System Security Overview
with an Emphasis on Security Issues for
Storage and Emerging NVM (Part 2)

Byoungyoung Lee (O|&H &)
byoungyoung@snu.ac.kr
Seoul National University

Outline

Part1. Bugs in File Systems
Semantic inconsistency inference
Fuzzing

Part2. Attacks and Defenses

Ransomware
Cold boot attacks
Side-channels

The CIA Principle Iin Security

 Confidentiality
« Ability to hide information from unauthorized access

* Integrity
« Maintaining consistency, accuracy, and trustworthiness of data

* Availability

 Information requested is readily available to authorized entity

Defenses

* Many defense schemes
 Access control
 Encryption
 Authentication

Authorization

Firewall

Intrusion detection system

etc.

* Which defense schemes should you need?
* |t depends on an attack model.

Attack Vectors

* Privilege escalation attacks
* Exploiting software bugs
 Exploiting hardware bugs

e Ransomware
e Cold boot attacks
e Side-channels

Outline

Part1. Bugs in File Systems
Semantic inconsistency inference
Fuzzing

Part2. Attacks and Defenses

Ransomware
Cold boot attacks
Side-channels

Ransomware

_ A random notification:
Ooops, your files have been encrypted! (Ergish v users files have been

What Happened to My Computer?
Your important files are encrypted.
Many of your documents, photos, videos, databases and other files are no longer e n C r y p t e
accessible because they have been encrypted. Maybe you are busy looking for a way to
recover your files, but do not waste your time. Nobody can recover your files without
our decryption service,
iy Can I Recover My Files?
51672017 00:47:55 Sure. We guarantee that you can recover all your files safely and easily. But you have
not so enough time.
Time Left You can decrypt some of your files for free. Try now by clicking <Decrypt>.
But if you want to decrypt all your files, you need to pay.
You only have 3 days to submit the payment. After that the price will be doubled.
Also, if you don’t pay in 7 days, you won't be able to recover your files forever.
We will have free events for users who are so poor that they couldn't pay in 6 months.

11111/00:/l How Do I Pay? Pay ransom tO recover

Payment is accepted in Bitcoin only. For more information, click <About bitcoin>.
Please check the current price of Bitcoin and buy some bitcoins. For more information,

(]
click <How to buy bitcoins>,
And send the correct amount to the address specified in this window. u S e r I e S

After your payment, click <Check Payment>. Best time to check: 9:00am - 11:00am

PN & s M e Db

Time Left

“FlashGuard: Data recovery [CCS 17]" /

Candidate Defenses against Ransomware

« Malware detection
- Damage has already happened when ransomware is detected

* Journaling & log-structured filesystem
« Ransomware with kernel privilege can destroy data backups

* Networked & cloud storage
* Increased storage cost
« Can be stopped by ransomware

Threat Model of Ransomware

Application
userspace

kernel

Block Driver

I read/write

Disk

Threat Model of Ransomware

Application O
userspace

kernel

Block Driver

1
1 read/write

Disk

Threat Model of Ransomware

l read/write

Threat Model of Ransomware

Traditional security solutions
does not work

l read/write

Threat Model of Ransomware

Traditional security solutions
does not work

l read/write

Need low-level solutions
at the disk layer

Defense Solutions in SSD

 Defenses implemented in flash-based SSD
« Without relying on software-based solutions

 FlashGuard: Data recovery [CCS 17]

 Leveraging existing features in SSD: out-of-place update and garbage collection
 Retain pages caused by ransomware encryptions

« SSD-Insider: Attack detection [ICDCS 18]

 Detection based on behavior characteristics
« Recovery of infected files using intrinsic delayed deletion features of NAND flash

Outline

Part1. Bugs in File Systems
Semantic inconsistency inference
Fuzzing

Part2. Attacks and Defenses

Ransomware
Cold boot attacks
Side-channels

11

Disk Encryption (Encrypted File Systems)

ER Windows 10

BitLocker

FileVault Disk Encryption

FileVault secures the data on your disk by encrypting its contents automatically.

Would you like to use FileVault to encrypt the disk on your Mac?
2 Turn on FileVault disk encryption
Allow my iCloud account to unlock my disk

Your iCloud account mom can be used to unlock your disk and reset your
password if you forget it. If you do not want to allow your iCloud account to reset your password, you
can create a recovery key and store it in a safe place to unlock your disk.

