
Application-Managed Flash

Sungjin Lee*, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim† and Arvind

*Inha University

Massachusetts Institute of Technology
†Seoul National University

Operating System Support for Next Generation Large Scale NVRAM (NVRAMOS)

October 20-21, 2016

(Presented at USENIX FAST ‘16)

NAND Flash and FTL

2

 NAND flash SSDs have become the preferred storage
devices in consumer electronics and datacenters

 FTL plays an important role in flash management

 The principal virtue of FTL is providing interoperability with
the existing block I/O abstraction

NAND Flash

Databases File-systems KV Store

Flash Device

Host System

…

Block I/O Layer

Overwriting

restriction

Limited P/E

cycles
Bad blocks

Asymmetric I/O

operation
Flash Translation Layer (FTL)

FTL is a Complex Piece of Software

3

 Requires significant hardware resources (e.g., 4 CPUs / 1-4 GB DRAM)

 Incurs extra I/Os for flash management (e.g., GC)

 Badly affects the behaviors of host applications

 FTL runs complicated firmware algorithms to avoid in-place

updates and manages unreliable NAND substrates

Flash Translation Layer (FTL)

NAND Flash

Databases File-systems KV Store

Address

Remapping

Garbage

Collection

I/O

Scheduling

Wear-leveling &

Bad-block
Flash Device

Host System

…

…

Block I/O Layer

 But, FTL is a root of evil in terms of HW resources and performance

Existing Approach

4

 Improving FTL itself

 Better logical-to-physical address mapping and garbage collection algorithms

 Limited optimization due to the lack of information

 Optimizing FTL with custom interface

 Delivering system-level information to FTL for better optimization (e.g., file

access pattern, hint when to trigger GC, and stream ID, …)

 Special interfaces, hard for standardization, more functions added to FTL

 Offloading host functions into FTL

 Moving some part of a file system to FTL (e.g., nameless writes and object-

based flash storage)

 More hardware resources and greater storage design complexity

Many efforts have been made to put more functions to flash

storage devices

Databases File-systems KV Store …

However,

Functionality of FTL is Mostly Useless

5

 Many host applications manage underlying storage in a log-like

manner, mostly avoiding in-place updates

NAND Flash

Log-structured Host Applications

Block I/O Layer

Flash Device

Host System
Object-to-storage

Remapping

Versioning &

Cleaning
I/O Scheduling …

Flash Translation Layer (FTL)

Address

Remapping

Garbage

Collection

I/O

Scheduling

Wear-leveling &

Bad-block
…

 This duplicate management not only (1) incurs serious performance

penalties but also (2) wastes hardware resources

Address

Remapping

Garbage

Collection

I/O

Scheduling

Wear-leveling &

Bad-block
…

Flash Translation Layer (FTL)

Duplicate Management

Which Applications???

6

F2FS

WAFL

Btrfs

NILFS

RethinkDBLevelDB
RocksDB

FlexVol

BlueSky

LogBase

Hyder

SpriteLFS

BigTable

MongoDB

Cassandra

HDFS

Which

Applications

???LSM-Tree

File Systems

Key-value Stores Databases

Storage Virtualization

Question:

What if we removed FTL from storage

devices and allowed host applications to

directly manage NAND flash?

Application-Managed Flash (AMF)

8

Host Applications (Log-structured)

Block I/O Layer

Flash Device

Host System
Object-to-storage

Remapping

Versioning &

Cleaning
I/O Scheduling …

NAND Flash

Flash Translation Layer (FTL)

Address

Remapping

Garbage

Collection

I/O

Scheduling

Wear-leveling &

Bad-block
…

…

NAND Flash

Light-weight Flash Translation Layer

(2) The host runs almost all of the complicated algorithms
- Reuse existing algorithms to manage storage devices

(1) The device runs essential device management algorithms
- Manages unreliable NAND flash and hides internal storage architectures

AMF Block I/O Layer (AMF I/O)

(3) A new AMF block I/O abstraction enables us to separate

the roles of the host and the device

Log-structured Host Applications

Object-to-storage

Remapping

Versioning &

Cleaning
I/O Scheduling ……

AMF Block I/O Abstraction (AMF I/O)

