
Yongseok Son

Chung-Ang University

High-Performance Transaction Processing

in Journaling File Systems

Contents

 Motivation and Background

 Design and Implementation

 Evaluation

 Conclusion

Motivation and Background

 Storage technology

 High-performance storage devices (e.g., SSDs) provide low-latency,

high-throughput, and high I/O parallelism

High-Performance SSDs are widely used in

cloud platforms, social network services, and so on

Highly parallel SSD

(Samsung NVMe SSD)
Highly parallel SSD

(Intel NVMe SSD)

 Motivational evaluation for highly parallel SSDs

 The performance does not scale well or decreases as the number of

cores increases

Ordered mode Data journaling mode

Motivation and Background

Experimental Setup

72-cores / Intel P3700 / EXT4 file system

 Existing coarse-grained locking and I/O operations by a single

thread in transaction processing

 Locks on transaction processing in EXT4/JBD2

 Total write time: 52220s (100%)

 j_checkpoint_mutex (mutex lock): 17946s (34.40%)

 j_list_lock (spin lock): 6140s (11.75%)

 j_state_lock (r/w lock): 102s (0.19%)

0 10000 20000 30000 40000 50000 60000

Seconds

others j_checkpoint_mutex j_list_lock j_state_lock

Execution time breakdown
72-cores / Intel P3700 / EXT4 data journaling

sysbench (72threads, total 72 GiB random write)

Hot lock

Hot lock

Motivation and Background

Motivation and Background

 Overall existing locking and I/O procedure

ap
p

bh1

fi
le

 s
y
st

em
st

o
ra

g
e

creat() write() write()

S

jh1 jh2 jh3

journal area original area

TxID: 1 (running)

ap
p

fi
le

 s
y
st

em
st

o
ra

g
e

write() creat()

S

jh1 jh2 jh3

journal area original area

TxID: 1 (committing)
ap

p
fi

le
 s

y
st

em
st

o
ra

g
e

creat() write() write()

journal area original area

TxID: 1 (checkpointing)

checkpoint

commit

application thread

journal thread

transaction buffer list

checkpoint list

jhx
journal head

bhx
buffer head

blocked

S

jh1 jh2 jh3

bh1

jh1 jh2 jh3

bh1 bh2 bh3

S

M

blocked

1 2

3

S spin lock (j_list_lock)

M
mutex lock (j_checkpoint_mutex)

Motivation and Background

 Coarse-grained locking limits scalability of multi-cores

 I/O operation by a single thread limits I/O parallelism of SSDs

S

jh1 jh2 jh3

insert removefetch

Journaling list

(transaction buffer list or

checkpoint list)

Journaling list

(transaction buffer list or

checkpoint buffer list)
jh1 jh2 jh3

A batched and serialized I/O

Design and Implementation

 Goal

 Optimizing transaction processing (running, committing, checkpointing

) in journaling file systems

 Our schemes

 Concurrent updates on data structures

 Adopting lock-free data structures and operations using atomic instructions

 Lock-free linked list

 lock-free insert, remove, fetch

 Using atomic instructions

 atomic_add()/atomic_read()/atomic_set()/compare_and_swap()

 Parallel I/O in a cooperative manner

 Enabling application threads to the journal and checkpoint I/O operations

not blocking them

 Fetching buffers from the shared linked lists, issuing the I/Os, and

completing them in parallel

Design and Implementation

 Overall Proposed Schemes

ap
p

bh1

fi
le

 s
y
st

em
st

o
ra

g
e

creat() write() write()

jh1 jh2 jh3

journal area original area

Running (TxID: 1)

ap
p

fi
le

 s
y
st

em
st

o
ra

g
e

write() creat()

jh1 jh2 jh3

journal area original area

Committing (TxID: 1)
ap

p
fi

le
 s

y
st

em
st

o
ra

g
e

creat() write() write()

journal area original area

Checkpointing (TxID: 1)

checkpoint

commit

jh1 jh2 jh3

bh1

jh1 jh2 jh3

bh1 bh2 bh3

bh2 bh3

bh2 bh3

1 2

3

Concurrent updates Concurrent updates

Parallel I/O

Parallel I/O

Concurrent updatesapplication thread

journal thread

transaction buffer list

checkpoint list

jhx
journal head

bhx
buffer head

S spin lock (j_list_lock)

M
mutex lock (j_checkpoint_mutex)

 Concurrent updates on data structures

 Concurrent insert operations

 Using atomic set instruction

1: add_buffer(jh, head, tail)

2: {

3: jh->prev = atomic_set(tail, jh);

4: if(jh->prev == NULL)

5: head = jh;

6: else

7: jh->prev->next = jh;

8: }

Design and Implementation

 Concurrent updates on data structures

 Concurrent remove operations (two-phase removal)

1: del_buffer(jh, head, tail)

2: {

3: atomic_set(jh->remove, remove);

4: jh->gc_prev = atomic_set(tail, jh);

5: if(jh->gc_prev == NULL)

6: head = jh;

7: else

8: jh->gc_prev->gc_next = jh;

9:}

Design and Implementation

journaling list

 Concurrent updates on data structures

 Concurrent fetch operations

1: journal_io_start(….)

