
When Hadoop-like Distributed Storage
Meets NAND Flash:

Challenge and Opportunity

Jupyung Lee
Intelligent Computing Lab
Future IT Research Center

Samsung Advanced Institute of Technology
November 9, 2011

Disclaimer: This work does not represent the views or opinions of Samsung Electronics.

Contents
 Remarkable trends in the storage industry
 Challenges: when distributed storage meets NAND?
 Change associated with the challenges
 Propose: Global FTL
 Conclusion

2

Top 10 Storage Industry Trends for 2011

3

 SSDs and automatic tiering becoming
mainstream

 Storage controller functions becoming more
distributed, raising the risk of commoditization

 Scale-out NAS taking hold
 Low-end storage moving upright
 Data reduction for primary storage grows up

…
Source: Data Storage Sector Report (William Blair & Company, 2011)

Trend #1: SSDs into Enterprise Sector

4Source: Hype Cycle for Storage Technologies (Gartner, 2010)

Trend #1: SSDs into Enterprise Sector

5

 10 Coolest Storage Startups of 2011 (from crn.com)
Bigdata on Cassandra: Use SSDs as a bridge between
server and HDDs for Cassandra DB

Flash memory virtualization software

Virtual server flash/SSD
storage

Big data and hadoop

Converged compute and storage appliance
: use Fusion-IO card and SSDs internally

Scalable, object-oriented storage

Data brick: integrating 144TB of raw HDD in 4U rack

SSD-based storage for cloud service

Storage appliance for virtualized environment
: include 1TB of flash memory internally

Accelerating SSD performance

Trend #1: SSDs into Enterprise Sector

6

Enterprise Revenue Adoption

SLC-SSD

MLC-SSD

$/GB Comparison

SLC-SSD

MLC-SSD

HDD

(unit: k) 2010 2011 2012 2013 2014 2015
‘10-’15
CAGR

MLC 354.2 921.9 1,609 2,516 3,652 5,126 70.7

SLC 355.0 616.2 717.0 942.2 1,144 1,580 34.8

DRAM 0.6 0.6 9.7 0.7 0.7 0.7 5.0

Total 709.7 1,538 2,326 3,459 4,798 6,707 56.7

Enterprise SSD Shipments

Source: SSD 2011-2015 Forecast and Analysis (2011, IDC)

Trend #2: Distributed, Scale-out Storage

7

… C
ac

h
e

(D
R
A

M
)

Network I/F
(FC, ETH, …)

…

Controller

…

Storage Media
(SSD, HDD, …)

Power Supply Cooling

Centralized Storage Distributed Storage

Replication
(mirroring,
striping, …)

EMC Symmetrix (SAN Storage)
: 2400 drives (HDD:SSD=90:10)
: 512 GB DRAM cache
: Support FC and 10G eth

Example

Violin Memory 3200 Array
: 10.5TB SLC flash array
: Support FC, 10G eth, and PCIe

High-Speed
Network

DRAM DRAM

DRAM
DRAM

…

…

Replication
(for recovery
& availability)

Coordinator
(manage data)

Client
Master
Server

Backup
Server

(1) Find the
location

(2) Request
data

RAMCloud (Goal)
: 1,000-10,000 commodity servers
: Store entire data in DRAM
: Store replica in HDD for recovery

Example

NVMCloud (Our Goal)
: 1,000-10,000 servers
: Store entire data in Flash array

(and hide latency spike)
: Use DRAM as cache

: Commodity Server, Open-source SW: Proprietary, Closed HW and SW
Lower Cost

Better Scalability

Trend #2: Distributed, Scale-out Storage
 Example: Hadoop Distributed File System (HDFS)
 The placement of replica is determined by the name node,

considering network cost, rack topology, locality, etc.

8

Client Nodes
…

High-Speed
Network

Name Nodes

rack

…

rack

…

rack

……

Data Nodes

(1) Request Write
(2) A list of target

datanodes to store replicas

(3) Write the first replica

(4) Write the second replica
(5) Write the third replica

Trend #2: Distributed, Scale-out Storage
 Example: Nutanix Storage
 Compute + storage building block in a 2U form factor
 Unifies storage from all cluster nodes and presents

shared-storage resources to VMs for seamless access

9

Processor

DRAM

Fusion-IO

SSDs HDDs

Network

Challenge: When Dist. Storage Meets NAND?

10

SSDs into
Enterprise Sector

Distributed,
Scale-out Storage

Key Question:
What’s the best usage of NAND
inside the distributed storage?