9

 AMF I/O is similar to a conventional block I/O interface

 A linear array of fixed-size sectors (e.g., 4 KB) with existing

I/O primitives (e.g., READ and WRITE)

Host Applications

A logical layout exposed to applications Sector (4KB)
READ and WRITE

AMF Block I/O Layer
Host System

Flash Device …

Minimize changes in existing host applications

Append-only Segment

10

 Segment: a group of 4 KB sectors (e.g., several MB)

 A unit of free-space allocation and free-space reclamation

 Append-only: overwrite of data is prohibited

Host Applications

Host System
AMF Block I/O Layer

Flash Device …

Segment (MB)

Appending new data (WRITE)Overwrite TRIMAppending

Only sequential writes with no in-place updates

→ Minimize the functionality of the FTL

Case Study with AMF

11

F2FS

WAFL

Btrfs

NILFS

RethinkDBLevelDB
RocksDB

FlexVol

BlueSky

LogBase

Hyder

SpriteLFS

BigTable

MongoDB

Cassandra

HDFS

LSM-Tree

File Systems

Key-value Stores Databases

Storage Virtualization

Which

Applications

???

Case Study with File System

12

Host Applications (Log-structured)

AMF Block I/O Layer

Object-to-storage

Remapping

Versioning &

Cleaning
I/O Scheduling ……

NAND Flash

AMF Log-structured File System (ALFS)
(based on F2FS)

Host System

Flash Device AMF Flash Translation Layer (AFTL)

Segment-level Address

Remapping

Wear-leveling &

Bad-block

0 4000 8000 12000 16000

ALFS F2FS

<A comparison of source-code lines of F2FS and ALFS>

AMF Log-structured File System (ALFS)

13

 ALFS is based on the F2FS file system

 How did we modify F2FS for ALFS?

 Eliminate in-place updates

 F2FS overwrites check-points and inode-map blocks

 Change the TRIM policy

 TRIM is issued to individual sectors

 How many new codes were added?

