High-Performance Transaction Processing
In Journaling File Systems

Yongseok Son
Chung-Ang University

Contents

= Motivation and Background
= Design and Implementation
= Evaluation
= Conclusion

Motivation and Background

= Storage technology

= High-performance storage devices (e.g., SSDs) provide low-latency,
high-throughput, and high 1/O parallelism

=~ lIilIHI[lI T

Highly parallel SSD Highly parallel SSD
(Intel NVMe SSD) (Samsung NVMe SSD)

High-Performance SSDs are widely used in

Motivation and Background

= Motivational evaluation for highly parallel SSDs

= The performance does not scale well or decreases as the number of
cores increases

Experimental Setup
72-cores / Intel P3700 / EXT4 file system

%:800 =+=Tokubench =e=Varmail 2 800 —#—Sysbench —e=Fileserver

2. 600 §600

= =

.§ 400 E 400

= 200 = 200

= =

5 0 S 0

= 1 2 4 8 18 36 54 72 = 1 2 4 8 18 36 54 72
The number of cores The number of cores

Ordered mode Data journaling mode

Motivation and Background

= EXxisting coarse-grained locking and 1/O operations by a single

thread in transaction processing
= Locks on transaction processing in EXT4/JBD2

= Total write time: 52220s (100%)

= j_checkpoint_mutex (mutex lock): 17946s (34.40%)’ Hot lock
= j_list_lock (spin lock): 6140s (11.75%)’ Hot lock
= j_state_lock (r/w lock): 102s (0.19%)

Execution time breakdown
72-cores / Intel P3700 / EXT4 data journaling
sysbench (72threads, total 72 GiB random write)

m others

® | _checkpoint_mutex

j_list_lock mj state_lock

0 10000

20000

30000
Seconds

40000 50000 60000

C] transaction buffer list

Motivation and Background

Overall existing locking and 1/O procedure

app

creat() write() write()

N\

file system

NV

1 Jha jj Jhs

- AN

storage

journal area

original area

0TX|DZ 1 (running)

=3 application thread
| ——> journal thread

checkpoint list

journal head

buffer head

spin lock (j_list_lock)

mutex lock (j_checkpoint_mutex)

app

file system

storage

commit

)

file system app

storage

write() creat()
N ¥
blocked ™~
. N
Ihy i dhy | Jhg jhy 7 jhy jhs}
\ J
bh,
journal area original area

9 TxID: 1 (committing)

creat() write() write
N\ / y
Y
blocked
iy 1y 1 Jhg }
¥
bh, | bh, | bhg bh,
journal area original area

e TxID: 1 (checkpointing)

checkpoint

Motivation and Background

= Coarse-grained locking limits scalability of multi-cores

insert fetch remove

NP
&

Ih,

Jhs

|

Journaling list
(transaction buffer list or
checkpoint list)

= |/O operation by a single thread limits 1/O parallelism of SSDs

G

Jh,

Jhs

|

\ 4

A batched and serialized 1/0

Journaling list
(transaction buffer list or
checkpoint buffer list)

Design and Implementation

= Goal

= Optimizing transaction processing (running, committing, checkpointing
) in journaling file systems

= Qur schemes

= Concurrent updates on data structures

= Adopting lock-free data structures and operations using atomic instructions
= Lock-free linked list
= lock-free insert, remove, fetch
= Using atomic instructions
= atomic_add()/atomic_read()/atomic_set()/compare_and_swap()

= Parallel 1/0 in a cooperative manner

= Enabling application threads to the journal and checkpoint I/O operations
not blocking them

= Fetching buffers from the shared linked lists, issuing the 1/Os, and
completing them in parallel

Design and Implementation

= QOverall Proposed Schemes

ncurrent updates

Co

creat() write() write()

" %\f

Jhy [iho 1 Jhs
N AN

storage file system ap

journal area original area

=3 application thread
| ——> journal thread

C] transaction buffer list

checkpoint list

hy

journal head

bh,

buffer head

a8
&

spin lock (j_list_lock)

mutex lock (j_checkpoint_mutex)

% write() creat()
. E p | ~ | | 1
commit gy Vv ¥ v v ¥
) % [, [, i]| on Lo

= |\ VAN

Parallel 1/0_ ==Y

S| bhy || bh, || bh
3 journal area original area

storage file system app

Concurrent updates

Q Committing (TxID: 1)

Concurrent updates

checkpoint

oh, |Parallel 1/0

creat() write() write()
4 v)
[} Jhy 0Ny | hy
- J
—W v 2
bh, | bh, | bh, bh, | bh,
journal area original area

e Checkpointing (TxID: 1)