Trend Analysis

NAND Flash inside Enterprise Storage
 Needs to redefine the role of NAND flash inside the

distributed storage

11

Tiering Model

Tier-0
(Hot data)

Tier-1
(Cold data)

SSD • Identify hot data
• If necessary,

migrate data

Ex: EMC, IBM, HP (Storage System Vendors)

Caching Model

Ex: NetApp, Oracle (Storage System Vendors)
Fusion-IO (PCIe-SSD Vendors)

Cache

Storage

• Store hot data in SSD cache
• Does not need migration
• Usually use PCIe-SSD

HDD Replacement Model

HDD HDD

SSD

SSD

SSD
• Replace the entire HDDs

with SSDs
• Storage System: targeted for

high-performance market
• Server: targeted for low-end

server with small capacity

Ex: Nimbus, Pure Storage (Storage System Startups)

Distributed Storage Model

? • Unclear what kind of role
SSDs should play here

The Way Technology Develops:

 Internet Banner Ad
 Britannica.com
 Internet Shopping Mall
 Internet Radio
 ….

12

“대체 모델” “변환 모델”

Replacement Model

 Google Ad (page ranking)
 Wikipedia
 Open Market
 Podcast
 P&G R&D
 Apple AppStore
 Threadless.com
 Social Bank
 Netflix
 ….

Transformation Model

Based on the Lecture “Open Collaboration and Application” presented at Samsung by Prof. Joonki Lee (이준기 교수)

SSDs with HDD Interface ?

Change #1: Reliability Model

13

RAID Controller

Centralized Storage Distributed Storage

High-Speed
Network

…

…

Interface to
Host

: Replication managed by RAID controller
: Replicas stored within the same system

: Replication managed by Coordinator Node
: Replicas stored across different nodes

From “Hadoop The Definitive Guide”

 No need to use RAID internally!
 Question: Can we relieve the requirement for SSD reliability?

HDFS clusters do not benefit from using RAID for datanode storage.
The redundancy that RAID provides is not needed, since HDFS handles it by
replication between nodes.
Furthermore, RAID striping is slower than JBOD used by HDFS.

Change #2: Multi-paths in Data Service
 There’s always alternative ways of handling

read/write requests
 Insight: we can somehow ‘reshape’ the request

patterns delivered to each internal SSD

14

Read Write

Change #3: Each node is a part of ‘big storage’
 Each node and each SSD should be regarded as a part

of the entire distributed storage system, not as a
standalone drive

 Each ‘local’ FTL should be regarded as a part of the
entire distributed storage system, not as a standalone,
independently working software module

 Isn’t it necessary to manage each ‘local’ FTL?
We propose the Global FTL

15

SSDs SSDs SSDs SSDs

Propose: Global FTL
 Traditional ‘local’ FTL handles given requests based only on local

information
 Global FTL coordinates each local FTL so that the global

performance can be maximized
 Local optimization ≠ Global optimization

16

Propose: Global FTL
 Global FTL virtualizes the entire local FTLs as a

‘large-scale, ideally-working storage’

17

LFTL LFTL LFTL

LFTL LFTL LFTL

LFTL LFTL LFTL

G-FTL

LFTL LFTL LFTL

LFTL LFTL LFTL

LFTL LFTL LFTL

• Garbage collection
• Migration
• Wear leveling

….

Traditional
Distributed Storage

No
coordination

Proposed
Distributed Storage

Example #1: Global Garbage Collection
 Motivation : GC-induced latency spike problem

 If a flash block is being erased, data in the flash chip cannot be
read during that interval, which can range 2-10 msec

 This results in severe latency spikes and HDD-like response time

18
< source: violin memory whitepaper>

50% Load 90% Load

Wait!
 The goal of real-time operating system is also

minimizing latency
 Any similarity and insight from real-time research?

19

Previous
process

H/W
response ISR

Wake up
RT process

Reschedule

Find
next

Context
switch

RT
process

Preemption latency

Interrupt
latency

Wakeup
latency

Switch
latency

Interrupt

Latency Caused by DI/NP Sections

20

Urgent
Interrupt

Wake up
RT task

process
switch

interrupt
handler

EN

P

EN DI EN

interrupt
handler

Urgent Interrupt

Latency caused by interrupt-disabled section Ideal Situation

Time

Time

P

NP

EN interrupt-enabled section

DI Interrupt-disabled section

preemptible section

non-preemptible section

P NP P

Urgent
Interrupt

Wake up
RT task

process
switch

interrupt
handler

Latency caused by non-preemptible section

Time

Latency Caused by DI/NP Sections

21

interrupt

Previous
process

H/W
response ISR Previous

process Reschedule RT
process

DI

NP

EN

P

Caused by DI section Caused by NP section

Basic Concept of PAS
 Manage entering either NP or DI sections such that

before an urgent interrupt occurs, at least one core
(called ‘preemptible core’) is in both P and EN sections

