Application-Managed Flash

Sungjin Lee*, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong KimT and Arvind

*Inha University
Massachusetts Institute of Technology
tSeoul National University

Operating System Support for Next Generation Large Scale NVRAM (NVRAMOS)
October 20-21,2016
(Presented at USENIX FAST ‘16)

NAND Flash and FTL

» NAND flash SSDs have become the preferred storage
devices in consumer electronics and datacenters

» FTL plays an important role in flash management

The principal virtue of FTL is providing interoperability with
the existing block I/O abstraction

: Databases] [File-systems] [KV Store]

Host System

Block I/O Layer

Flash Device Flash Translation Layer (FTL)

NAND Flash

FTL is a Complex Piece of Software

» FTL runs complicated firmware algorithms to avoid in-place
updates and manages unreliable NAND substrates

Databases] [File-systems] [KV Store]

Host System

Block I/O Layer

Flash Translation Layer (FTL)

Flash Device Address Garbage /e Wear-leveling & [I88
Remapping Collection Scheduling Bad-block

NAND Flash

» But, FTL is a root of evil in terms of HW resources and performance
» Requires significant hardware resources (e.g.,4 CPUs / |-4 GB DRAM)

» Incurs extra |/Os for flash management (e.g., GC)
» Badly affects the behaviors of host applications

Existing Approach

» Improving FTL itself
Better logical-to-physical address mapping and garbage collection algorithms

—> Limited optimization due to the lack of information

» Optimizing FTL with custom interface

Delivering system-level information to FTL for better optimization (e.g., file
access pattern, hint when to trigger GC, and stream ID, ...)

—> Special interfaces, hard for standardization, more functions added to FTL

» Offloading host functions into FTL

Moving some part of a file system to FTL (e.g., nameless writes and object-
based flash storage)

—> More hardware resources and greater storage design complexity

Many efforts have been made to put more functions to flash

storage devices

However,

Functionality of FTL is Mostly Useless

» Many host applications manage underlying storage in a log-like
manner, mostly avoiding in-place updates

Log-structured Host Applications

Host System

Duplicate Management

Flash Translagon Layer (FTL)

——

1

Address Garbage l/O Wear-leveling & i
Remapping Collection Scheduling Bad-block i
1

NAND Flash
» This duplicate management not only (1) incurs serious performance

Flash Device

——————

L

penalties but also (2) wastes hardware resources
5

Which Applications???

File Systems

SpriteLFS WAFL BlueSky
.............. F2FS NILFS
............. Btrfs HDFS
Key-value Stores ™. .7 Databases
LevelDB kDR Which - ;IRethlnI<DB
ocks ot assandra .
oM Appll;::;tlons BigTable
-iree S LogBase
............... & MongoDB
................... Hyder
““““““ FlexVol

o
L 4
.
o
L 4
L2
v
L4
L2
.
v
L2
‘e
v

Question:

What if we removed FTL from storage

devices and allowed host applications to
directly manage NAND flash?

Application-Managed Flash (AMF)

(2) The host runs almost all of the complicated algorithms
- Reuse existing algorithms to manage storage devices

I 4 Log-structured Host Applications A
Object-to-storage Versioning & : ves
- J

AMF Block I/O Layer (AMF 1/O)

Light-weight Fl: sh Translation Layer

Flash Pevice

~ NAND Flash

(l)The dev| runs'essentral-ae ! MmManas

- Manages unretia : d .
NABD Flash

(3) A new AMF block 1/O abstraction enables us to separate
the roles of the host and the device

AMF Block 1/O Abstraction (AMF 1/O)

» AMF I/O is similar to a conventional block I/O interface

A linear array of fixed-size sectors (e.g.,4 KB) with existing
/O primitives (e.g.,, READ and WRITE)

Minimize changes in existing host applications

. o READ and WRITE
A logical layout exposed to applications Sector (4KB)

L. Y

AMF Block I/O Layer

Host System

Flash Device

Append-only Segment

» Segment: a group of 4 KB sectors (e.g., several MB)
A unit of free-space allocation and free-space reclamation

