
MV-RLU : Scaling Read-Log-
Update with Multi-Versioning

Jaeho Kim
Gyeongsang National University (GNU)
jaeho.kim@gnu.ac.kr 1

Jaeho Kim, Ajit Mathew, Sanidhya Kashyap, Madhav K. Ramanathan, Changwoo Min
Published in ACM ASPLOS 2019

mailto:Jaeho.kim@gnu.ac.kr

Contents

• Motivation
• What is RCU
• What is RLU
• Design of MV-RLU
• Evaluation
• After MV-RLU
• Conclusion

2

CPU-core Count Continues to Rise..
à Many-core Era

3

x1000

Concurrency algorithms are essential building block
• Data structures are essential for the most applications
• Synchronization mechanisms are essential building block of today’s

application

4

Lists

Trees

Hash table

Concurrency algorithms are essential building block
• Data structures are essential for the most applications
• Synchronization mechanisms are essential building block of today’s

application

5

Lists

Trees

Hash table
Making scalable concurrent data structures

is key for improving system performance

Synchronization Approaches

• Blocking
• Spinlock
• Ticket lock
• Mutex
• Read-write lock
• Etc.

6

• Non-blocking
• Lock-free
• Software Transactional

Memory (STM)
• RCU, RLU, and MV-RLU
• Etc.

Can synchronization mechanisms scale at high
core count?

7

0
200
400
600
800

1000
1200
1400

1 4 8 14 28 56 84 112 140 168 196 224 280 336 392 448

M
ill

io
n

Op
er

at
io

ns
/s

Threads

Concurrent Hash table (10% Update)
Lock Free RCU RLU

Saturation

Performance Collapse

Ideal

Read Copy Update (RCU)
• Widely used in Linux kernel
• Readers never block
• Multi-pointer update is difficult
• Programming with RCU is not easy
• Difficult to apply RCU to complex data structures

• Good performance only for read-intensive workloads

8

1) Copy and Update node B
2) During the update, another thread can still read the old node B
3) Previous node points the new node by updating a single pointer

• Make B’ reachable and B unreachable

4) Node B will be freed when there are no threads to read

9

A B C

B’B

Will be freed

Basic Operations of RCU

RW W

R

: Thread execution

: Write thread

: Read thread

Read-Log-Update (RLU) [SOSP’15]

• RCU + STM (Software Transactional Memory)

• An extension to RCU
• Readers never block
• Support multi-pointer atomic updates
• Provide better programmability with DB transaction-like APIs

• Key idea: Use global clock and per-thread log to make multiple
updates atomically visible

10

Why does not RLU scale?

A B C D

B’

Reclaim!

Synchronous waiting due to restriction on number of versions
per object is bottleneck in RLU design

11

But it is not allowed to proceed because
RLU allows only two versions of object

W1W2

Per-thread log

Write clock
(∞)

Write clock
(10)

Waiting
1. A thread modify node B

- Create a new version of B in per-thread log

2. The thread commit the modifies
- Update the write clock
- Mean that updates are atomically visible

3. Second thread tries to modify node B again
- Wait for reclamation of node B’

How to scale RLU?

12

Problem:
Restriction in number of versions

causes synchronous waiting

Solution:
Remove restriction on number
of version == Multi-Versioning

Contributions of this study

• Multi-Version Read-Log-Update (MV-RLU)
– Allow multiple versions to exists at same time
– Removes synchronous waiting from critical path

• Scaling Multi-Versioning
– Concurrent and autonomous garbage collector

13

Design: Overview

A

A’’
(55)

A’
(25)

Master Object

Copy Object

Copy Object

Per thread
version log

Per thread
version log

Version
Chain

14

Commit clock

• Master object
• Have zero or more copy objects

• Copy object
• Timestamp (clock) when committed
• Pointer of next older version
• Stored in per-thread log

Updates in MV-RLU

A B C D

B’’
(55)

Per thread
version log

B’
(25)

Per thread
version log

A thread does not need to synchronize with other
read/write threads in critical section

15

W1W2

1. A thread updates node B
- Creates a new copy of B with commit clock 25

2. Second thread updates B again
- Create a new copy of object B with commit

clock 55

1. A thread updates node B
- Creates a new copy of B with commit clock 25

2. Second thread updates B again
- Create a new copy of object B with commit

clock 55

1. A thread updates node B
- Creates a new copy of B with commit clock 25

2. Second thread updates B again
- Create a new copy of object B with commit

clock 55

Reads in MV-RLU

A B C D

B’’
(55)

Per thread
version log

B’
(25)

Per thread
version log

16

(35 > 55)
False

(35 > 25)
True

R

Read clock:
35

All read threads can read a proper version of object
concurrently (Reader never blocks)

1. Reader note the global clock at start of critical
section

2. Reader traverses the version chain
- First node which satisfies the criteria
- Reader clock > commit clock

3. B’ with commit clock 25 is the right object

1. Reader note the global clock at start of critical
section

2. Reader traverses the version chain
- First node which satisfies the criteria
- Reader clock > commit clock

3. B’ with commit clock 25 is the right object

1. Reader note the global clock at start of critical
section

2. Reader traverses the version chain
- First node which satisfies the criteria
- Reader clock > commit clock

3. B’ with commit clock 25 is the right object

Memory is limited!
à Garbage Collection (GC) is Required

• Garbage collection
• Obsolete version should be properly reclaimed
• GC should be scalable

17

Log Full!

