FastTrack: Foreground App-Aware I/O Management for Improving User Experience of Android Smartphones

Jihong Kim

Seoul National University

NVRAMOS 2018

October 25, 2018

USENIX ATC '18

2018 USENIX Annual Technical Conference

> JULY 11-13, 2018 BOSTON, MA

www.usenix.org/atc18

FastTrack: Foreground App-Aware I/O Management for Improving User Experience of Android Smartphones

Sangwook Shane Hahn, Seoul National University; Sungjin Lee, DGIST; Inhyuk Yee, AlBrain Asia; Donguk Ryu, Samsung Electronics; Jihong Kim, Seoul National University

Mobile Storage Optimization Research

App Launch Time over Smartphone Age

Application launch times increase up to 3 times on 2-year old smartphones

Main Cause: File Fragmentation

Q: Why does performance degrade?

A: File fragmentation

Application launching time

Defragmentation can improve the degraded performance by fragmentation

Solution for Decoupled Fragmentation [ATC 2017]

Storage I/O Stack Analysis for Performance Bottlenecks

Focus on Foreground App Performance

Outline

- Impact of Background I/O on User Experience
- Foreground-Background Interference Analysis
- FastTrack: Foreground App-Aware I/O Management
- Experimental Results
- Conclusions

User Experience in Android Smartphones

Number of Background Apps Increasing

Apps running in background

Updating Apps

Sync files

Sync photos

User can allow apps to run background

Number of background processes has been increased with larger memory and more CPU cores

Background Apps Degrade the Quality of User Experience

App launch time increases due to background apps

Background apps increase foreground app launch time by up to 2.6 times

Background Apps Degrade the Quality of User Experience

App switch time increases due to background apps

Main Cause of Performance Degradation

How background apps degrade the quality of user experience?

Background (storage) I/Os

Background I/O Occurrence Frequency

Outline

- Impact of Background I/O on User Experience
- Foreground-Background Interference Analysis
- FastTrack: Foreground App-Aware I/O Management
- Experimental Results
- Conclusions

Foreground-Background Interference Analysis

Impact on Page Cache: Lock Contention

Impact on Page Cache: High Miss Rate

Impact on I/O Scheduler: Limited Bandwidth by CFQ

Impact on Storage Device: Internal Priority Inversion

Solution for Foreground-Background Interference

22/36

Outline

- Impact of Background I/O on User Experience
- Foreground-Background Interference Analysis
- FastTrack: Foreground App-Aware I/O Management
- Experimental Results
- Conclusions

Overview of FastTrack

Improves the quality of smartphone user experience

24/36

App Status Detector & Page Reclaimer

Page Allocator

26/36

I/O Dispatcher

- ◆ Moves FG block I/O requests to the dispatch queue immediately
 - 1. Detect new block I/O request enters the sync/async queues
 - 2. Prevalidate whether new block I/O request is FG I/O
 - 3. Directly deliver FG block I/O request to the dispatch queue

Device I/O Scheduler

- Execute FG I/O commands with high priority
 - New priorities for I/O command execution
 - > FG reads > FG writes > BG reads > BG writes
 - Modify an SCSI command set to carries an FG I/O flag in a reserved opcode

Experimental Settings for Android Smartphones

Result 1: App Launch Time Comparisons

- 1. FastTrack⁻⁻ can reduce gallery app launch time delay from BG I/Os by up to 87%
- 2. FG reads have higher priority in storage device 30/36

Result 2: App Switch Time Comparisons

Experimental Settings for Emulator

FastTrack-

App Status
Detector

Page Allocator

Page Reclaimer

I/O Dispatcher

Device I/O Scheduler

Android Smartphone

Application Launch/Usage

Trace Replayer

Emulation at Host-level FTL + Customized

+ Customized SSD

FastTrack

App Status
Detector

Page Allocator

Page Reclaimer

I/O Dispatcher

Device I/O Scheduler

Result 3: Storage-Level Snapshot

Device I/O scheduler can provide a much higher throughput to FG I/Os even when FG I/Os are write and BG I/Os are read

Result 4: Effectiveness of FastTrack over Varying BG Apps

FastTrack can provide the equivalent level of responsiveness to an FG app regardless of the number of BG apps

Conclusion

- We have presented a foreground app-aware I/O management (FastTrack) for improving user experience
 - FastTrack preempts BG I/Os in the page cache
 - FastTrack prevents FG I/O's data from being flushed
 - FastTrack immediately delivers FG I/O to the NAND flash memory with minimum interference from inflight BG I/Os
 - FastTrack reduces the user-perceived response time delay by up to 95%
- Future work
 - Multiple foreground app usage environment (split view, multiple windows)
 - FastTrack for desktop/server computing system

감사합니다 Natick Θ Danke Ευχαριστίες Dalu 응