» Append-only: overwrite of data is prohibited

[Host Applications]
Appending new data (V*T@)verwrite Apper%d-irr@M
2 e -3

Segment (MB) ——

Host System AMF Block I/O Layer

Flash Device
Only sequential writes with no in-place updates

— Minimize the functionality of the FTL

10

Case Study with AMF

File Systems

SpriteLFS WAFL BlueSky
.............. F2FS NILFS
............. Btrfs HDFS
Key-value Stores ™. .7 Databases
LevelDB kDR Which - ;IRethlnI<DB
ocks ot assandra .
oM Appll;::;tlons BigTable
-iree S LogBase
............... & MongoDB
................... Hyder
““““““ FlexVol

o
L 4
.
o
L 4
L2
v
L4
L2
.
v
L2
‘e
v

11

Case Study with File System

AMF Log-structured File System (ALFS)

(based on F2FS)

Host System AMF Block 1/O Layer

Ll AMF Flash Translation Layer (AFTL)

Segment-level Address Wear-leveling &
Remapping Bad-block

NAND Flash

AMF Log-structured File System (ALFS)

» ALFS is based on the F2FS file system
» How did we modify F2FS for ALFS!?

Eliminate in-place updates
F2FS overwrites check-points and inode-map blocks

Change the TRIM policy

TRIM is issued to individual sectors

» How many new codes were added?

B ALFS EF2FS

0 4000 8000 12000 16000

<A comparison of source-code lines of F2FS and ALFS>

13

How Conventional LFS (F2FS) Works

Check-Point Inode-Map Data Data Data
segmentf__f_e_g_r_\]_e_n_'g___. Segment Segment 0 Segment | Segment 2
LFS | [| | |
PFTL 77

—————————

Block with 2 pages

* PFTL: page-level FTL
14

How Conventional LFS (F2FS) Works

Check-point and inode-map blocks are overwritten

———————————————————————————————————

Check-Point Inode-Map \i Data Data Data
Segment Segment | Segment 0 Segment | Segment 2
CP I E A C(D EIB|F|G
#0 i

PFTL

15

———————————————————————————————

* PFTL: page-level FTL

How Conventional LFS (F2FS) Works

Check-Point Inode-Map Data Data Data
Segment Segment Segment 0 Segment | Segment 2
cP o Allclp| |elB|F|G
LFS

PFTL
IM M| | |
A C DE B|F G#0 CP

The FTL appends incoming data to NAND flash '

* PFTL: page-level FTL
16

How Conventional LFS (F2FS) Works

Check-Point Inode-Map Data Data Data
Segment Segment Segment 0 Segment | Segment 2
IM

CP| 40 A C|D EIB|F|G
LFS
PFTL

IM ,
BIF||G 40 CPA||C[ID||E

The FTL triggers garbage collection: 4 page copies and 4 block erasures

* PFTL: page-level FTL
17

How Conventional LFS (F2FS) Works

Check-Point Inode-Map Dat Data Data
Segment Segment Segme Segment | gment 2
, IM

CP 40 BI|F[G C|D

LFS

The LFS triggers garbage collection: 3 page copies

18

* PFTL: page-level FTL

How ALFS Works

Check-Point Inode-Map Data Data Data
Segment‘,---§-e-g-m-e-n-'5---| Segment Segment 0 Segment | Segment 2
ALFS | | | | |
AFTL 7777

-

Segment with 2 flash blocks

19

How ALFS Works

———————————————————————————————————

No in-place updates

{ Check-Point Inode-Map \i Data Data Data
i Segment Segment | Segment 0 Segment | Segment 2
{cPcple _.;l#rg . |ARNc|D| [E|B|F|G
ALFS &0 | | B | | 5
AFTL
| ~ol ~ol IM|IM
CP|CP|CP 40140 A|B|[C|D E|B G

No obsolete pages — GC is not necessary

20

How ALFS Works

Check-Point Inode-Map Data Data Data
Segment Segment Segment 0 Segment | Segment 2
edeicr | B E(B|F|G| |A|c|D
ALFS
TRIM |
AFTL
| ol ~pl IM{IM
CP|CP|ICP 40140 EIB|F |G A|C|D

The ALFS triggers garbage collection: 3 page copies and 2 block erasures

21

Comparison of F2FS and AMF

Duplicate Management

T hes e

File System PFTL File System

3 page copies 4 copies + 4 erasures 3 copies + 2 erasures

A 4

[7 copies + 4 erasures 3 copies + 2 erasures J

22

Experimental Setup
» Implemented ALFS and AFTL in the Linux kernel 3.13

» Compared AMF with different file-systems
Two file-systems: EXT4 and F2FS with page-level FTL (PFTL)