©)

Back Continue

12

Trust Models in Encrypted FS

« Memory hierarchy with trust models (when OS is trusted)

CPU Registers

CPU Cache

Random access
memory

Flash / Hard drives

Trust Models in Encrypted FS

« Memory hierarchy with trust models (when OS is trusted)

CPU Registers

CPU Cache

Random access
memory

Flash / Hard drives

Trust Models in Encrypted FS

« Memory hierarchy with trust models (when OS is trusted)

CPU Registers

CPU Cache

Random access
memory

Flash / Hard drives

Trust Models in Encrypted FS

« Memory hierarchy with trust models (when OS is trusted)

CPU Registers

CPU Cache

Random access
memory

Flash / Hard drives O Encrypted data

Trust Models in Encrypted FS

« Memory hierarchy with trust models (when OS is trusted)

CPU Registers

CPU Cache Encryption key

Random access
memory

Flash / Hard drives O Encrypted data

Trust Models in Encrypted FS

« Memory hierarchy with trust models (when OS is trusted)

CPU Registers

CPU Cache Encryption key

Random access
memory

Flash / Hard drives O Encrypted data

Trust Models in Encrypted FS

« Memory hierarchy with trust models (when OS is trusted)

CPU Cache Encryption key

Random access
memory

CPU Registers

Flash / Hard drives O Encrypted data

Attacking DRAM

* Physical attacks against DRAM
« What happen if DRAMs are detached from DIMM slots?
 Should data be retained? Probably not.
« DRAM cell has to be refreshed

« If detached, a data value in a capacitor decays over time

« Can we slowdown decay?

Cold Boot Attack: Slowing Decay by Cooling

T

-50°C: less than 0.2% decay after 1 minute

“Lest We Remember: Cold Boot Attacks on Encryption Keys [USENIX Security 08]” 15

Security Implications of Cold Boot Attack

CPU Registers

CPU Cache Encryption key

Random access
memory

Flash / Hard drives O Encrypted data

Security Implications of Cold Boot Attack

CPU Registers

CPU Cache

Random access
memory

Flash / Hard drives

Encryption key

o J
N

Encrypted data

Security Implications of Cold Boot Attack

 Encryption keys stored in DRAM can be leaked

« Demonstrated attacks in [USENIX Security 08]
* Windows BitLocker
* MacOS FileVault
 Linux dm-crypt
 Linux LOoopAES
* TrueCrypt

Security Implications of Cold Boot Attack

 Encryption keys stored in DRAM can be leaked

* Demonstrated attacks in [USENIX Security 08]
« Windows BitLocker
« MacOS FileVault
 Linux dm-crypt
 Linux LOoopAES
* TrueCrypt

“the emergence of that fit into

DDR4 buses is going to
" [USENIX Security 08]

17

Countermeasures against Cold Boot Attack

* Encryption key and states only present in registers/cache
« TRESOR [USENIX Security 11]

* Linux kernel patch
« The AES encryption algorithm and its key management solely on CPU

CPU Registers
CPU Cache

Random access memory
Flash / Hard drives 3 ~

Countermeasures against Cold Boot Attack

* Sensitive data always leaves CPU as encrypted

« Software-only solution
 Leverage iIRAM or locked L2 cache [ASPLOS 15]

« Hardware solution =» Fully encrypted memory
« Hardware-assisted Trusted Execution Environments
* Intel SGX, AMD Secure Execution Environment, RISC-V Keystone [USENIX Security 16]
* Encrypted channel
* InvisiMem [ISCA 17]
« ORAM-based memory controllers
* ObfusMem [ISCA 17], SDIMM [HCPA 18]

Outline

Part1. Bugs in File Systems
Semantic inconsistency inference
Fuzzing

Part2. Attacks and Defenses

Ransomware
Cold boot attacks
Side-channels

20

Side-Channels

* Definition from Wikipedia

based on information
of a computer system, rather than
weaknesses in the implemented algorithm itself
(e.g. cryptanalysis and software bugs)”

can provide an extra source of information,
which can be exploited.”

