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Motivation and Background

= Storage technology

= High-performance storage devices (e.g., SSDs) provide low-latency,
high-throughput, and high 1/O parallelism
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Motivation and Background

= Motivational evaluation for highly parallel SSDs

= The performance does not scale well or decreases as the number of
cores increases

Experimental Setup
72-cores / Intel P3700 / EXT4 file system
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Motivation and Background

= EXxisting coarse-grained locking and 1/O operations by a single

thread in transaction processing
= Locks on transaction processing in EXT4/JBD2

= Total write time: 52220s (100%)

= j_checkpoint_mutex (mutex lock): 17946s (34.40%)’ Hot lock
= j_list_lock (spin lock): 6140s (11.75%)’ Hot lock
= j_state_lock (r/w lock): 102s (0.19%)

Execution time breakdown
72-cores / Intel P3700 / EXT4 data journaling
sysbench (72threads, total 72 GiB random write)
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Motivation and Background

Overall existing locking and 1/O procedure
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Motivation and Background

= Coarse-grained locking limits scalability of multi-cores
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= |/O operation by a single thread limits 1/O parallelism of SSDs
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Design and Implementation

= Goal

= Optimizing transaction processing (running, committing, checkpointing
) in journaling file systems

= Qur schemes

= Concurrent updates on data structures

= Adopting lock-free data structures and operations using atomic instructions
= Lock-free linked list
= lock-free insert, remove, fetch
= Using atomic instructions
= atomic_add()/atomic_read()/atomic_set()/compare_and_swap()

= Parallel 1/0 in a cooperative manner

= Enabling application threads to the journal and checkpoint I/O operations
not blocking them

= Fetching buffers from the shared linked lists, issuing the 1/Os, and
completing them in parallel




Design and Implementation

= QOverall Proposed Schemes
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Design and Implementation

= Concurrent updates on data structures

= Concurrent insert operations
= Using atomic set instruction
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1:

2:

3 jh->prev = atomic_set(tail, jh);
4. If(jh->prev == NULL)

5: head = jh;
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Design and Implementation

= Concurrent updates on data structures
= Concurrent remove operations (two-phase removal)

<safe point>
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K remove XK— processing _X_ remove
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jh->gc_prev->gc_next = jh;

1: del_buffer(jh, head, tail)

2: {

3: atomic_set(jh->remove, remove);
4:  jh->gc_prev = atomic_set(tail, jh);
5: if(jh->gc_prev == NULL)

6: head = jh;

7 else
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Design and Implementation

= Concurrent updates on data structures
= Concurrent fetch operations
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continue;
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Design and Implementation

= Parallel 1/0 operations in a cooperative manner
= Allowing the application threads to join the 1/Os not blocking them
= Fetching buffers from the shared linked list concurrently
= [ssuing the I/Os in parallel
= Completing the 1/Os in parallel using per-thread list
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Experimental Setup

Hardware
= 72-core machine
= Four Intel Xeon E7-8870 processors (without hyperthreading)
= 16 GiB DRAM
= PCI 3.0 interface
= 800 GIiB Intel P3700 NVMe SSD (18-channels)
Software
= Linux kernel 4.9.1

= EXT4/IBD2
= An optimized EXT4 with parallel 1/0: P-EXT4
= Fully optimized EXT4: O-EXT4

Benchmarks
Tokubench (micro) Metadata-intensive (file creation) Files: 30,000,000, 1/O sizes: 4KiB
Sysbench (micro) Data-intensive (random write) Files: 72, Each file size: 1GiB, 1/0O sizes: 4KiB

Metadata-intensive

(read/write ratio = 1:1) Files: 300,000, Directory width: 10,000

Varmail (macro)

: Data-intensive . : o
Fileserver (macro) (read/write ratio = 1:2) Files: 1,000,000, Directory width: 10,000



Performance Evaluation

= Tokubench

= QOrdered mode
= |mprovement: upto 1.9x (P-EXT4), upto 2.2x (O-EXT4)
= Data journaling mode
= |mprovement: upto 1.73x (P-EXT4), upto 1.88x (O-EXT4)

OE-EXT4 mP-EXT4 (parallel /O) ®O-EXT4 (full) ODE-EXT4 mP-EXT4 (parallel /O) mO-EXT4 (full)
> 250 Z 250
2 I~
S 200 = 200
—
< 150 5 150
E 100 é 100
g 50 3
& 2 50
0 0
36 54 1 2 4 8 18 36 54 72
The number of cores The number of cores

Ordered mode Data journaling mode




Performance Evaluation

Sysbench

= QOrdered mode
= |mprovement: upto 13.8% (P-EXT4), upto 16.3% (O-EXT4)

= Data journaling mode
= |mprovement: upto 1.17x (P-EXT4), upto 2.1x (O-EXT4)
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Performance Evaluation

Varmail

= QOrdered mode

= Improvement: upto 1.92x (P-EXT4), upto 2.03x (O-EXT4)
= Data journaling mode

= Improvement: upto 31.3% (P-EXT4), upto 39.3% (O-EXT4)
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Performance Evaluation

Fileserver

= QOrdered mode

= Improvement: upto 4.3% (P-EXT4), upto 9.6% (O-EXT4)
= Data journaling mode

= Improvement: upto 1.45x (P-EXT4), upto 2.01x (O-EXT4)
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Performance Evaluation

= Comparison with a scalable file system (SpanFS, ATC’15)

= QOrdered mode
= Improvement: upto 1.45x

= The performance of O-EXT4 is similar or slower than SpanFsS in the case of small
cores

= Data journaling mode
= Improvement: upto 1.51x
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Performance Evaluation

= Experimental analysis

= EXT4vs. P-EXT4

= [mprovement
= Bandwidth: 16.3%, Write time: 15.7%

= EXT4 vs. O-EXT4

= [mprovement
= Bandwidth: 2.06x, Write time: 2.08x

Device-level BW 692 MB/s 805 MB/s 1426 MB/s
Write time 52220 s (100%) 45124 s (100%) 25078 s (100%)
j_checkpoint_ mutex 17946 s (34.4%) 0 0
J_list_lock 6132 s (11.7%) 4890 s (10.8%) 0
j_state lock 102 s (0.2%) 87 s (0.2%) 182 s (0.7%)
others 28040 s (53.7%) 40147 s (89%) 24896 s (99.3%)

Device-level BW and total execution time of main locks in data journaling mode (sysbench)




Conclusion

Motivation and Background

= Data structures for transaction processing protected by non-scalable
locks

= Serialized 1/O operations by a single thread

Approaches
= Concurrent updates on data structures
= Parallel I/O in a cooperative manner

Evaluation
= Ordered mode: up to 2.2x
= Data journaling mode: up to 2.1x

Future work

= Optimizing the locking mechanism for other resources such as file, pa
ge cache, etc
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