When Hadoop-like Distributed Storage
Meets NAND Flash:
Challenge and Opportunity

Jupyung Lee
Intelligent Computing Lab
Future IT Research Center
Samsung Advanced Institute of Technology
November 9, 2011

Disclaimer: This work does not represent the views or opinions of Samsung Electronics.

Contents

» Remarkable trends in the storage industry

» Challenges: when distributed storage meets NAND?
» Change associated with the challenges

» Propose: Global FTL

» Conclusion

Top 10 Storage Industry Trends for 2011

(@)
» SSDs and automatic tiering becoming
mainstream

» Storage controller functions becoming more
distributed, raising the risk of commoditization

» Scale-out NAS taking hold
» Low-end storage moving upright
» Data reduction for primary storage grows up

@ Source: Data Storage Sector Report (William Blair & Company, 2011))

Trend #1: SSDs into Enterprise Sector

expectations Online Data Compression

Virtual Machine Recovery

Quality of Storage Service

Cloud Storage —§ 2

Data Center Bridging C
2 BnLer =ndging Enterprise PC Backup

Emerging Data Protection Schemes

Information Dispersal
Algorithms
Cloud-Oriented Object-Based
Storage

Data Switch-Based

phNFS Deduplication 1

File Virtualization
Appliances

Distributed HSM
Storage Bridge Bay

Massive Array of [die Disks
Content-Addressed Storage

Storage Virtualization

Cross-Platform Structured Data Archiving
Fibre Channel COver Ethernet

Data Encryption Technologies and Hard-Disk Drives

Serial Attached SCSI: HDD Interface
Distributed Tape Backup

Storage Cluster File Systems
Appliance-Based Replication

Metro-Area SANS
ISCSI 0)
O
TCPAP Cifload Engines and iSCSI
~O Wide-Area SANs
Server-Based Replication
A SAN Management

Storage Resource Management
Distributed Virtual Tape
Bare-Metal Restore

External or Heterogeneous Storage Virtualization

Thin Provisioning
E-Mail Archiving

Continuous Data Prote ction
Az of July 2010

Peak of
Technology Inflated Trough of Slo . Plateau of
. f h pe of Enlightenment .
Trigger Expectations Disillusionment Productivity
time I
Years to mainstream adoption:
obsolete

Olessthan 2years O 2to5 years

@ 5to 10 years

A more than 10 years @ before plateau

Source: Hype Cycle for Storage Technologies (Gartner, 2010)

Trend #1: SSDs into Enterprise Sector

» 10 Coolest Storage Startups of 2011 (from crn.com)

: Bigdata on Cassandra: Use SSDs as a bridge between
- Acunu server and HDDs for Cassandra DB

@ FlasnSoft Flash memory virtualization software

- !\ ,— Virtual server flash/SSD
,oml E storage

MAPR Big data and hadoop

TECHNOLOGIES

' l NUTANI Converged compute and storage appliance

COMPUTE. STORAGE. COMPLETE. : yse Fusion-IO card and SSDs internally
osc""—'T"’ Scalable, object-oriented storage
ﬁlﬂ‘uﬁ » Data brick: integrating 144TB of raw HDD in 4U rack
SOLID ?ure SSD-based storage for cloud service
TINTRI CiceaeTTe of flssh memory internally
. y

Velol: 2 Accelerating SSD performance >

Trend #1: SSDs into Enterprise Sector

Enterprise Revenue Adoption $/GB Comparison

100 - 18

90 - 16
ao EI 14
70 MLC-SSD 12 - SLC-SSD
B0
50 +—
40
0
7 SLC-SSD

10

1 .

(%)
($/GE)

MLC-SSD

0 +— . =

1 ! T T T ‘ ‘ 1 * I ‘ T ‘-

O M = 00 O O
— 1

2010 2011 2012 2013 2014 2015 2010 2011 2012 2013 2014 2015

(unit: k) 2010 2011 2012 2013 2014 2015 e
CAGR

354.2 921.9 1,609 2,516 3,652 5126 70.7

SLC 355.0 616.2 717.0 942.2 1,144 1,580 34.8
DRAM 0.6 0.6 9.7 0.7 0.7 0.7 5.0
Total 709.7 1,538 2,326 3,459 4,798 6,707 56.7

Source: SSD 2011-2015 Forecast and Analysis (2011, IDC)

Trend #2: Distributed, Scale-out Storage

Centralized Storage

: Proprietary, Closed HW and SW

Network I/F Storage Media

Controller

Lower Cost

Better Scalability

(FC, E'I,'H,) (SSD, ,—IDD,)
[| I
T 8 8 6 @\\ Replication
1 | = CICJEIET | (mirroring,
| —striping, ...)
B EEEES
> o o o Replcaion

