
System Security Overview 
with an Emphasis on Security Issues for 

Storage and Emerging NVM (Part 2)

Byoungyoung Lee (이병영)

byoungyoung@snu.ac.kr

Seoul National University

1



Part1. Bugs in File Systems
Semantic inconsistency inference

Fuzzing

Part2. Attacks and Defenses
Ransomware

Cold boot attacks

Side-channels

2

Outline



The CIA Principle in Security

• Confidentiality
• Ability to hide information from unauthorized access

• Integrity
• Maintaining consistency, accuracy, and trustworthiness of data

• Availability
• Information requested is readily available to authorized entity
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Defenses

• Many defense schemes
• Access control
• Encryption
• Authentication
• Authorization
• Firewall
• Intrusion detection system
• etc.

• Which defense schemes should you need?
• It depends on an attack model.
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Attack Vectors

• Privilege escalation attacks
• Exploiting software bugs

• Exploiting hardware bugs

• Ransomware

• Cold boot attacks

• Side-channels
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Ransomware
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A random notification: 
users files have been 

encrypted

Pay ransom to recover 
user files

“FlashGuard: Data recovery [CCS 17]”



Candidate Defenses against Ransomware

• Malware detection
• Damage has already happened when ransomware is detected

• Journaling & log-structured filesystem
• Ransomware with kernel privilege can destroy data backups

• Networked & cloud storage
• Increased storage cost

• Can be stopped by ransomware

8



Threat Model of Ransomware
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Threat Model of Ransomware
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Traditional security solutions 
does not work

Need low-level solutions 
at the disk layer



Defense Solutions in SSD

• Defenses implemented in flash-based SSD
• Without relying on software-based solutions

• FlashGuard: Data recovery [CCS 17]
• Leveraging existing features in SSD: out-of-place update and garbage collection

• Retain pages caused by ransomware encryptions

• SSD-Insider: Attack detection [ICDCS 18]
• Detection based on behavior characteristics

• Recovery of infected files using intrinsic delayed deletion features of NAND flash
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Disk Encryption (Encrypted File Systems)
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Trust Models in Encrypted FS

• Memory hierarchy with trust models (when OS is trusted)
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Attacking DRAM

• Physical attacks against DRAM
• What happen if DRAMs are detached from DIMM slots?

• Should data be retained? Probably not.

• DRAM cell has to be refreshed
• If detached, a data value in a capacitor decays over time

• Can we slowdown decay?
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Cold Boot Attack: Slowing Decay by Cooling
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-50°C: less than 0.2% decay after 1 minute

“Lest We Remember: Cold Boot Attacks on Encryption Keys [USENIX Security 08]”



Security Implications of Cold Boot Attack
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Security Implications of Cold Boot Attack

• Encryption keys stored in DRAM can be leaked

• Demonstrated attacks in [USENIX Security 08]
• Windows BitLocker

• MacOS FileVault

• Linux dm-crypt

• Linux LoopAES

• TrueCrypt
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“the emergence of non-volatile DIMMs that fit into 
DDR4 buses is going to exacerbate the risk of cold 
boot attacks.” [USENIX Security 08]



Countermeasures against Cold Boot Attack

• Encryption key and states only present in registers/cache
• TRESOR [USENIX Security 11]

• Linux kernel patch 

• The AES encryption algorithm and its key management solely on CPU
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Countermeasures against Cold Boot Attack

• Sensitive data always leaves CPU as encrypted
• Software-only solution

• Leverage iRAM or locked L2 cache [ASPLOS 15]

• Hardware solution  Fully encrypted memory
• Hardware-assisted Trusted Execution Environments

• Intel SGX, AMD Secure Execution Environment, RISC-V Keystone [USENIX Security 16]

• Encrypted channel
• InvisiMem [ISCA 17]

• ORAM-based memory controllers
• ObfusMem [ISCA 17], SDIMM [HCPA 18]
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Side-Channels

• Definition from Wikipedia

21

“Any attack based on information gained from the 
implementation of a computer system, rather than 
weaknesses in the implemented algorithm itself 
(e.g. cryptanalysis and software bugs)”

“Timing information, power 
consumption, electromagnetic leaks or 
even sound can provide an extra source of information, 
which can be exploited.”



Timing attacks

• This may happen for website login
• Your (plain) password is compared at the server side
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Cache Side-Channel

• Timing channels in CPU Cache
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Cache miss

Request

Responsei

Cache hit

DRAM access, 
slow

No DRAM access,
much faster



Cache Side-Channel

• Flush+Reload attack
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Meltdown: Out-of-order execution

• Out-of-order execution
• Out-of-order instructions leave micro-architectural traces

• Storing values in cache

• Give such instructions a name: transient instructions
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Meltdown

26

• Permission check for transient instructions is only done 
• when committing them

• Suppose we are running a user-level program below

Fetching a kernel address. 
Should not be allowed.

Permission checks will be done later

kernel's data value will be stored in array, which 
can be retrieved using flush+reload



Mitigating Meltdown

• Kernel Page Table Isolation
• KAISER [ESSoS 17]
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Side Channels in SGX

• Page fault
• Controlled Channel Attack [S&P 15]

• Cache
• Software Grand Exposure [WOOT 17]

• Branch prediction
• Branch shadowing [Security 17]

• Transient out-of-order execution
• Foreshadow [Security 18]

• Bus snooping

 All of these are about memory access
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SGX's Threat Model
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SGX's Threat Model
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SGX CPU 

Cache MEE

Any data leaving CPU is 
encrypted by Memory 
Encryption Engine (MEE)

Only CPU is trusted

All the rest are untrusted



Attacking SGX
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Key Value

A Ek(Blueberry)
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G Ek(Cherry)

Request: C

Response: Ek(Apple)

Server learns client asked for “C”

How to make client’s query private?



Easy Solution: Ask Everything
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32
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Request: A,B,C,D,…,G
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Secure but too much overhead
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Better Solution: Ask k tuples [S&P 98]
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Client

Request: A,C

Response: Ek(Blueberry), 
Ek(Apple)

Provides k-1 ambiguity
- So called k-anonymity [S&P 98]
Limited security guarantees
- See l-diversity [ICDE 06], t-closeness [ICDE 07]
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Oblivious RAM (ORAM): Idea Sketch
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Client
Request: A,C,D

Response: Ek(Blueberry), 
Ek(Apple)
Ek(Banana)

Key Value

A Ek(Blueberry)

B Ek(Tomato)

C Ek(Apple)

D Ek(Banana)

E Ek(Orange)

F Ek(Mango)

G Ek(Cherry)

Server

Shuffle

Write-back: A: Ek(Apple), 
C: Ek(Banana)
D: Ek(Blueberry)

Ek(Blueberry)

Ek(Apple)

Ek(Banana)

Key-Value mapping always changes
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ORAM Client ORAM Server

Position Map

Stash

Tree-like data structures
- Client: Position map, stash
- Server: ORAM Tree with real/dummy nodes
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Conclusion

• Bug finding in file systems
• Semantic, memory, concurrency, error code bugs

• Semantic inconsistency inference

• Fuzzing

• Attacks and Defenses
• Ransomware

• Cold boot attacks

• Side channels
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