORAM

40



Obliviate [NDSS 18]: 
Memory charm against the OS

Untrusted Proxy

Trusted Proxy

Program

1. FS Syscall
interceptor

2. Message 
Queues

Trusted 
Service

3. Encrypted IPC

Untrusted 
Service

ORAM client

FS Metadata

f4

T1

T2
f3f2

ORAM Server

5. Data Oblivious 
Metadata Handling

ObliviateEnclave Application

Disk

6. Encrypted ORAM Tree
(s) outside Enclave

4. Trusted Service bridges 
the gap between FS and 

ORAM

40



Obliviate [NDSS 18]: 
Memory charm against the OS

Untrusted Proxy

Trusted Proxy

Program

1. FS Syscall
interceptor

2. Message 
Queues

Trusted 
Service

3. Encrypted IPC

Untrusted 
Service

ORAM client

FS Metadata

f4

T1

T2
f3f2

ORAM Server

5. Data Oblivious 
Metadata Handling

ObliviateEnclave Application

Disk

6. Encrypted ORAM Tree
(s) outside Enclave

4. Trusted Service bridges 
the gap between FS and 

ORAM

40

(Init) load all files into 
ORAM Tree(s)



Conclusion

• Bug finding in file systems
• Semantic, memory, concurrency, error code bugs

• Semantic inconsistency inference

• Fuzzing

• Attacks and Defenses
• Ransomware

• Cold boot attacks

• Side channels

41



감사합니다.

이병영

서울대학교 전기정보공학부

byoungyoung@snu.ac.kr

42