21

Timing attacks

 This may happen for website login
* Your (plain) password is compared at the server side

$secret = "thisismykey";

if ($_GET]['secret'] == $secret) {
die("Not Allowed!");
}

22

Timing attacks

 This may happen for website login
* Your (plain) password is compared at the server side

$secret = "thisismykey";
if ($_GET]['secret'] == $secret) {
die("Not Allowed!");

}

case IS _STRING:
if (Z_STR_P(op1) ==Z STR_P(op2)) {
ZVAL_BOOL(result, 1);
} else {
ZVAL_BOOL(result, (Z STRLEN_ P(op1) == Z STRLEN_P(op2))
&& (Imememp(Z_STRVAL_P(op1), Z STRVAL P(op2), Z STRLEN_P(op1))));
}

break;

22

Timing attacks

 This may happen for website login
* Your (plain) password is compared at the server side

int memcmp(const void *s1, const void *s2, size t n)

$secret = "thisismykey"; { _
if (5_GET['secret] |== $secret) { unsigned char ut, u2;

die("Not Allowed!");
\ for (; n--; s1++, s2++) {

ul = * (unsigned char *) sf;
case IS STRING: u2 = * (unsigned char *) s2;
if (Z STR_P(op1) == Z STR_P(op2)) { it (ull=u2)
ZVAL_BOOL(result, 1); return (u1-u2);
} else {

ZVAL_BOOL (result, (Z_STRLEN_P(op1) return O:
&& (Imememp(Z_STRVAL_P(op1), Z_ST ’

}

break;

Cache Side-Channel

* Timing channels in CPU Cache

printf("%d", 1);
printf("%d", 1);

23

Cache Side-Channel

* Timing channels in CPU Cache

Cache miss
printf("%d", i); —
printf("%d", 1);

23

Cache Side-Channel

* Timing channels in CPU Cache

Cache miss
printf("%d", i); =
printf("%d", 1);

Re que st g |

23

Cache Side-Channel

* Timing channels in CPU Cache

Cache miss
printf("%d", i); =
printf("%d", 1i);

Re que st % |
g el

Response Sy

23

Cache Side-Channel

* Timing channels in CPU Cache

Cache miss
printf("%d", i); =
printf("%d", 1i);

Re que st % |
g el

Response Sy

23

Cache Side-Channel

* Timing channels in CPU Cache

Cache miss
printf("%d", i); —

printf("%d", 1); s>
Cache hit

Request

_
Response

¢
s
=
-~

PSR OCTTTTT T

23

Cache Side-Channel

* Timing channels in CPU Cache

DRAM access,

slow

Cache miss
printf("%d", i); —

printf("%d", 1); s>
Cache hit

Request

P)

——
Response

23

Cache Side-Channel

* Timing channels in CPU Cache

DRAM access,

slow

Cache miss
printf("%d", i); —

printf("%d", 1i); ==—7>>
Cache hit

No DRAM access,
much faster

%8 Request g

l g ,
Response Sy

23

Cache Side-Channel

e Flush+Reload attack

Attacker Shared memory Victim

cached

Shared memory

............
llllllllllll

Fast if victim accessed data,
slow otherwise

24

Cache Side-Channel

e Flush+Reload attack

Attacker Shared memory Victim

Shared memory

Fast if victim accessed data,
slow otherwise %

Cache Side-Channel

e Flush+Reload attack

Attacker Shared memory Victim

Shared memory

............
llllllllllll

Fast if victim accessed data,
slow otherwise

Cache Side-Channel

e Flush+Reload attack

Attacker Shared memory Victim

Fast if victim accessed data,
slow otherwise %

Cache Side-Channel

e Flush+Reload attack

Attacker Shared memory Victim

Fast if victim accessed data,
slow otherwise %

Cache Side-Channel

e Flush+Reload attack

Attacker Shared memory Victim

Shared memory

............
llllllllllll

Fast if victim accessed data,
slow otherwise %

Cache Side-Channel

e Flush+Reload attack

Attacker Shared memory Victim

Shared memory

aCcess

............
llllllllllll

Fast if victim accessed data,
slow otherwise %

Meltdown: Out-of-order execution

« Qut-of-order execution

e Out-of-order instructions leave micro-architectural traces
« Storing values in cache

e Give such instructions a name: transient instructions

25

Meltdown

« Permission check for transient instructions is only done
« when committing them

« Suppose we are running a user-level program below

char data = *(char*)O0xffffffff81a000e0;
array [data * 4096] = O0;

26

Meltdown

« Permission check for transient instructions is only done
« when committing them

« Suppose we are running a user-level program below

char data = *(char*)O0xffffffff81a000e0;
array [data * 4096] = O0;

Meltdown

« Permission check for transient instructions is only done
« when committing them

« Suppose we are running a user-level program below

Fetching a kernel address.
Should not be allowed.

char data = *(char*)O0xffffffff81a000e0;
array [data * 4096] = O0;

Meltdown

« Permission check for transient instructions is only done

e Su

when committing them

Dpose we are running a user-level program below

Fetching a kernel address.