Design and Implementation

= Concurrent updates on data structures

= Concurrent insert operations
= Using atomic set instruction

3 BB O 2 Bp
atomic set atomic set atomic set
head (remove) (insert) (insert)
. next [T, next [. next [| next [.
Jhy jhe [dhs [jhe [7] Jhs
prev “prev prev prev L,
set removed T
L insert Gc iist ta’"’

(logically remove)

dd_buffer(jh, head, tail)

1:

2:

3 jh->prev = atomic_set(tail, jh);
4. If(jh->prev == NULL)

5: head = jh;

6 else

I Jh->prev->next = jh;

8:

'}

Design and Implementation

= Concurrent updates on data structures
= Concurrent remove operations (two-phase removal)

<safe point>
logical I/0 physical
K remove XK— processing _X_ remove
journaling list

journaling list

free

GC Iist‘i’ L

insert v + vy
‘ﬁ, WO O IO IO
GC list
[]ih []removed jh time

jh->gc_prev->gc_next = jh;

1: del_buffer(jh, head, tail)

2: {

3: atomic_set(jh->remove, remove);
4: jh->gc_prev = atomic_set(tail, jh);
5: if(jh->gc_prev == NULL)

6: head = jh;

7 else

8

9:

3

Design and Implementation

= Concurrent updates on data structures
= Concurrent fetch operations

< fetch ¢ atomic compare and swap ——>!
’ jhi l jh: |
 @recct @compare ;
/	
! next next next next [[next = next [next [~ next [
Lihy [1jho 1 jhs 1 jha 1 ihs	
! prev prev prev prev L prev prev prev prev i	
	1
] A ('3 Yo |
 head | head |

: journal_io_start(....)

while((jh = head) '= NULL){
if(atomic_cas(head, jh, jh->next) != jh)
continue;
if(atomic_read(jh->removed) == removed)
continue;
submit_io(...);

eooNoRONMRE

“

Design and Implementation

= Parallel 1/0 operations in a cooperative manner
= Allowing the application threads to join the 1/Os not blocking them
= Fetching buffers from the shared linked list concurrently
= [ssuing the I/Os in parallel
= Completing the 1/Os in parallel using per-thread list

next

next next

T1 T2 TE T4 T5
atomic atomic atomic atomic atomic
CAS CAS CAS CAS CAS
AT N N A\ Y :
j)

" jha) jhs [] jhs [E

shared i'ﬂ } next
linkedlist 1§| jh1 [Jha
= _ prev
| removed

'

I-——-———-———= 1

I I
per-thread | | bhy ||
linked list | |

(wait list) linsert bh, to |
| T,'s wait list |

—_——— e ——— —

|
|
. - I
prev _ prev prev :
|

I
jinsert bh; to! |insert bhsto! |insert bhsto!
:Tg's wait list | : T,'s wait list, :Tﬁ's wait list |

—_——————— —_— - — — 4 —_—— e — — —

: I o |
' bhy | 1!| bhy | | | bhs | |
by I I

| |

Experimental Setup

Hardware
= 72-core machine
= Four Intel Xeon E7-8870 processors (without hyperthreading)
= 16 GiB DRAM
= PCI 3.0 interface
= 800 GIiB Intel P3700 NVMe SSD (18-channels)
Software
= Linux kernel 4.9.1

= EXT4/IBD2
= An optimized EXT4 with parallel 1/0: P-EXT4
= Fully optimized EXT4: O-EXT4

Benchmarks
Tokubench (micro) Metadata-intensive (file creation) Files: 30,000,000, 1/O sizes: 4KiB
Sysbench (micro) Data-intensive (random write) Files: 72, Each file size: 1GiB, 1/0O sizes: 4KiB

Metadata-intensive

(read/write ratio = 1:1) Files: 300,000, Directory width: 10,000

Varmail (macro)

: Data-intensive . : o
Fileserver (macro) (read/write ratio = 1:2) Files: 1,000,000, Directory width: 10,000

Performance Evaluation

= Tokubench

= QOrdered mode
= |mprovement: upto 1.9x (P-EXT4), upto 2.2x (O-EXT4)
= Data journaling mode
= |mprovement: upto 1.73x (P-EXT4), upto 1.88x (O-EXT4)