» Ran all of them in our in-house SSD platform
BlueDBM developed by MIT

-

23

Performance with FIO

1.4 35
==
1.2 30
w1 w25
= &
Q. =
= 0.8 = 20
= 2
@ 0.6 ® 15
= =
o o
= 04 £ 10
0.2 5
0 0]
Sequential Reads Sequential Writes Random Reads Random Writes
HEXT4 WF2FS ®AMF BEXT4 WE2FS BHAMF

» For random writes, AMF shows better throughput
» F2FS is badly affected by the duplicate management problem

Performance with Databases

SysBench (OLTP) TPC-C
500 1400
a a
y i Y 1200
T 400 %
S 2 1000
i £
g g 200
53] w
= =
o
= 200 'E 600
& &
= 2 400
E 5
= 100 =
200
0 0 .
MEXT4 WF2FS WAMF W EXT4 WF2FS mAMF

» AMF outperforms EXT4 with more advanced GC policies
» F2FS shows the worst performance

Erasure Counts

2
© 18
=
= 16
S Gam—
EfLﬂI
§12
= 1
T 08
N
= 0.6
£ 04
Q
= 0.2
0
S © §$ o
c:}- & & »sl‘" :ﬂ*’” & Nt :}0“‘ & z,,c’ o
I S K &S

mEXT4 mF2FS m AMF

» AMF achieves 6% and 37% better lifetimes than EXT4 and
F2FS, respectively, on average

Resource (DRAM & CPU)
» FTL mapping table size

SSD Capacity | Block-level FTL

512 GB 4 MB
| TB 8 MB

» Host CPU usage

15
14
13
12
1 F
10 |
9 | i

8 | | | |
0 50 100 150 200 250

Second

CPU Utilization (%)

27

Conclusion

» We proposed the Application-Managed Flash (AMF)
architecture.

AMF was based on a new block I/O interface, called AMF 1O, which
exposed flash storage as append-only segments

Based on AMF IO, we implemented a new FTL scheme (AFTL) and a

new file system (ALFS) in the Linux kernel and evaluated them using our
in-house SSD prototype

Our results showed that DRAM in the flash controller was reduced by
28X and performance was improved by 80%

» Future Work

We are doing case studies with key-value stores, database systems, and
storage virtualization platforms

28

Discussion

» Hardware Implementation of AFTL

» Smaller segment size
» Open-Channel SSDs vs AMF
> ...

29

Hardware Implementation of AFTL

» Implement pure hardware-based FTL in FPGA that
support the basic functions of AFTL
Expose block |/O interfaces to host
Segment-level remapping

ERE o -
£ }4

Dynamic wear-leveling

o !
PP a0
1 |5
é. =T Artix
b Chip Ctrler
=

Bad-block management

i

s 1k o m, §
- ' <
» It is still a proof-of-concept prototype

» But, it strongly shows that CPU-less and DRAM-less flash
storage could be a promising design choice

30

Smaller Segments

» ALFS shows good performance with smaller segments
F2FS and ALFS(small) are with 2MB segments

The segment size of ALFS increase in proportional to channel and way #

24T ExT4 —

2.2 - F2FS(FTL) 7
o L F2FS(FS) A
ALFS —o—
ALFS(Small) -

1.8
1.6

Relative WAF

(4x2) (8x2) (8x4) (8x8) (16x8) (16x16)
Channels X Ways

31

Open-Channel SSDs vs AMF

» Two different approaches are based on similar ideas

» The main difference is a level of abstraction

32

AMEF still maintains block /O abstraction

AMF respects the unreliable NAND management by FTL
AMF allows SSD vendors to hide the details of their SSDs
AMF requires small modification on the host kernel side

AMF exhibits better data persistency and reliability

Source Code

» All of the software/hardware is being developed under
the GPL license

» Please refer to our Git repositories

Hardware Platform:
FTL:
File-System:

Thank you!

33

https://github.com/sangwoojun/bluedbm.git
https://github.com/chamdoo/bdbm_drv.git
https://bitbucket.org/chamdoo/risa-f2fs