Should not be allowed.
T
char data = *(char*)O0xffffffff81a000e0;

Permission checks will be done later

array [data * 4096] = O;

Meltdown

« Permission check for transient instructions is only done

e Su

when committing them

Dpose we are running a user-level program below

Fetching a kernel address.

Should not be allowed.
T
char data = *(char*)O0xffffffff81a000e0;

Permission checks will be done later

array [data * 4096] = O;

26

* Pe

e Su

Meltdown

rmission check for transient instructions is only done
when committing them

Dpose we are running a user-level program below

Fetching a kernel address. Permission checks will be done later

Should not be allowed.
T
char data = *(char*)O0xffffffff81a000e0;
array [data * 4096] = O;

kernel's data value will be stored in array, which
can be retrieved using flush+reload

26

Mitigating Meltdown

 Kernel Page Table Isolation

» KAISER [ESSoS 17]

Today’'s operating systems:

Shared address space

User memory g

Kernel memory

L

context switch

Stronger kernel isolation:

User address space

User memory g - Not mapped

~
~
~ -
~
~
[——
2
<

context switch | Interrupt

aoeds ‘ippe
Yyoums

dispatcher

Not mapped g

Kernel memory

Kernel address space

27

Side Channels in SGX

* Page fault
« Controlled Channel Attack [S&P 15]

* Cache
 Software Grand Exposure [WOOT 17]

 Branch prediction
 Branch shadowing [Security 17]

e Transient out-of-order execution
e Foreshadow [Security 18]

* Bus snooping

= All of these are about memory access

SGX's Threat Model

SGX CPU

Cache H MEE

29

SGX's Threat Model

Only CPU is trusted

SGX CPU

Cache H MEE

29

SGX's Threat Model

Only CPU is trusted

SGX CPU |

Cache H MEE

Any data leaving CPU is
encrypted by Memory
Encryption Engine (MEE)

29

Attacking SGX

SGX CPU

MEE

A|

30

Attacking SGX

Bus snooping:

Access patterns
| are still visible

SGX CPU

30

Attacking SGX

Bus snooping:

SGX CPU

Access patterns
| are still visible

MEE

Monitor syscalls:

Access patterns
are still visible

Attacking SGX

Bus snooping:
| Access patterns

SGX CPU are still visible

MEE

Monitor syscalls:
Access patterns
are still visible

Cache side channels

Why Does Access Patterns Matter?

Key Value ‘?“
A E, (Blueberry)
B E (Tomato)
C E(Apple)
D E . (Banana)
E E (Orange)
F E.(Mango)
G E.(Cherry)

Why Does Access Patterns Matter?

Request: C

Key Value '?“
A E, (Blueberry)
B E (Tomato)
C E(Apple)
D E . (Banana)
E E (Orange)
F E.(Mango)
G E.(Cherry)

Why Does Access Patterns Matter?

Request: C

————————————————————————————
Response: E, (Apple)

Key Value '?“
A E, (Blueberry)
B E (Tomato)
C E(Apple)
D E . (Banana)
E E (Orange)
F E.(Mango)
G E.(Cherry)

Why Does Access Patterns Matter?

Request: C

————————————————————————————
Response: E, (Apple)

Server learns client asked for “C”

How to make client’s query private?

Key Value '?“
A E, (Blueberry)
B E (Tomato)
C E(Apple)
D E . (Banana)
E E (Orange)
F E.(Mango)
G E.(Cherry)

Easy Solution: Ask Everything

Server

Client

Easy Solution: Ask Everything

Request: A,B,C,D.....G

Key Value '?“
A E, (Blueberry)
B E (Tomato)
C E(Apple)
D E . (Banana)
E E (Orange)
F E.(Mango)
G E (Cherry)

Easy Solution: Ask Everything

Request: A,B,C,D.....G

——————————————————————————
Response: E,(Bluberry),
E, (Tomato), ..., E . (Cherry)

Key Value '?“
A E, (Blueberry)
B E (Tomato)
C E(Apple)
D E . (Banana)
E E . (Orange)
F E.(Mango)
G E.(Cherry)