- < or recovery
- 5 e & availability)
T s e

41 Power Supply '_‘ Cooling '7

Example

M EMC Symmetrix (SAN Storage)
: 2400 drives (HDD:SSD=90:10)
: 512 GB DRAM cache
: Support FC and 10G eth

M Violin Memory 3200 Array
: 10.5TB SLC flash array
: Support FC, 10G eth, and PCle

Distributed Storage

: Commodity Server, Open-source SW

Master
Server (2) Request Client
data
DRAM > | DRAM
A
High-Speed (1) Find the
Network ! location
DRAM
DRAM f
\8 Coordinator
Backup (manage data)
Server
Example

M RAMCloud (Goal)
: 1,000-10,000 commodity servers
: Store entire data in DRAM
: Store replica in HDD for recovery

M NVMCloud (Our Goal)
: 1,000-10,000 servers
: Store entire data in Flash array
(and hide latency spike)
: Use DRAM as cache

Trend #2: Distributed, Scale-out Storage

» Example: Hadoop Distributed File System (HDFS)

» The placement of replica is determined by the name node,
considering network cost, rack topology, locality, etc.

Client Nodes (1) Request Write
(2) A list of target
datanodes to store replicas

e
T N\ Na\me Nodes

High-Speed
Network
A\
L ——— (3) Write the first replica
\ Data Nodes
rack rack rack

(4) Write the second replica
(5) Write the third replica

Trend #2: Distributed, Scale-out Storage

» Example: Nutanix Storage § BNUTANL .

CCCCCCC . STORAGE. COMPLETE.

» Compute + storage building block in a 2U form factor

» Unifies storage from all cluster nodes and presents
shared-storage resources to VMs for seamless access

SSDs HDDs

Processor

Fusion-1O

Challenge: When Dist. Storage Meets NAND?

4 SSDs into ~ Distributed,
. \] I'
‘.. Enterprise Sector . / Scale-out Storage -

~
~
~
~ -
~ [-
Sew - S -
-~ e i e
kel L ——— ——

Key Question:
What's the best usage of NAND
inside the distributed storage?

NAND Flash inside Enterprise Storage

» Needs to redefine the role of NAND flash inside the
distributed storage

Tiering Model Caching Model

Tier-0 . Cache
(Hot data) - Identify hot data o | * Store hot data in SSD cache
- If necessary, = - Does not need migration
Tier-1 migrate data Storage * Usually use PCle-SSD
(Cold data)

Ex: NetApp, Oracle (Storage System Vendors)
Fusion-IO (PClIe-SSD Vendors)

HDD Replacement Model . Distributed Storage Model —
* Replace the entire HDDs ‘
with SSDs 2 :O

Ex: EMC, IBM, HP (Storage System Vendors)

* Storage System: targeted for 2 . Unclear what kind of role

high-performance market H
« Server: targeted for low-end SSDs should play here

server with small capacity H— -

Ex: Nimbus, Pure Storage (Storage System Startups)

- e

The Way Technology Develops:

Replacement Model - Transformation Model

——— Py
» Internet Banner Ad » Google Ad (page ranking)
» Britannica.com » Wikipedia
» Internet Shopping Mall » Open Market
» Internet Radio » Podcast
, » P&G R&D

» Apple AppStore
» Threadless.com
» Social Bank
» Netflix
3

[SSDs with HDD Interface] [?

Based on the Lecture “Open Collaboration and Application” presented at Samsung by Prof. Joonki Lee (O|&7| 1)

Change #1: Reliability Model

» No need to use RAID internally!
» Question: Can we relieve the requirement for SSD reliability?

HDFS

From "Hadoop The Definitive Guide”

Centralized Storage _ Distributed Storage

: Replication managed by RAID controller : Replication managed by Coordinator Node
: Replicas stored within the same system : Replicas stored across different nodes

Interface to
=
High-Speed
RAID Controller Network \}

TOEE éﬁ*@jﬁ

Change #2: Multi-paths in Data Service

» There’s always alternative ways of handling
read/write requests

» Insight: we can somehow ‘reshape’ the request
patterns delivered to each internal SSD

Read Write

Change #3:. Each node is a part of ‘big storage’

» Each node and each SSD should be regarded as a part
of the entire distributed storage system, not as a
standalone drive

» Each ‘local’ FTL should be regarded as a part of the
entire distributed storage system, not as a standalone,
independently working software module

» Isn’t it necessary to manage each ‘local’ FTL?

