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Write Amplification
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What can we do about it?

e Design Flash Translation Layers

BPLRU HETL JFTL
DFTL ComboFTL

FAST, . MNFTL KAST pry
BAS

SuperBlocl%‘aZ}AFS&LSTNFTL

LAST




&) Northeastern University

What can we do about it?

e and test them
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collect traces and simulate...
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What's missing?

e Mathematical understanding

e Why does FTL 1 perform better than FTL 27?
e (Can we do better? What is optimal?
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What this talk is about:

e Simple flash translation layers

e Page-mapped, no wear leveling

e Simple traffic models

e Uniform randomly-distributed writes

e Accurate results

e Models that tell us exactly what is happening
in these simple cases.
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Write Amplification

total internal writes

external writes

e If Ny =erase block size (in pages)
Ngc = number of valid pages in

garbage-collected block
Np

Np - Ngc

e then A = (Cost/Benetit)
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The FTL Model

e Random uniformly-
distributed single-page

writes R A2 222 20 222 2

e U blocks of LBA space |‘|||| ||||||||||||||||r‘
® Nj pages per block MI_Iap

e T physical blocks
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Simple cleaning model

e Writes arrive atrate 1
e Lazy cleaning (when blocks are needed for writes)
e Blocks selected for cleaning according to some rule R

invalid pages
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Random Selection

Simplest to analyze

Random sample a
sees population
mean: a
e U-Np valid pages

T - Np total pages \/

Valid fraction

Reclaimed frac. @

Monday, November 7, 2011




“&) Northeastern University

4,
Y A

Measures of Free Space

e Spare Fraction St

------------------------------------------
------
-
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e Spare blocks as a fraction of total blocks

e Overprovisioning factor Ot

e Ratio of spare blocks to user-visible blocks
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Typical Free Space Factors

e Low-end SSDs: 7%
230 _ 109
= 0.069
230
e Midrange: 25%

e E.g.X25-E -40 GiB flash, 32 GB LBA range

 High-end: 777
e E.g. FusionlO
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FIFO (LRU) Cleaning

e Select the oldest block to clean

e has most expected free space
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FIFO Analysis

e Assume 1 external write/sec
e Pages areinvalidated at rate =

I

e Total timein queue = ——

1
UN,

e Queue moves at speed A
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FIFO Performance
Oy
W(Os (~e 9F ) + Oy

e Solution: A —

1
where Of_l - , W(x)=t|tet=x
—Of

171

Robinson '96
ol S = 0.069 [ ]
A = 7.46
i S, = 0.25

A =12.20

Write amplification
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Greedy Cleaning

e Choose block with most free space
e also called Cost/Benefit
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e Optimal for random
traffic [Hu '09]
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Greedy Algorithm Behavior
e Simulation with S¢f=0.09, N, = 64

Population statistics
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Greedy Algorithm Behavior

: ® Blocks at cleaning

1 95.3%
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e Block moves from full to N, -1 ... to X
e One more invalid page and block is
garbage collected almost immediately
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e Transition rate S—S-1 « S
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Greedy Cleaning Solution
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Greedy Cleaning Performance
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Greedy and Block Size
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Greedy vs. LRU Cleaning

e Greedy works better when:
1. Erase blocks are small, and
2. There is little free space

e LRU is about the same when:
1. Erase blocks are large (=2128) or
2. Free space is available (215%)
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Locality (Hot / Cold data)

e Real-world workloads aren’t
uniformly distributed and random

t
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What do we know already?

e Separation of hot and cold data is
related to improved performance
for realistic workloads

etc. Multi-hash
Cost/Age/Times Bl -
Dual Pool P'00M 1 tergtc_
etc. Multi-queue
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Goals

e Understand how locality impacts
performance of naive FIFO and
Greedy cleaning

e Investigate how to extract
performance gains when locality is
present.
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Traffic Model

e Simple hot/cold data:
R% of writes to F% of LBA space
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e E.g.90% of writes to 10% of LBAs
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FIFO Cleaning - Hot/Cold
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FIFO Hot/Cold - Results

e Hot blocks move through system

too slowly
e Cold blocks move through too
quickly
_Ir0Oq 1 — 7
— Af
A=re + non + 1
e A=) ]

e Solve numerically
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What does that mean?

almost 2x worst-case degradation

\
\

Hot data fraction (f) Hot data rate (r)
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Greedy Cleaning - Hot/Cold

e Like FIFO, but more complicated
e simulation results (Sr=0.10, N, = 64):
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Hot/Cold Data Separation

e Assume perfect separation
e Greedy cleaning
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Result - original performance

e Hot and cold blocks have same
number of free pages at cleaning

e = Same write amplification
e = Same spare ratio - since A=f(Sx)
e = Same spare ratio as original uniform case

e Operates like two isolated FTLs
e except tied together by global cleaning.
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We can do better

e “Steal” free space from cold blocks

e Increases write amplification on cold side
e Decreases it on hot side

o Eg >
80% /
20% - ’
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Optimal Hot/Cold FTL

e Assign free space unequally
between hot and cold queues

Collect cold blocks with fewer free pages than
hot blocks

e Artificial case

Find optimum free space assignment - {(r,f,S¢)
Hot/cold identification trivial for fake data

Choose hot/cold to clean based on imbalance
from optimal free space assighment
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Ongoing and Future Work

e More complex traffic models

e Effect of inaccuracy in identifying
hot data

e Efficient on-line algorithms for
optimal division of free space

e OpenSSD implementations
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