Easy Solution: Ask Everything

Request: A,B,C,D.....G

——————————————————————————
Response: E,(Bluberry),
E, (Tomato), ..., E . (Cherry)

Secure but too much overhead

Key Value '?“
A E, (Blueberry)
B E (Tomato)
C E(Apple)
D E . (Banana)
E E . (Orange)
F E.(Mango)
G E.(Cherry)

Better Solution: Ask k tuples [S&P 98]

Key Value ‘?“
A E, (Blueberry)
B E (Tomato)
C E(Apple)
D E . (Banana)
E E (Orange)
F E.(Mango)
G E.(Cherry)

Better Solution: Ask k tuples [S&P 98]

Request: A,C

Key Value '?“
A E, (Blueberry)
B E (Tomato)
C E(Apple)
D E . (Banana)
E E (Orange)
F E.(Mango)
G E.(Cherry)

Better Solution: Ask k tuples [S&P 98]

Request: A,C

—
Response: E,(Blueberry),

E.(Apple)

Key Value '?“
A E, (Blueberry)
B E (Tomato)
C E(Apple)
D E . (Banana)
E E (Orange)
F E.(Mango)
G E.(Cherry)

Better Solution: Ask k tuples [S&P 98]

Request: A,C

—
Response: E,(Blueberry),

E.(Apple)

Provides k-1 ambiqguity

- So called k-anonymity [S&P 98]

Limited security guarantees

- See |-diversity [ICDE 06], t-closeness [ICDE 07]

Key Value '?“
A E, (Blueberry)
B E (Tomato)
C E(Apple)
D E . (Banana)
E E (Orange)
F E.(Mango)
G E.(Cherry)

Oblivious RAM (ORAM): Idea Sketch

—-

Key Value *

A E, (Blueberry)

B E (Tomato)

C E(Apple)

D E . (Banana)

E E (Orange)

F E.(Mango)

G E.(Cherry)

Oblivious RAM (ORAM): Idea Sketch

Request: A,C,D

—-

Key Value *

A E, (Blueberry)

B E (Tomato)

C E(Apple)

D E . (Banana)

E E (Orange)

F E.(Mango)

G E.(Cherry)

Oblivious RAM (ORAM): Idea Sketch

Request: A,C,D

Response: E,(Blueberry),

E(Apple)
E,(Banana)

—-

Key Value *

A E, (Blueberry)

B E (Tomato)

C E(Apple)

D E . (Banana)

E E (Orange)

F E.(Mango)

G E.(Cherry)

Oblivious RAM (ORAM): Idea Sketch

Shuffle

Request: A,C,D

Response: E,(Blueberry),

E(Apple)
E,(Banana)

—-

Key Value *

A E, (Blueberry)

B E (Tomato)

C E(Apple)

D E . (Banana)

E E (Orange)

F E.(Mango)

G E.(Cherry)

Oblivious RAM (ORAM): Idea Sketch

Shuffle

Request: A,C,D

Response: E,(Blueberry),

E(Apple)
E,(Banana)
——————————————————————
Write-back: A: E, (Apple),
C: E,(Banana)
D: E,(Blueberry)

—-

Key Value *

A E, (Blueberry)

B E (Tomato)

C E(Apple)

D E . (Banana)

E E (Orange)

F E.(Mango)

G E.(Cherry)

Oblivious RAM (ORAM): Idea Sketch

Shuffle

Request: A,C,D

Response: E,(Blueberry),

E(Apple)
E,(Banana)
——————————————————————
Write-back: A: E, (Apple),
C: E,(Banana)
D: E,(Blueberry)

—-
Key Value *

A E(Apple)

B E (Tomato)

C E(Apple)

D E . (Banana)

E E (Orange)

F E.(Mango)

G E.(Cherry)

Oblivious RAM (ORAM): Idea Sketch

Shuffle

Request: A,C,D

Response: E,(Blueberry),

E(Apple)
E,(Banana)
——————————————————————
Write-back: A: E, (Apple),
C: E,(Banana)
D: E,(Blueberry)

—-

Key

Value ‘
E(Apple)

E (Tomato)
E . (Banana)

E . (Banana)

E . (Orange)

E.(Mango)

A MmO | >

E.(Cherry)

Oblivious RAM (ORAM): Idea Sketch

Shuffle

Request: A,C,D

Response: E,(Blueberry),

E(Apple)
E,(Banana)
——————————————————————
Write-back: A: E, (Apple),
C: E,(Banana)
D: E,(Blueberry)