Propose: Global FTL

» Traditional ‘local’ FTL handles given requests based only on local
information

» Global FTL coordinates each local FTL so that the global
performance can be maximized

» Local optimization # Global optimization

Distributed Storage S/W
Client Node 1
| | | | - |:] Global Flash Translation Layer (G-FTL)
Global | | Global | Global | | Global
GC | cQ B AT . WL
1 i e e e e o e e Request Reshaper
S imeneen seveey venvEy - i \)
7 a

Distributed Storage S/W

A

Read/Write (sector 1/0O)

Local Flash Translation Layer (L-FTL)

‘ A 4 q
‘Garbage B ‘ItommandL | Address Wear

A 4

Collector | Queue Translator | Leveler

r r

i = Erase (block I/O) Read/Program (page 1/O)
Data Node

Data Node

NAND Flash Memory

- —/

Propose: Global FTL

» Global FTL virtualizes the entire local FTLs as a
‘large-scale, ideally-working storage’

raditiona Proposed
Distributed Storage Distributed Storage

- N N N
LFTL LFTL LFTL “
» W No
> g b | coordination
e N N N
LFTL LFTL LFTL| |«
* Garbage collection
L VRN L S * Migration
* Wear leveling
e N e ™

Example #1: Global Garbage Collection

» Motivation : GC-induced latency spike problem

» If a flash block is being erased, data in the flash chip cannot be
read during that interval, which can range 2-10 msec

» This results in severe latency spikes and HDD-like response time

Read Latency Distributi ency Distributi
50% Load 90% Load
oy Z
z H
©
R 3
& &
L w
> =
5 i &
L] [
4 | o // —_—
- . 501—1) 1,000 1,500 2,0{.]0 500)]..000”]:500
ViolinSLC ~ MSLCSSD 10 5LC 55Dx4 RAIDO Vielin SLC S5D
Latency vs. Time Lat

!'\ I hl‘ ! l' Jll ,“lu

iolin memory whitepaper

s

» The goal of real-time operating system is also
minimizing latency
» Any similarity and insight from real-time research?

Preemption latency

Wakeup Switch

latenc latenc
Interrupt : i
latenc

Wake up
RT process

Interrupt

Latency Caused by DI/NP Sections

Latency caused by interrupt-disabled section

=N DI

EN

Time

4

| interrupt

<
<

Urgent fnterrupt

handler

Latency caused by non-preemptible section

Ideal Situation

Time

P NP P
Time
interrupt | | process
handler | | switch
A_l A_L

Urgent Wake up
Interrupt RT task

interrupt | process
handler | switch

A_L A

Urgent Wake up
Interrupt RT task

n preemptible section

non-preemptible section
interrupt-enabled section
m Interrupt-disabled section

__

20

Latency Caused by DI/NP Sections

Caused by DI section ‘ Caused bY‘NP section

d
"

|

interrupt

Basic Concept of PAS

» Manage entering either NP or DI sections such that
before an urgent interrupt occurs, at least one core
(called ‘preemptible core’) is in both P and EN sections

» When an urgent interrupt occurs, it is delivered to the
preemptible core > “Preemptibility-Aware Scheduling”

Preemptible Core

Interrupt Dlspatcher

I Urgent Interrupt

22

Experiment: Under Compile Stress

» With PAS, the max latency is reduced by 54%
» Dedicated CPU approach has only marginal effect

Ow/ PAS B w/o PAS (dedicated CPU) B w/o PAS
10000 (unit: w/o PAS
usec) w/ PAS (dedicated) wio PAS
Average 19 14 18
Maximum 102

Compile 149.80 196.58 149.42
sec

Number (log)

Latency (usec)

23

Experiment: Logout Stress

2500

2000

—
o)
o
o

—
o
o
o

maximum latency (usec)

500 |

O w/o PAS mw/ PAS

6

| . I

7

_MJAJJJLJ&AJ
8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Trial

» The max latency is reduced by a factor of 26!

24

Experiment: Applying PAS to Android

Target system: Tegra250 Board (Cortex-A9 Dual) based on Android 2.1
Example 1: Schedule latency under process migration stress

|—w/PAS — wio PAS |

10000
1000 ‘} w/o PAS w/PAS | |
g avg. 30usec _k 16 usec
g 100 max. 787 usec F 33 usec
Z

w/ PAS w/o PAS

/

10 |
200 300 400 500 600 7

0 100 00

latency (usec)

Example 2: Schedule latency under heavy Android web browsing

w/o PAS w/ PAS

avg. 26 usec 18 usec
max. 4557 usec ‘I 112 usec

Jupyung Lee, “Preemptibility-Aware Response Multi-Core Scheduling”, ACM Symposium on Applied Computing, 2011°

