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NAND Flash and FTL
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 NAND flash SSDs have become the preferred storage 
devices in consumer electronics and datacenters

 FTL plays an important role in flash management

 The principal virtue of FTL is providing interoperability with 
the existing block I/O abstraction
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FTL is a Complex Piece of Software
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 Requires significant hardware resources (e.g., 4 CPUs / 1-4 GB DRAM)

 Incurs extra I/Os for flash management (e.g., GC)

 Badly affects the behaviors of host applications

 FTL runs complicated firmware algorithms to avoid in-place 

updates and manages unreliable NAND substrates
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 But, FTL is a root of evil in terms of HW resources and performance



Existing Approach
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 Improving FTL itself

 Better logical-to-physical address mapping and garbage collection algorithms

 Limited optimization due to the lack of information

 Optimizing FTL with custom interface

 Delivering system-level information to FTL for better optimization (e.g., file 

access pattern, hint when to trigger GC, and stream ID, …)

 Special interfaces, hard for standardization, more functions added to FTL

 Offloading host functions into FTL

 Moving some part of a file system to FTL (e.g., nameless writes and object-

based flash storage)

 More hardware resources and greater storage design complexity

Many efforts have been made to put more functions to flash 

storage devices



Databases File-systems KV Store …

However, 

Functionality of FTL is Mostly Useless
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 Many host applications manage underlying storage in a log-like 

manner, mostly avoiding in-place updates
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 This duplicate management not only (1) incurs serious performance 

penalties but also (2) wastes hardware resources
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Which Applications???
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Question:

What if we removed FTL from storage 

devices and allowed host applications to 

directly manage NAND flash?



Application-Managed Flash (AMF)
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(2) The host runs almost all of the complicated algorithms
- Reuse existing algorithms to manage storage devices

(1) The device runs essential device management algorithms
- Manages unreliable NAND flash and hides internal storage architectures
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(3) A new AMF block I/O abstraction enables us to separate 
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AMF Block I/O Abstraction (AMF I/O)
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 AMF I/O is similar to a conventional block I/O interface

 A linear array of fixed-size sectors (e.g., 4 KB) with existing 

I/O primitives (e.g., READ and  WRITE)
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Append-only Segment
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 Segment: a group of 4 KB sectors (e.g., several MB)

 A unit of free-space allocation and free-space reclamation

 Append-only: overwrite of data is prohibited
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Case Study with AMF
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Case Study with File System
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<A comparison of source-code lines of F2FS and ALFS>

AMF Log-structured File System (ALFS)
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 ALFS is based on the F2FS file system

 How did we modify F2FS for ALFS?

 Eliminate in-place updates

 F2FS overwrites check-points and inode-map blocks

 Change the TRIM policy

 TRIM is issued to individual sectors

 How many new codes were added?

1300 lines



How Conventional LFS (F2FS) Works
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How Conventional LFS (F2FS) Works
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How Conventional LFS (F2FS) Works
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How Conventional LFS (F2FS) Works
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How Conventional LFS (F2FS) Works
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How ALFS Works
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How ALFS Works
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How ALFS Works
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Comparison of F2FS and AMF
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Experimental Setup
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 Implemented ALFS and AFTL in the Linux kernel 3.13

 Compared AMF with different file-systems
 Two file-systems: EXT4 and F2FS with page-level FTL (PFTL)

 Ran all of them in our in-house SSD platform
 BlueDBM developed by MIT



Performance with FIO

 For random writes, AMF shows better throughput

 F2FS is badly affected by the duplicate management problem
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Performance with Databases

 AMF outperforms EXT4 with more advanced GC policies

 F2FS shows the worst performance
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Erasure Counts
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 AMF achieves 6% and 37% better lifetimes than EXT4 and 

F2FS, respectively, on average  



Resource (DRAM & CPU)
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 FTL mapping table size

 Host CPU usage

SSD Capacity Block-level FTL Hybrid FTL Page-level FTL AMF

512 GB 4 MB 96 MB 512 MB 4 MB

1 TB 8 MB 186 MB 1 GB 8 MB



Conclusion
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 We proposed the Application-Managed Flash (AMF) 

architecture. 

 AMF was based on a new block I/O interface, called AMF IO, which 

exposed flash storage as append-only segments

 Based on AMF IO, we implemented a new FTL scheme (AFTL) and a 

new file system (ALFS) in the Linux kernel and evaluated them using our 

in-house SSD prototype

 Our results showed that DRAM in the flash controller was reduced by 

128X and performance was improved by 80%

 Future Work

 We are doing case studies with key-value stores, database systems, and 

storage virtualization platforms



Discussion
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 Hardware Implementation of AFTL

 Smaller segment size

 Open-Channel SSDs vs AMF

 …



Hardware Implementation of AFTL
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 Implement pure hardware-based FTL in FPGA that 

support the basic functions of AFTL

 Expose block I/O interfaces to host

 Segment-level remapping

 Dynamic wear-leveling

 Bad-block management

 …

 It is still a proof-of-concept prototype

 But, it strongly shows that CPU-less and DRAM-less flash 

storage could be a promising design choice



Smaller Segments
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 ALFS shows good performance with smaller segments

 F2FS and ALFS(small) are with 2MB segments

 The segment size of ALFS increase in proportional to channel and way #
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Open-Channel SSDs vs AMF
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 Two different approaches are based on similar ideas

 The main difference is a level of abstraction

 AMF still maintains block I/O abstraction

 AMF respects the unreliable NAND management by FTL

 AMF allows SSD vendors to hide the details of their SSDs

 AMF requires small modification on the host kernel side

 AMF exhibits better data persistency and reliability

 …



Source Code
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 All of the software/hardware is being developed under 

the GPL license

 Please refer to our Git repositories

 Hardware Platform: https://github.com/sangwoojun/bluedbm.git

 FTL: https://github.com/chamdoo/bdbm_drv.git

 File-System: https://bitbucket.org/chamdoo/risa-f2fs

Thank you!

https://github.com/sangwoojun/bluedbm.git
https://github.com/chamdoo/bdbm_drv.git
https://bitbucket.org/chamdoo/risa-f2fs