 When an urgent interrupt occurs, it is delivered to the
preemptible core  “Preemptibility-Aware Scheduling”

22

CPU1 CPU2 CPU3 CPU4

P NP PNP

Urgent Interrupt

EN DI DIDI

Preemptible Core

Interrupt Dispatcher

Experiment: Under Compile Stress
 With PAS, the max latency is reduced by 54%
 Dedicated CPU approach has only marginal effect

Compile
Time

149.80
sec

196.58
sec

149.42
sec

23

Experiment: Logout Stress

 The max latency is reduced by a factor of 26!

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Trial

m
ax

im
um

 la
te

nc
y

(u
se

c)
 d

w/o PAS w/ PAS

24

Experiment: Applying PAS to Android
• Target system: Tegra250 Board (Cortex-A9 Dual) based on Android 2.1
• Example 1: Schedule latency under process migration stress

• Example 2: Schedule latency under heavy Android web browsing

1

10

100

1000

10000

0 100 200 300 400 500 600 700
latency (usec)

N
um

be
r (

lo
g)

w/ PAS w/o PAS

w/o PAS w/ PAS

avg. 30 usec 16 usec
max. 787 usec 33 usec

w/ PAS w/o PAS

w/o PAS w/ PAS

avg. 26 usec 18 usec
max. 4557 usec 112 usec

25Jupyung Lee, “Preemptibility-Aware Response Multi-Core Scheduling”, ACM Symposium on Applied Computing, 2011

Example #1: Global Garbage Collection
 Motivation : GC-induced latency spike problem
 Finding similarities:

 Latency by DI/NP section vs. Latency by GC
 Avoiding interrupt-disabled core vs. Avoiding GC-ing node

26
< source: violin memory whitepaper>

50% Load 90% Load

Example #1: Global Garbage Collection
 Global GC manages each local GC such that

read/write requests are not delivered to GC-ing node
 Exemplary scenario:

27

rack

Network Switch

Write
{key, value}

Commit
/ Abort

rack

Group 1

Group 2

Group 3

Group 4

1

Group 1

Group 2

Group 3

Group 4

GC-able
Group 2 3 4

GC

GC

GC

GC

Read
Write

Read
write

Time

The duration is determined
considering GC time, GC needs, etc.

Example #1: Global Garbage Collection
 When write request arrives:

28

rack

Network Switch

Write
{key, value}

Commit
/ Abort

rack

Group 1

Group 2

Group 3

Group 4

1

Group 1

Group 2

Group 3

Group 4

GC-able
Group 2 3 4

GC

GC

GC

GC

Read
Write

Read
Write

Time

Write
Request

Write

Write

Write

Busy
Memory

GC-able
Group

Example #1: Global Garbage Collection
 When read request arrives:

29

rack

Network Switch

D

D

rack

D

Group 1

Group 2

Group 3

Group 4

1

Group 1

Group 2

Group 3

Group 4

GC-able
Group 2 3 4

GC

GC

GC

GC

Read
Write

Read
Write

Time

Read
Request

Read

Read

Busy
Memory

Read
{key}

Return
{value}

Example #2: Request Reshaper
 Motivation: The performance of SSDs is dependent

on present and previous request patterns
 Ex: excessive random writes  not enough free blocks

 lots of fragmentation and GCs
 degraded write performance

30< Data from RAMCloud team, Stanford University >

Example #2: Request Reshaper
 Request reshaper manages the request pattern

delivered to each node such that degrading pattern
can be avoided within each node

31

Random
Write
Request

Sequential
Write
Request

Request Reshaper

Incoming
Write
Request

Data
Node SSD

Degrading Pattern Model

Request Pattern of
Each Node

Name
Node

Client
Node

Request Distributor

Degrading
Pattern

Conclusion
 Key message: each ‘local’ FTL should be managed

from the perspective of the entire storage system
 This message is not new at NVRAMOS workshop!

32

“Long-term Research Issues in SSD”
(NVRAMOS Spring 2011, Prof. Suyong Kang, HYU)

“Re-designing Enterprise Storage Systems for Flash”
(NVRAMOS 2009, Jiri Schindler, NetApp)

Thank You!

33