Per Thread Log
Used

Thread 1

W1

Head

Tail

A

A’

Master Object

Copy Object

A

GG

Master Object

A’

Write back a copy to
master object

Brief procedure of GC

(1) (2)

Challenges to Garbage Collection
• How to detect obsolete version in a scalable manner?

• Reference counting and hazard pointer do not scale well

• How to reclaim obsolete versions?
• Single thread is insufficient

• When to trigger garbage collection?
• Eager: Triggering too often wastes CPU cycles
• Lazy: Increases version chain traversal cost

18

Solutions for Challenges
• Detecting obsolete version

• Use grace period detection technique like RCU to find safely reclaimable
versions

• Grace Period (GP): Time interval in which every thread has been the outside
critical section

• Scalable garbage collector
• Every thread reclaim their own log
• Cache friendly

• Autonomous garbage collector
• Detect reader’s version traverse pattern
• Trigger GC dynamically according to the reader’s pattern

19

GC Example

Per Thread Log:
Used

Grace period (GP)
detector thread

I need GC

Okay! Here is
the last GP

Capacity Watermark

Done Done zzz…

20

Thread 1 Thread 2 Thread 3

A’

Capacity Watermark is not sufficient
• Capacity watermark will not be triggered in read mostly workload

21

A B C D

Master Object

Read mostly workload: one copy object

Copy Object

Worst Case of Version Traversal
• In worst case, every object read will require access to version chain
• To alleviate the cost, garbage collector should be clever

22

A B C D

A’ B’ C’ D’

GC

Master Object

Copy Object

Pointer chasing slow down read performance due to cache pollution

Reduced Version Traversal Cost
• After the GC, readers can traverse only master objects

23

A B C D

A’ B’ C’ D’

GC

Master Object

Copy Object

A’ B’ C’ D’

Dereference Watermark
to reduce version traversal
• To reduce pointer chasing, we employ dereference watermark
• Readers check if they are accessing version chain too often
• If yes, trigger GC for the write-back

24

Combination of capacity watermark and dereference watermark
makes GC trigger workload agnostic

More detail
• Scalable timestamp allocation
• Version management
• Proof of correctness
• Implementation details

25

Please refer to the paper for details

Evaluation Question

• Does MV-RLU scale?
• What is the impact of our proposed approaches?
• What is its impact on real-world workloads?

26

Evaluation Setup

• Evaluation Platform
• Supermicro server: 448-core on 8 sockets (with hyperthreading)

• Intel Xeon Platinum 8180

• DRAM size: 337 GB

• OS: Linux 4.17.3

• Workloads
• Microbenchmark:

• random access on linked-lists, hash tables, and binary trees

• Kyoto Cabinet benchmark: key-value database workload

27

28

0

200

400

600

800

1000

1200

1400

1 4 8 14 28 56 84 112 140 168 196 224 280 336 392 448

M
IL

LI
O

N
 O

PE
R

AT
IO

N
S/

S

THREADS

CONCURRENT HASH TABLE (10% UPDATE)
Lock Free RCU RLU MV-RLU

150x speedup
over RLU

Microbenchmark Result

29

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 RLU

 +Scalable TS

 +multi-
versi

on

 +concurre
nt G

C

 +capacit
y W

M

 +deref W
M

 M
V-RLU

20% Update

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

RLU

 +Scalable TS

 +multi-
versi

on

 +concurre
nt G

C

 +capacit
y W

M

 +deref W
M

MV-RLU

80% Update

0

0.5

1

1.5

2

2.5

3

3.5

4

 RLU

 +Scalable TS

 +multi-
versi

on

 +concurre
nt G

C

 +capacit
y W

M

 +deref W
M

 M
V-RLU

2% Update

M
ill

io
n

O
pe

ra
tio

ns
 P

er
 S

ec
on

d

2x
2x 4x

GC is
bottleneck

Factor Analysis

0

10

20

30

40

50

60

70

80

1 2 4 8 12 16 20 24 32 40 48 56 64 128 192 224 280 336

M
il

li
o

n
 O

p
e

ra
ti

o
n

s/
s

Threads

KyotoCabinet: Update(2%)

RLU Vanilla MV-RLU

Key Value Benchmark

30

8x speedup

over RLU

After MV-RLU

31

Can we leverage MV-RLU for
persistent memory?

Durable Transactional Memory (DTM)

• DTMs are software framework supporting ACID properties
• DTMs make persistent memory (PM) programming easier
• Relieves the burden on PM application developers

• Existing DTMs have serious problems
• Existing DTMs: PMDK, DUDETM[ASPLOS17], Romulus[SPAA18]
• Poor Scalability
• High Write Amplification (up to 6x)

32

Our proposed DTM

• A scalable and high performance DTM leveraging MV-RLU

• Our Solution: TimeStone
• published in ACM ASPLOS20

33

Please refer to the paper for details

Conclusion
• MV-RLU: Scaling RLU through Multi-Versioning
• Multi-Versioning removes synchronous waiting
• Concurrent and autonomous garbage collection
• MV-RLU shows unparalleled performance for a variety of benchmark

34

https://github.com/cosmoss-vt/mv-rlu

Thank you!