—-

Key Value *

A E(Apple)

B E (Tomato)

C E.(Banana)

D E (Blueberry)

E E (Orange)

F E.(Mango)

G E.(Cherry)

Oblivious RAM (ORAM): Idea Sketch

Shuffle

Request: A,C,D

Response: E,(Blueberry),

E(Apple)
E,(Banana)
——————————————————————
Write-back: A: E, (Apple),
C: E,(Banana)
D: E,(Blueberry)

Key-Value mapping always changes

—-

Key Value *

A E(Apple)

B E (Tomato)

C E.(Banana)

D E (Blueberry)

E E (Orange)

F E.(Mango)

G E.(Cherry)

Path ORAM [CCS 13]

ORAM C(Client ORAM Server

Path ORAM [CCS 13]

Position Map

Stash

Tree-like data structures
- Client: Position map, stash
- Server: ORAM Tree with real/dummy nodes

ORAM-based solutions for Memory Access

SGX CPU |

36

ORAM-based solutions for Memory Access

Bus snooping:

Access patterns ?
SGX CPU | are still visible

36

ORAM-based solutions for Memory Access

Bus snooping:
Access patterns
| are still visible

SGX CPU

Monitor syscalls:
Access patterns
are still visible

36

ORAM-based solutions for Memory Access

Bus snooping:
| Access patterns

SGX CPU are still visible

MEE

Monitor syscalls:
Access patterns
are still visible

Cache side channels

36

Mitigation:
ORAM-based Memory Controller

SGX CPU l

ORAM
Cache H Client

ObfusMem [ISCA 17], SDIMM [HPCA 18]
- ORAM-based Memory Controller

37

Mitigation:
ORAM-based Memory Controller

Patterns are secured
SGX CPU using ORAM protocols

ORAM .
Cache H Client St

ObfusMem [ISCA 17], SDIMM [HPCA 18]
- ORAM-based Memory Controller

37

Mitigation:
ORAM-based Memory Controller

Patterns are secured
SGX CPU using ORAM protocols

ORAM
Cache H Client x

ObfusMem [ISCA 17], SDIMM [HPCA 18]
- ORAM-based Memory Controller

37

Mitigation:
Place Trust in DRAM

SGX CPU Bus snooping

Cache H MEE

InvisiMem [ISCA 17]

- Place trust in DRAM

- All address and data bus traffics are encrypted
= Note: SGX only encrypts values in data bus

- Communication patterns are normalized

38

Mitigation:
Place Trust in DRAM

SGX CPU Bus snooping

Cache H MEE

InvisiMem [ISCA 17]

- Place trust in DRAM

- All address and data bus traffics are encrypted
= Note: SGX only encrypts values in data bus

- Communication patterns are normalized

38

Mitigation:
Place Trust in DRAM

2o C Bus snooping

InvisiMem [ISCA 17]

- Place trust in DRAM

- All address and data bus traffics are encrypted
= Note: SGX only encrypts values in data bus

- Communication patterns are normalized

38

Mitigation:
Place Trust in DRAM

SGX CPU Bus snooping

InvisiMem [ISCA 17]

- Place trust in DRAM

- All address and data bus traffics are encrypted
= Note: SGX only encrypts values in data bus

- Communication patterns are normalized

A |

38

Mitigation:
Place Trust in DRAM

SGX CPU

CacheH MEE |’

InvisiMem [ISCA 17]

- Place trust in DRAM

- All address and data bus traffics are encrypted
= Note: SGX only encrypts values in data bus

- Communication patterns are normalized

38

Mitigation:
ORAM-based File System

SGX CPU l Patterns are secured
using ORAM protocols
Cache H ORAM
Client

Obliviate [NDSS 18]
- ORAM-based File System

39

Mitigation:
ORAM-based File System

SGX CPU l Patterns are secured
using ORAM protocols
Cache H ORAM
Client

Obliviate [NDSS 18]
- ORAM-based File System

39

Mitigation:
ORAM-based File System

SGX CPU l Patterns are secured
using ORAM protocols
Cache H ORAM
Client

xf\

Obliviate [NDSS 18]
- ORAM-based File System

39

Obliviate [NDSS 18]:

Memory charm against the OS

Enclave Application

Obliviate

————————————

r ------------- (
I —~—
| 1 |
I Program I
: - I '