1300 lines

How Conventional LFS (F2FS) Works

14

LFS

PFTL

Check-Point

Segment

Inode-Map

Segment

Data

Segment 0

Data

Segment 1

Data

Segment 2
Segment

Block with 2 pages

* PFTL: page-level FTL

How Conventional LFS (F2FS) Works

15

LFS

CP

Check-Point

Segment

Inode-Map

Segment

CP

Data

Segment 0

Data

Segment 1

Data

Segment 2

IM

#0
A B C D E B F GCP

IM

#0
B

Invalid

Check-point and inode-map blocks are overwritten

CP

PFTL

* PFTL: page-level FTL

How Conventional LFS (F2FS) Works

16

LFS

CP

Check-Point

Segment

Inode-Map

Segment

CP

Data

Segment 0

Data

Segment 1

Data

Segment 2

IM

#0
A B C D E B F GCP

IM

#0
B

IM

#0
A B C D E F GBCP CP CP

IM

#0

The FTL appends incoming data to NAND flash

PFTL

* PFTL: page-level FTL

How Conventional LFS (F2FS) Works

17

LFS

CP

Check-Point

Segment

Inode-Map

Segment

CP

Data

Segment 0

Data

Segment 1

Data

Segment 2

IM

#0
A B C D E B F GCP

IM

#0
B

IM

#0
A B C D E F GBCP CP CP

IM

#0
A C D E

The FTL triggers garbage collection

A C D E

: 4 page copies and 4 block erasures

PFTL

* PFTL: page-level FTL

How Conventional LFS (F2FS) Works

18

LFS

CP

Check-Point

Segment

Inode-Map

Segment

CP

Data

Segment 0

Data

Segment 1

Data

Segment 2

IM

#0
A B C D E B F GCP

IM

#0
B

IM

#0
A B C D E F GBCP CP CP

IM

#0
A C D EA C D E

The LFS triggers garbage collection

A C DA C D

A C DDA C

TRIM

: 3 page copies

PFTL

* PFTL: page-level FTL

How ALFS Works

19

ALFS

AFTL

Check-Point

Segment

Inode-Map

Segment

Data

Segment 0

Data

Segment 1

Data

Segment 2
Segment

Segment with 2 flash blocks

How ALFS Works

20

ALFS

AFTL

Check-Point

Segment

Inode-Map

Segment

Data

Segment 0

Data

Segment 1

Data

Segment 2

A B C D E B F GCP
IM

#0
CP

IM

#0
BCPCP

IM

#0
CP

CP A B C D
IM

#0
CP E B F G

IM

#0
CP

No in-place updates

No obsolete pages – GC is not necessary

How ALFS Works

21

ALFS

AFTL

Check-Point

Segment

Inode-Map

Segment

CP
IM

#0
CP

IM

#0
CPCP

IM

#0
CP

CP A B C D
IM

#0
CP E B F G

IM

#0
CP

Data

Segment 0

Data

Segment 1

Data

Segment 2

A B C D E B F GB A C DA C D

A B C D

TRIM

A C D

The ALFS triggers garbage collection : 3 page copies and 2 block erasures

Comparison of F2FS and AMF

22

F2FS AMF

File System PFTL File System

3 page copies 4 copies + 4 erasures 3 copies + 2 erasures

7 copies + 4 erasures 3 copies + 2 erasures

Duplicate Management

Experimental Setup

23

 Implemented ALFS and AFTL in the Linux kernel 3.13

 Compared AMF with different file-systems
 Two file-systems: EXT4 and F2FS with page-level FTL (PFTL)

 Ran all of them in our in-house SSD platform
 BlueDBM developed by MIT

Performance with FIO

 For random writes, AMF shows better throughput

 F2FS is badly affected by the duplicate management problem

24

Performance with Databases

 AMF outperforms EXT4 with more advanced GC policies

 F2FS shows the worst performance

25

Erasure Counts

26

 AMF achieves 6% and 37% better lifetimes than EXT4 and

F2FS, respectively, on average

Resource (DRAM & CPU)

27

 FTL mapping table size

 Host CPU usage

SSD Capacity Block-level FTL Hybrid FTL Page-level FTL AMF

512 GB 4 MB 96 MB 512 MB 4 MB

1 TB 8 MB 186 MB 1 GB 8 MB

Conclusion

28

 We proposed the Application-Managed Flash (AMF)

architecture.

 AMF was based on a new block I/O interface, called AMF IO, which

exposed flash storage as append-only segments

 Based on AMF IO, we implemented a new FTL scheme (AFTL) and a

new file system (ALFS) in the Linux kernel and evaluated them using our

in-house SSD prototype

 Our results showed that DRAM in the flash controller was reduced by

128X and performance was improved by 80%

 Future Work

 We are doing case studies with key-value stores, database systems, and

storage virtualization platforms

Discussion

29

 Hardware Implementation of AFTL

 Smaller segment size

 Open-Channel SSDs vs AMF

 …

Hardware Implementation of AFTL

30

 Implement pure hardware-based FTL in FPGA that

support the basic functions of AFTL

 Expose block I/O interfaces to host

 Segment-level remapping

 Dynamic wear-leveling

 Bad-block management

 …

 It is still a proof-of-concept prototype

 But, it strongly shows that CPU-less and DRAM-less flash

storage could be a promising design choice

Smaller Segments

31

 ALFS shows good performance with smaller segments

 F2FS and ALFS(small) are with 2MB segments

 The segment size of ALFS increase in proportional to channel and way #

EXT4

F2FS(FTL)

F2FS(FS)

ALFS

ALFS(Small)

Open-Channel SSDs vs AMF

32

 Two different approaches are based on similar ideas

 The main difference is a level of abstraction

 AMF still maintains block I/O abstraction

 AMF respects the unreliable NAND management by FTL

 AMF allows SSD vendors to hide the details of their SSDs

 AMF requires small modification on the host kernel side

 AMF exhibits better data persistency and reliability

 …

Source Code

33

 All of the software/hardware is being developed under

the GPL license

 Please refer to our Git repositories

 Hardware Platform: https://github.com/sangwoojun/bluedbm.git

 FTL: https://github.com/chamdoo/bdbm_drv.git

 File-System: https://bitbucket.org/chamdoo/risa-f2fs

Thank you!

https://github.com/sangwoojun/bluedbm.git
https://github.com/chamdoo/bdbm_drv.git
https://bitbucket.org/chamdoo/risa-f2fs