OE-EXT4 mP-EXT4 (parallel /O) ®O-EXT4 (full) ODE-EXT4 mP-EXT4 (parallel /O) mO-EXT4 (full)
> 250 Z 250
2 I~
S 200 = 200
—
< 150 5 150
E 100 é 100
g 50 3
& 2 50
0 0
36 54 1 2 4 8 18 36 54 72
The number of cores The number of cores

Ordered mode Data journaling mode

Performance Evaluation

Sysbench

= QOrdered mode
= |mprovement: upto 13.8% (P-EXT4), upto 16.3% (O-EXT4)

= Data journaling mode
= |mprovement: upto 1.17x (P-EXT4), upto 2.1x (O-EXT4)

ODE-EXT4 mP-EXT4 (parallel /0) ®mO-EXT4 (full) OE-EXT4 mP-EXT4 (parallel /O) mO-EXT4 (full)

g 2000 - 600

= :400
=~
=]

£ 500 g 200
==

|_I é‘,’ 100

0 0

1 2 4 1 2 4 8

8 18 36 54 72 18 36 54 72

The number of cores The number of cores

Ordered mode Data journaling mode

Performance Evaluation

Varmail

= QOrdered mode

= Improvement: upto 1.92x (P-EXT4), upto 2.03x (O-EXT4)
= Data journaling mode

= Improvement: upto 31.3% (P-EXT4), upto 39.3% (O-EXT4)

ODE-EXT4 mP-EXT4 (parallel /O0) mO-EXT4 (full) ODE-EXT4 ®mP-EXT4 (parallel /O) mO-EXT4 (full)
2 1000 700
o 400 2 600
2 S 500
g 600 :_.;’400
T 400 = 300
g m %200
~ willl
@ = 100 m
[aa]
0 ’_. 0
1 2 4 8 18 36 54 72 1 2 4 8 18 36 54 72

The number of cores The number of cores

Ordered mode Data journaling mode

Performance Evaluation

Fileserver

= QOrdered mode

= Improvement: upto 4.3% (P-EXT4), upto 9.6% (O-EXT4)
= Data journaling mode

= Improvement: upto 1.45x (P-EXT4), upto 2.01x (O-EXT4)

OE-EXT4 mP-EXT4 (parallel /O) ®mO-EXT4 (full) DE-EXT4 mP-EXT4 (parallel /O) ®mO-EXT4 (full)
2 2000 2 1200
e &
= 1600 S 1000
< 1200 = 800
. ~
E 800 g o0
z S 400
a 400 m 2 200 m
o W 0
1 2 4 8 18 36 54 72 1 2 4 8 18 36 54 72
The number of cores The number of cores

Ordered mode Data journaling mode

Performance Evaluation

= Comparison with a scalable file system (SpanFS, ATC’15)

= QOrdered mode
= Improvement: upto 1.45x

= The performance of O-EXT4 is similar or slower than SpanFsS in the case of small
cores

= Data journaling mode
= Improvement: upto 1.51x

-4-SpanFS -e-0-EXT4 -&=SpanFS =--0-EXT4

1000 1200
<)

2 800 = 1000

= = 800
600 -

§ < 600

E 400 E 400

= 200 2 200
oA =]

0 R0

1 2 4 8 18 36 54 72 1 2 4 8 18 36 54 72
The number of cores The number of cores

Ordered mode (varmail) Data journaling mode (fileserver)

Performance Evaluation

= Experimental analysis

= EXT4vs. P-EXT4

= [mprovement
= Bandwidth: 16.3%, Write time: 15.7%

= EXT4 vs. O-EXT4

= [mprovement
= Bandwidth: 2.06x, Write time: 2.08x

Device-level BW 692 MB/s 805 MB/s 1426 MB/s
Write time 52220 s (100%) 45124 s (100%) 25078 s (100%)
j_checkpoint_ mutex 17946 s (34.4%) 0 0
J_list_lock 6132 s (11.7%) 4890 s (10.8%) 0
j_state lock 102 s (0.2%) 87 s (0.2%) 182 s (0.7%)
others 28040 s (53.7%) 40147 s (89%) 24896 s (99.3%)

Device-level BW and total execution time of main locks in data journaling mode (sysbench)

Conclusion

Motivation and Background

= Data structures for transaction processing protected by non-scalable
locks

= Serialized 1/O operations by a single thread

Approaches
= Concurrent updates on data structures
= Parallel I/O in a cooperative manner

Evaluation
= Ordered mode: up to 2.2x
= Data journaling mode: up to 2.1x

Future work

= Optimizing the locking mechanism for other resources such as file, pa
ge cache, etc

THANK YOU

for your

ATTENTION!

