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Top 10 Storage Industry Trends for 2011
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 SSDs and automatic tiering becoming 
mainstream

 Storage controller functions becoming more 
distributed, raising the risk of commoditization

 Scale-out NAS taking hold
 Low-end storage moving upright
 Data reduction for primary storage grows up

…
Source: Data Storage Sector Report (William Blair & Company, 2011)



Trend #1: SSDs into Enterprise Sector

4Source: Hype Cycle for Storage Technologies (Gartner, 2010)



Trend #1: SSDs into Enterprise Sector
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 10 Coolest Storage Startups of 2011 (from crn.com)
Bigdata on Cassandra: Use SSDs as a bridge between 
server and HDDs for Cassandra DB

Flash memory virtualization software

Virtual server flash/SSD
storage

Big data and hadoop

Converged compute and storage appliance
: use Fusion-IO card and SSDs internally

Scalable, object-oriented storage

Data brick: integrating 144TB of raw HDD in 4U rack

SSD-based storage for cloud service

Storage appliance for virtualized environment
: include 1TB of flash memory internally

Accelerating SSD performance



Trend #1: SSDs into Enterprise Sector
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Enterprise Revenue Adoption

SLC-SSD

MLC-SSD

$/GB Comparison

SLC-SSD

MLC-SSD

HDD

(unit: k) 2010 2011 2012 2013 2014 2015
‘10-’15
CAGR

MLC 354.2 921.9 1,609 2,516 3,652 5,126 70.7

SLC 355.0 616.2 717.0 942.2 1,144 1,580 34.8

DRAM 0.6 0.6 9.7 0.7 0.7 0.7 5.0

Total 709.7 1,538 2,326 3,459 4,798 6,707 56.7

Enterprise SSD Shipments

Source: SSD 2011-2015 Forecast and Analysis (2011, IDC)



Trend #2: Distributed, Scale-out Storage
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…

Controller

…

Storage Media
(SSD, HDD, …)

Power Supply Cooling

Centralized Storage Distributed Storage

Replication
(mirroring,
striping, …)

EMC Symmetrix (SAN Storage)
: 2400 drives (HDD:SSD=90:10)
: 512 GB DRAM cache
: Support FC and 10G eth

Example

Violin Memory 3200 Array
: 10.5TB SLC flash array
: Support FC, 10G eth, and PCIe

High-Speed
Network

DRAM DRAM

DRAM
DRAM

…

…

Replication
(for recovery 
& availability)

Coordinator
(manage data)

Client
Master
Server

Backup
Server

(1) Find the 
location

(2) Request 
data

RAMCloud (Goal)
: 1,000-10,000 commodity servers
: Store entire data in DRAM
: Store replica in HDD for recovery

Example

NVMCloud (Our Goal)
: 1,000-10,000 servers
: Store entire data in Flash array

(and hide latency spike)
: Use DRAM as cache

: Commodity Server, Open-source SW: Proprietary, Closed HW and SW
Lower Cost

Better Scalability



Trend #2: Distributed, Scale-out Storage
 Example: Hadoop Distributed File System (HDFS)
 The placement of replica is determined by the name node, 

considering network cost, rack topology, locality, etc.
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Client Nodes
…

High-Speed
Network

Name Nodes

rack

…

rack

…

rack

……

Data Nodes

(1) Request Write
(2) A list of target 

datanodes to store replicas

(3) Write the first replica

(4) Write the second replica
(5) Write the third replica



Trend #2: Distributed, Scale-out Storage
 Example: Nutanix Storage
 Compute + storage building block in a 2U form factor
 Unifies storage from all cluster nodes and presents 

shared-storage resources to VMs for seamless access
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Challenge: When Dist. Storage Meets NAND?
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SSDs into 
Enterprise Sector

Distributed, 
Scale-out Storage

Key Question:
What’s the best usage of NAND
inside the distributed storage?

Trend Analysis



NAND Flash inside Enterprise Storage
 Needs to redefine the role of NAND flash inside the 

distributed storage
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Tiering Model

Tier-0
(Hot data)

Tier-1
(Cold data)

SSD • Identify hot data
• If necessary, 

migrate data

Ex: EMC, IBM, HP (Storage System Vendors)

Caching Model

Ex: NetApp, Oracle (Storage System Vendors)
Fusion-IO (PCIe-SSD Vendors)

Cache

Storage

• Store hot data in SSD cache
• Does not need migration
• Usually use PCIe-SSD

HDD Replacement Model

HDD HDD

SSD

SSD

SSD
• Replace the entire HDDs 

with SSDs
• Storage System: targeted for 

high-performance market
• Server: targeted for low-end 

server with small capacity

Ex: Nimbus, Pure Storage (Storage System Startups)

Distributed Storage Model

? • Unclear what kind of role
SSDs should play here



The Way Technology Develops:

 Internet Banner Ad
 Britannica.com
 Internet Shopping Mall
 Internet Radio
 ….
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“대체 모델” “변환 모델”

Replacement Model

 Google Ad (page ranking)
 Wikipedia
 Open Market
 Podcast
 P&G R&D
 Apple AppStore
 Threadless.com
 Social Bank
 Netflix
 ….

Transformation Model

Based on the Lecture “Open Collaboration and Application” presented at Samsung by Prof. Joonki Lee (이준기 교수)

SSDs with HDD Interface ?



Change #1: Reliability Model
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RAID Controller

Centralized Storage Distributed Storage

High-Speed
Network

…

…

Interface to 
Host

: Replication managed by RAID controller
: Replicas stored within the same system

: Replication managed by Coordinator Node
: Replicas stored across different nodes

From “Hadoop The Definitive Guide”

 No need to use RAID internally!
 Question: Can we relieve the requirement for SSD reliability?

