Mathematical Models of Write Amplification in FTLs

Peter Desnoyers Northeastern University

Write Amplification

Random page writes

Multi-page block erase

Internal copying (write amplification)

What can we do about it?

Design Flash Translation Layers

```
BPLRU HFTL JFTL
DFTL ComboFTL

FAST MNFTL KAST
BAST Lazy-FTL
SuperBlock A-SAST
LAST
```

What can we do about it?

and test them

collect traces

and simulate...

What's missing?

- Mathematical understanding
 - **Why** does FTL 1 perform better than FTL 2?
 - Can we do better? What is optimal?

$$\sum_{i=X_0}^{N_p} f_i = \sum_{i=X_0}^{N_p} \frac{k}{i} = 1$$

$$\int_{i=X_0-\frac{1}{2}}^{N_p+\frac{1}{2}} \frac{k}{i} di = 1$$

$$\int_{i=X_0-rac{1}{2}}^{N_p+rac{1}{2}}rac{k}{i}di=1$$
 $X_0=rac{1}{2}+N_p(S_f-1)\cdot W\left(rac{\left(e^{-rac{1}{2N_p}-1}\left(N_p+rac{1}{2}
ight)^{1-S_f}
ight)^{rac{1}{1-S_f}}}{N_p(S_f-1)}
ight)$

What this talk is about:

- Simple flash translation layers
 - Page-mapped, no wear leveling
- Simple traffic models
 - Uniform randomly-distributed writes
- Accurate results
 - Models that tell us exactly what is happening in these simple cases.

Write Amplification

• If N_p = erase block size (in pages) N_{GC} = number of valid pages in garbage-collected block

• then A =
$$\frac{N_p}{N_p - N_{GC}}$$
 (Cost/Benefit)

The FTL Model

- Random uniformlydistributed single-page writes
- U blocks of LBA space
- N_p pages per block

• **T** physical blocks

Simple cleaning model

- Writes arrive at rate 1
- Lazy cleaning (when blocks are needed for writes)
- Blocks selected for cleaning according to some rule R

Random Selection

- Simplest to analyze
- Random sample sees population mean:

T · Np total pages

Valid fraction

• Reclaimed frac.

Measures of Free Space

Spare Fraction S_f

- Spare blocks as a fraction of total blocks
- Overprovisioning factor O_f

Ratio of spare blocks to user-visible blocks

Typical Free Space Factors

Low-end SSDs:

$$\frac{2^{30} - 10^9}{2^{30}} = 0.069$$

Midrange:

25%

• E.g. X25-E - 40 GiB flash, 32 GB LBA range

• High-end:

???

• E.g. FusionIO

FIFO (LRU) Cleaning

- Select the oldest block to clean
 - has most expected free space

FIFO Analysis

- Assume 1 external write/sec
 - Pages are invalidated at rate = _____
- Queue moves at speed A $_{\it T}$
 - Total time in queue = $\frac{-}{A}$

FIFO Performance

• Solution:

$$A = \frac{O_f}{W(O_f(-e^{-O_F})) + O_f}$$

where
$$O_f = \frac{1}{1 - S_f}$$
, $W(x) = t | t e^t = x$

Spare factor

Greedy Cleaning

- Choose block with most free space
 - also called Cost/Benefit

Greedy Algorithm Behavior

• Simulation with $S_f = 0.09$, $N_p = 64$

Greedy Algorithm Behavior

Markov Model for Greedy

• Transition rate $S \rightarrow S-1 \propto S$

Greedy Cleaning Solution

$$X_{0} = (S_{f} - 1) N_{p} W \left(\frac{\left(e^{-\frac{1}{2N_{p}} - 1} \left(N_{p} + \frac{1}{2}\right)^{1 - S_{f}}\right)^{\frac{1}{1 - S_{f}}}}{\left(S_{f} - 1\right) N_{p}} \right) + \frac{1}{2}$$

$$A = \frac{N_p}{N_p - X_0 - 1}$$

Greedy Cleaning Performance

Greedy and Block Size

Greedy vs. LRU Cleaning

- Greedy works better when:
 - 1. Erase blocks are small, and
 - 2. There is little free space
- LRU is about the same when:
 - 1. Erase blocks are large (≥128) <u>or</u>
 - 2. Free space is available (≥15%)

Locality (Hot / Cold data)

 Real-world workloads aren't uniformly distributed and random

What do we know already?

 Separation of hot and cold data is related to improved performance for realistic workloads

```
etc. Multi-hash
Cost/Age/Times
Dual Pool
Bloom filters
etc.
Multi-queue
```

Goals

- Understand how locality impacts performance of naïve FIFO and Greedy cleaning
- Investigate how to extract performance gains when locality is present.

Traffic Model

Simple hot/cold data:
 R% of writes to F% of LBA space

• E.g. 90% of writes to 10% of LBAs

FIFO Cleaning - Hot/Cold

FIFO Hot/Cold - Results

- Hot blocks move through system too slowly
- Cold blocks move through too quickly

$$A = re^{-\frac{rO_a}{Af}} + \frac{1 - r}{\frac{(1 - r)O_a}{e^{A(1 - f)} - 1}} + 1$$

Solve numerically

What does that mean?

almost 2x worst-case degradation

Greedy Cleaning - Hot/Cold

- Like FIFO, but more complicated
 - simulation results ($S_f = 0.10$, $N_p = 64$):

Hot/Cold Data Separation

- Assume perfect separation
- Greedy cleaning

Result - original performance

- Hot and cold blocks have same number of free pages at cleaning
 - ⇒ Same write amplification
 - \Rightarrow Same spare ratio since A=f(S_f)
 - → Same spare ratio as original uniform case
- Operates like two isolated FTLs
 - except tied together by global cleaning.

We can do better

- "Steal" free space from cold blocks
 - Increases write amplification on cold side
 - Decreases it on hot side

Optimal Hot/Cold FTL

- Assign free space unequally between hot and cold queues
 - Collect cold blocks with fewer free pages than hot blocks
- Artificial case
 - Find optimum free space assignment f(r,f,S_f)
 - Hot/cold identification trivial for fake data
 - Choose hot/cold to clean based on imbalance from optimal free space assignment

Optimal Hot/Cold FTL

Ongoing and Future Work

- More complex traffic models
- Effect of inaccuracy in identifying hot data
- Efficient on-line algorithms for optimal division of free space
- OpenSSD implementations