2: {

3: while((jh = head) != NULL){

4: if(atomic_cas(head, jh, jh->next) != jh)

5: continue;

6: if(atomic_read(jh->removed) == removed)

7: continue;

8: submit_io(…);

9:}

Design and Implementation

 Parallel I/O operations in a cooperative manner

 Allowing the application threads to join the I/Os not blocking them

 Fetching buffers from the shared linked list concurrently

 Issuing the I/Os in parallel

 Completing the I/Os in parallel using per-thread list

Design and Implementation

Experimental Setup

 Hardware

 72-core machine

 Four Intel Xeon E7-8870 processors (without hyperthreading)

 16 GiB DRAM

 PCI 3.0 interface

 800 GiB Intel P3700 NVMe SSD (18-channels)

 Software

 Linux kernel 4.9.1

 EXT4/JBD2

 An optimized EXT4 with parallel I/O: P-EXT4

 Fully optimized EXT4: O-EXT4

 Benchmarks

Benchmarks Descriptions Parameters

Tokubench (micro) Metadata-intensive (file creation) Files: 30,000,000, I/O sizes: 4KiB

Sysbench (micro) Data-intensive (random write) Files: 72, Each file size: 1GiB, I/O sizes: 4KiB

Varmail (macro)
Metadata-intensive

(read/write ratio = 1:1)
Files: 300,000, Directory width: 10,000

Fileserver (macro)
Data-intensive

(read/write ratio = 1:2)
Files: 1,000,000, Directory width: 10,000

Performance Evaluation

 Tokubench

 Ordered mode

 Improvement: upto 1.9x (P-EXT4), upto 2.2x (O-EXT4)

 Data journaling mode

 Improvement: upto 1.73x (P-EXT4), upto 1.88x (O-EXT4)

Ordered mode Data journaling mode

Performance Evaluation

 Sysbench

 Ordered mode

 Improvement: upto 13.8% (P-EXT4), upto 16.3% (O-EXT4)

 Data journaling mode

 Improvement: upto 1.17x (P-EXT4), upto 2.1x (O-EXT4)

Ordered mode Data journaling mode

Performance Evaluation

 Varmail

 Ordered mode

 Improvement: upto 1.92x (P-EXT4), upto 2.03x (O-EXT4)

 Data journaling mode

 Improvement: upto 31.3% (P-EXT4), upto 39.3% (O-EXT4)

Ordered mode Data journaling mode

Performance Evaluation

 Fileserver

 Ordered mode

 Improvement: upto 4.3% (P-EXT4), upto 9.6% (O-EXT4)

 Data journaling mode

 Improvement: upto 1.45x (P-EXT4), upto 2.01x (O-EXT4)

Ordered mode Data journaling mode

Performance Evaluation

 Comparison with a scalable file system (SpanFS, ATC’15)

 Ordered mode

 Improvement: upto 1.45x

 The performance of O-EXT4 is similar or slower than SpanFS in the case of small

cores

 Data journaling mode

 Improvement: upto 1.51x

Ordered mode (varmail) Data journaling mode (fileserver)

Performance Evaluation

 Experimental analysis

 EXT4 vs. P-EXT4

 Improvement

 Bandwidth: 16.3%, Write time: 15.7%

 EXT4 vs. O-EXT4

 Improvement

 Bandwidth: 2.06x, Write time: 2.08x

File systems EXT4 P-EXT4 O-EXT4

Device-level BW 692 MB/s 805 MB/s 1426 MB/s

Write time 52220 s (100%) 45124 s (100%) 25078 s (100%)

j_checkpoint_mutex 17946 s (34.4%) 0 0

j_list_lock 6132 s (11.7%) 4890 s (10.8%) 0

j_state_lock 102 s (0.2%) 87 s (0.2%) 182 s (0.7%)

others 28040 s (53.7%) 40147 s (89%) 24896 s (99.3%)

Device-level BW and total execution time of main locks in data journaling mode (sysbench)

Conclusion

 Motivation and Background

 Data structures for transaction processing protected by non-scalable

locks

 Serialized I/O operations by a single thread

 Approaches

 Concurrent updates on data structures

 Parallel I/O in a cooperative manner

 Evaluation

 Ordered mode: up to 2.2x

 Data journaling mode: up to 2.1x

 Future work

 Optimizing the locking mechanism for other resources such as file, pa

ge cache, etc