HDFS clusters do not benefit from using RAID for datanode storage.
The redundancy that RAID provides is not needed, since HDFS handles it by 
replication between nodes.
Furthermore, RAID striping is slower than JBOD used by HDFS.



Change #2: Multi-paths in Data Service
 There’s always alternative ways of handling 

read/write requests
 Insight: we can somehow ‘reshape’ the request 

patterns delivered to each internal SSD
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Read Write



Change #3: Each node is a part of ‘big storage’
 Each node and each SSD should be regarded as a part 

of the entire distributed storage system, not as a 
standalone drive

 Each ‘local’ FTL should be regarded as a part of the 
entire distributed storage system, not as a standalone, 
independently working software module

 Isn’t it necessary to manage each ‘local’ FTL? 
We propose the Global FTL
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SSDs SSDs SSDs SSDs



Propose: Global FTL
 Traditional ‘local’ FTL handles given requests based only on local 

information
 Global FTL coordinates each local FTL so that the global 

performance can be maximized
 Local optimization ≠  Global optimization
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Propose: Global FTL
 Global FTL virtualizes the entire local FTLs as a 

‘large-scale, ideally-working storage’
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LFTL LFTL LFTL

LFTL LFTL LFTL

LFTL LFTL LFTL

G-FTL

LFTL LFTL LFTL

LFTL LFTL LFTL

LFTL LFTL LFTL

• Garbage collection
• Migration
• Wear leveling

….

Traditional 
Distributed Storage

No 
coordination

Proposed 
Distributed Storage



Example #1: Global Garbage Collection
 Motivation : GC-induced latency spike problem

 If a flash block is being erased, data in the flash chip cannot be 
read during that interval, which can range 2-10 msec

 This results in severe latency spikes and HDD-like response time
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< source: violin memory whitepaper>

50% Load 90% Load



Wait!
 The goal of real-time operating system is also 

minimizing latency
 Any similarity and insight from real-time research?
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Latency Caused by DI/NP Sections

20

Urgent 
Interrupt

Wake up
RT task

process
switch

interrupt
handler

EN   

P

EN   DI EN   

interrupt
handler

Urgent Interrupt

Latency caused by interrupt-disabled section Ideal Situation

Time

Time

P

NP

EN interrupt-enabled section

DI Interrupt-disabled section

preemptible section

non-preemptible section

P NP P

Urgent 
Interrupt

Wake up
RT task

process
switch

interrupt
handler

Latency caused by non-preemptible section

Time



Latency Caused by DI/NP Sections
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Basic Concept of PAS
 Manage entering either NP or DI sections such that 

before an urgent interrupt occurs, at least one core 
(called ‘preemptible core’) is in both P and EN sections

 When an urgent interrupt occurs, it is delivered to the 
preemptible core   “Preemptibility-Aware Scheduling”
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CPU1 CPU2 CPU3 CPU4

P NP PNP

Urgent Interrupt

EN DI DIDI

Preemptible Core

Interrupt Dispatcher



Experiment: Under Compile Stress
 With PAS, the max latency is reduced by 54%
 Dedicated CPU approach has only marginal effect

Compile
Time

149.80 
sec

196.58 
sec

149.42 
sec
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Experiment: Logout Stress

 The max latency is reduced by a factor of 26!
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Experiment: Applying PAS to Android
• Target system: Tegra250 Board (Cortex-A9 Dual) based on Android 2.1
• Example 1: Schedule latency under process migration stress

• Example 2: Schedule latency under heavy Android web browsing
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25Jupyung Lee, “Preemptibility-Aware Response Multi-Core Scheduling”, ACM Symposium on Applied Computing, 2011



Example #1: Global Garbage Collection
 Motivation : GC-induced latency spike problem
 Finding similarities:

 Latency by DI/NP section vs. Latency by GC
 Avoiding interrupt-disabled core vs. Avoiding GC-ing node

26
< source: violin memory whitepaper>
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Example #1: Global Garbage Collection
 Global GC manages each local GC such that 

read/write requests are not delivered to GC-ing node
 Exemplary scenario:
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Example #1: Global Garbage Collection
 When write request arrives:

28

rack

Network Switch

Write
{key, value}

Commit 
/ Abort

rack

Group 1

Group 2

Group 3

Group 4

1

Group 1

Group 2

Group 3

Group 4

GC-able
Group 2 3 4

GC

GC

GC

GC

Read
Write

Read
Write

Time

Write
Request

Write

Write

Write

Busy 
Memory

GC-able
Group



Example #1: Global Garbage Collection
 When read request arrives:
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Example #2: Request Reshaper
 Motivation: The performance of SSDs is dependent 

on present and previous request patterns
 Ex: excessive random writes  not enough free blocks

 lots of fragmentation and GCs
 degraded write performance

30< Data from RAMCloud team, Stanford University >



Example #2: Request Reshaper
 Request reshaper manages the request pattern 

delivered to each node such that degrading pattern 
can be avoided within each node
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Conclusion
 Key message: each ‘local’ FTL should be managed 

from the perspective of the entire storage system
 This message is not new at NVRAMOS workshop!
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“Long-term Research Issues in SSD” 
(NVRAMOS Spring 2011, Prof. Suyong Kang, HYU)

“Re-designing Enterprise Storage Systems for Flash” 
(NVRAMOS 2009, Jiri Schindler, NetApp)



Thank You!
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