Example #1: Global Garbage Collection

» Motivation : GC-induced latency spike problem
» Finding similarities:

Latency by DI/NP section vs. Latency by GC

Avoiding interrupt-disabled core vs. Avoiding GC-ing node

Read Latency Distribution

A
50% Load /\
.év- .;. \\\
/ \
& / \
y / |

Read Latency Distribution

90% Load

/
4
r/
/ N\
\
/ \
/

s & & E B

hl!HlUl!.\hlnll

||>I|JI;|1.I, \|‘IlwWvhl\!nl\hmhh\lhn”h\l|lhl|m;nlII\IU
Violin SLC W 5LCSSD SLC SSDx4 RAI

M;UI';H;L!HIH i -

L I T

SLC

JW

m Y \l\ l il h i J‘ uhl,. .lu'

< source: violin memory whitepaper>

26

atency vs. Ti
M 5LC 55D

Example #1: Global Garbage Collection

» Global GC manages each local GC such that
read/write requests are not delivered to GC-ing node

» Exemplary scenario:

The duration is determined

Write Commit considering GC time, GC needs, etc.
{key, value} / Abort ! A \
GC-able
Network Switch Group 1 2 3 4
1
]]
Group 1 Group 1
0 | (B8 |
- (B O N
— Group 2 Group 2
(O O y
O O Group 3
— —— Group 3
= 0 y
Ve N\ 4
O O .
Group 4
k [[J Time

rack rack

27

Example #1: Global Garbage Collection

» When write request arrives:

Write
Request
Write Commit
{key, value} / Abort v
Busy
Network Switch GC-able
— Memory Group
]] |
GC-able Group 1 Group 1
Group | [o
e N
L] L] Group 2 Group 2
‘ = y
| | G Group 3
roup 3
] J —
roup
L] Group 4
] P Time

v

rack rack

Example #1: Global Garbage Collection

» When read request arrives: Read
Request
Read Return l
{key} {value}
I
Busy
Network Switch GC-able
— Memory Group 1 2 3 4
]
Group 1 Group 1
-] = !) 1 __ Read
) Write
Group 2 Group 2 Read
__Read | I @@
< G N Write
rou
e —— e Group 3 P Read
_ [@ =) g
() Group 4
Group 4
& J Time

rack rack

29

Example #2: Request Reshaper

» Motivation: The performance of SSDs is dependent
on present and previous request patterns

» EX: excessive random writes - not enough free blocks

Bandwidth {Hegabytes per Second}

- lots of fragmentation and GCs
—> degraded write performance

Sansung 478 Series 64GB 550 Randomn 8HB Sepnent Hrite Bandwidth w=, Disk Utilisation

388

298

288

158

1688

o

8

First 28% of disk used =
First 48% of disk used
First 68% of disk used =——-
First 88% of disk used
First 98%¥ of disk used

188% of disk used

|

w

a

20 40 6a i) 180 128
Gigpabytes Hritten

< Data from RAMCloud team, Stanford University >

30

Example #2: Request Reshaper

» Request reshaper manages the request pattern
delivered to each node such that degrading pattern

can be avoided within each node

(e——

—

Data S
e (5] (OO 8 (82 (&8 (&
Random | N R |
Write] :
Request l - A R T / ‘
Sequential 4 I 4 I I |
Write | |
Request __I\—-\- > ‘v-_\-\" > ,.____:\ N, /‘/\ > l\,\f\ > |
r ek P Degrading
Name \ — — Pattern
Node Request Pattern of
/ Each Node
v
Client Request Distributor Request Reshaper
Node

Incoming
Write

mdine

»
»

Request |

Degrading Pattern Model

31

Conclusion

» Key message: each ‘local’ FTL should be managed
from the perspective of the entire storage system

» This message is not new at NVRAMOS workshop!

9 “ Academic Research Challenge

Predicted Future Research Trends || | |
= Published works in Flash memory systems

— Focus on a single device

= algorithms & policies for writing/destaging

= FTLs and file systems

- Incremental

= Pyt FLASH at the right memory hierarchy level
Computer ems

= Think big w/ the whole ecosystem in mind
— Datacenter (PB+) scale w/ 1000s of clients
Yme = Don'’t be afraid to change/redefine architecture
§Thickness of each bar represents the popularity of the issue Embrace bold and new approaches

“Long-term Research Issues in SSD” “Re-designing Enterprise Storage Systems for Flash”
(NVRAMOS Spring 2011, Prof. Suyong Kang, HYU) (NVRAMOS 2009, Jiri Schindler, NetApp)

32

Thank You!

