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Heterogeneous Memory System 

 Its NVRAM (a battery-backed DRAM) requires expensive and complex logic  

 e.g., External power source, FPGA for power failure detection & recovery 
 

 In this memory system, NVRAM is used as write buffers 

 DRAM-like fast, yet persistent 

 Perfect fit for database logging and file system journaling due to lazy flushing 

 e.g., 2X speed up with Microsoft SQL Server 2016 
 

 SSD-based hybrid store can be a better solution for this scenario! 
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SSD-based Hybrid Store 

 Why? NVMe SSDs already have right ingredients to realize persistent memory 

 Memory interface: PCIe interconnect 

 Persistent memory (PM): a portion of internal DRAM plus additional capacitors 

(No external power source!) 

 Power failure handling: Added logic to SSD controller (No newly added FPGA!) 
 

 Moreover, an internal datapath between PM and NAND flash can be built 

 Typically, logs and journals are written as bytes, but read by large chunk later 
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Overall Architecture 
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BAR Manager 
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1. Opens up a memory space 

visible to CPU 

 BAR manager enables an additional 

BAR (BAR1) for byte granule file access 

 BAR: “How the device advertise the 

amount of address range it needs” 

2. Redirects memory accesses 
from CPU into internal DRAM 
• The device is responsible for mapping 

internal resources to the host-visible 
memory ranges 

• BAR manager employs an address 
translation unit (ATU)  
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BAR Manager (contd.) 
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3. Exploits write combining (WC) 
mode of the underlying CPU 
• Individual writes are combined into a larger 

burst in CPU’s WC buffer  
• 64 bytes in size in current x86 CPUs 

• It leads to a significant reduction of memory 
accesses 
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BA-buffer Manager 
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Maintains a memory hierarchy 
of DRAM and NAND 
• BA-buffer logic runs on an ARM core 

within 2B-SSD 

• The BA-buffer management APIs are 
designed to enable applications to allocate 
memory on the BA-buffer, and read and 
write files using them 

• The mapping table stores information 
between DRAM addresses and NAND data 

• (1) entry_id, (2) start_offset in the BA-buffer, (3) 
start_LBA of a given file, and (4) length 
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Recovery Manager 

Recovery manager to turn the BA-buffer into a persistent 

memory consists of 

• Additional capacitance large enough to save BA-buffer contents and the 
BA-buffer mapping table in a reserved area of the NAND flash memory 
before 2B-SSD turns completely off 

• Recovery logic that runs data protection procedures launched by power 
loss detection circuitry 
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Usage and Durability Guarantee 

 Two steps for ensuring ordering and durability of writes 

 WC buffer → Root Complex 

 Root Complex  → BA-buffer 
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2B-SSD API 

 BA_PIN(EID, offset, LBA, length) 

 BA_FLUSH(EID) 

 BA_SYNC(EID) 

 BA_GET_ENTRY_INFO(EID) 

 BA_READ_DMA(EID, dst, length) 
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Experimental Setup 

• H/W setup 

 

 

 

 

 
 

• Basic performance results 
• Write/read latencies, write/Read bandwidth  

• Application level results 
• Database logging (PostgreSQL, RocksDB, Redis) 

System Dell PowerEdge R730 server 

CPU 
2 Intel Xeon(R) CPU E5-2699 

  (18 threads per socket) @2.30GHz 

Memory 256 GiB DRAM 

OS 64-bit Ubuntu 14.04 

SSD DC-SSD (PM963), ULL-SSD (SZ985), 2B-SSD 
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2B-SSD 

Write Latency (QD1, 4KB random write) 

6.6X 
13.2 μs 

Z-SSD 
(SZ985) 

4KB 

2B-SSD prototype implemented on Samsung Z-SSD 

4KB 

2 μs 

8B 

630 ns 

1KB 

930 ns 

2B-SSD 
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• 4KB Random Read Latency ~13us 

• 4KB Random Write Latency ~10us 
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Item Description 

Host interface PCIe Gen.3 x4 (3.2GB/s), NVMe 1.2 

Device density 800 GB 

Storage medium Samsung Z-NAND flash memory 

Capacitance of capacitors 270 uF x3 

BA-buffer size 8 MB 

Max entries of BA-buffer 8 
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Two Separate Datapaths on 2B-SSD 
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Write Latency 

MMIO < ULL-SSD  
(630ns vs. 13.2us) MMIO < MMIO + BA_SYNC 

(2us vs. 4us) 
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Write Bandwidth 

ULL-SSD > 2B-SSD 

• Latest NVMe SSDs exploit 
hardware-automated datapath 
for optimized block I/O 

• Internal datapath between BA-
buffer and NAND flash are 
excluded from this automation 

2B-SSD > DC-SSD 
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Read Latency 

MMIO < ULL-SSD 

150us 

13.2us 

PCIe Read is non-posted 
(sync) transaction  

MMIO < DC-SSD 
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Read Latency 

 ULL-SSD < Read DMA 
(13us vs. 58us) 

 The read DMA engine helps 

accelerate slow memory read. 

 Reading by DMA is faster than 

MMIO, but still slower than 

block I/O. 

Non-DMA > DMA 

18/21 



Read Bandwidth 

ULL-SSD > 2B-SSD 

2B-SSD ≈ DC-SSD 

2B-SSD internal B/W: 
NAND  BA-buffer 
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Case Study: Database Logging 

- Dell R730, Xeon E5-2699@2.3GHz * 36, 256GB DDR4, Ubuntu 14.04 (kernel  v4.6.3), PgSQL v9.6.0, RocksDB v5.1.4, 
Redis 3.2.4, SZ985 storage with ext4 mounted, 64 clients (Linkbench), 64B payload size (YCSB-A) 

       : Asynchronous logging 
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Conclusions 

• This paper described the motivation, design, and implementation of  
a byte- and block-addressable solid-state drive. 

• Through 2B-SSD APIs, applications can write and read any number of bytes on it 
without forcing the data being buffered in the host memory. 

• We demonstrate the results where major database engines can see a 
throughput gain of up to 2.8X without the risk of data loss. 
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Thank You 