I
I | |
:] [
I
I
I
I
I
e

_

O
A

Obliviate [NDSS 18]:
Memory charm against the OS

Enclave Application Obliviate

r \ (
, : e —
i : I l
I I I I
1. FS Syscall || | :] |
i i
interceptor : | : I
i : L o e e e e e e e e o I
i i
I I
i i
i i
Lo I
\ J g

=
(%)
x

Obliviate [NDSS 18]:
Memory charm against the OS

Enclave Application Obliviate

r 1 4
, : R
I : I |
I I I I
1. FS Syscall || | :] |
i I
interceptor : : I I
i | L e e e e e e e e e e I
I I
I I
I I
I I
I I
2. Message || — ST
Queues
Untrusted Proxy
\ J G

=
(%)
x

Obliviate [NDSS 18]:
Memory charm against the OS

Enclave Application Obliviate
4) 4
————————————— 1
: I r====-=======
i : I l
I I I I
1. FS Syscall || | : : |
i I
interceptor : : I :
i | L e e e e e e e e e e I
I I
I I
I I
I I
I I
‘ 2. Message || — ST
Queues Untrusted
v Service
Untrusted Proxyﬁ I I
| 3. Encr '
: ypted IPC
\ > TI

=
(%)
x

Obliviate [NDSS 18]:
Memory charm against the OS

Enclave Application 4. Trusted Service bridges liate
7 N\ the gap between FS and
o] ORAM | . . . -
i | I
1. FS Syscall || | : |
i I

interceptor : ‘ | I
I : |

I I

I I

I I

: I

I

‘ 2. Message "“'{} """

Queues Untrusted
% Service
Untrusted Proxyﬁ I I
| 3. Encr '
: ypted IPC
\ S TI

=
(%)
x

Obliviate [NDSS 18]:
Memory charm against the OS

Enclave Application 4. Trusted Service bridges liate
e 1 the gap between FS and
(oo oo] ORAM | . . . 1\
I —~—~— - —
I b i 5. Data Oblivious
' rogram ! [Y LCEC s] Metadata Handling
1. FS Syscall || | ; I
interceptor || I ‘ | [S] ,
| | I
I B Y [SRR
I I
I I
I I
: I
I
‘ 2. Message "“'ﬁ/} """
Queues Untrusted [
\/ Service —
Untrusted Proxyﬁ I I I
| 3. Encr i .
: ypted IPC
L IJ ._

=
(%)
x

Obliviate [NDSS 18]:
Memory charm against the OS

Enclave Application 4. Trusted Service bridges liate
7 N\ the gap between FS and
Ir ------------ : ORAM ______ 1\
I ' ! 5. Data Oblivi
. i . Data ivious
: ' I [FS Metadata] Metadata Handling
1. FS Syscall || | : : .
i i
Interceptor | ‘ : I [ORAM client] l
I : Lo e - - — — =1
i I
i I
= ' | |
1 ORAM Server
i i
‘ 2. Message -----ﬁ ----- T
Queues ‘ 7 Untrusted T 5&

Service 2 f3 fa
Untrusted Proxyﬁ I I 4:>

! 3. Encrypted Ig | 6. Encrypted ORAM Tree
|

=
(%)
x

\ J (s) outside Enclave

Obliviate [NDSS 18]:
Memory charm against the OS

Enclave Application 4. Trusted Service bridges liate
e 1 the gap between FS and
Ir ------------ : ORAM ______ 1\
: : ! 5. Data Oblivi
p I [] . Data IVIOUS
: ' I FS Metadata || \ jctadata Handling
1. FS Syscall || | : | -
i I
Interceptor : ‘ : i [ORAM client] |
l : L4y - - — = @ -1
I I
: I
I : .
I I {} SR (Init) load all files into
I I
‘ 2. Message -----ﬁ ----- T ORAM Tree(S)
Queues ‘ 7 Untrusted T 5&

Service
Untrusted Proxyﬁ I I 4:>

! 3. Encrypted Ig | 6. Encrypted ORAM Tree
|

=
(%)
x

\ J (s) outside Enclave

40

Conclusion

 Bug finding in file systems
« Semantic, memory, concurrency, error code bugs
« Semantic inconsistency inference
 Fuzzing

» Attacks and Defenses

e Ransomware
e Cold boot attacks
e Side channels

JER:
Merjsta M7 ys Zete

byoungyoung@snu.ac.kr

