
Application-Managed Flash

Sungjin Lee*, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim† and Arvind

*Inha University

Massachusetts Institute of Technology
†Seoul National University

Operating System Support for Next Generation Large Scale NVRAM (NVRAMOS)

October 20-21, 2016

(Presented at USENIX FAST ‘16)

NAND Flash and FTL

2

 NAND flash SSDs have become the preferred storage
devices in consumer electronics and datacenters

 FTL plays an important role in flash management

 The principal virtue of FTL is providing interoperability with
the existing block I/O abstraction

NAND Flash

Databases File-systems KV Store

Flash Device

Host System

…

Block I/O Layer

Overwriting

restriction

Limited P/E

cycles
Bad blocks

Asymmetric I/O

operation
Flash Translation Layer (FTL)

FTL is a Complex Piece of Software

3

 Requires significant hardware resources (e.g., 4 CPUs / 1-4 GB DRAM)

 Incurs extra I/Os for flash management (e.g., GC)

 Badly affects the behaviors of host applications

 FTL runs complicated firmware algorithms to avoid in-place

updates and manages unreliable NAND substrates

Flash Translation Layer (FTL)

NAND Flash

Databases File-systems KV Store

Address

Remapping

Garbage

Collection

I/O

Scheduling

Wear-leveling &

Bad-block
Flash Device

Host System

…

…

Block I/O Layer

 But, FTL is a root of evil in terms of HW resources and performance

Existing Approach

4

 Improving FTL itself

 Better logical-to-physical address mapping and garbage collection algorithms

 Limited optimization due to the lack of information

 Optimizing FTL with custom interface

 Delivering system-level information to FTL for better optimization (e.g., file

access pattern, hint when to trigger GC, and stream ID, …)

 Special interfaces, hard for standardization, more functions added to FTL

 Offloading host functions into FTL

 Moving some part of a file system to FTL (e.g., nameless writes and object-

based flash storage)

 More hardware resources and greater storage design complexity

Many efforts have been made to put more functions to flash

storage devices

Databases File-systems KV Store …

However,

Functionality of FTL is Mostly Useless

5

 Many host applications manage underlying storage in a log-like

manner, mostly avoiding in-place updates

NAND Flash

Log-structured Host Applications

Block I/O Layer

Flash Device

Host System
Object-to-storage

Remapping

Versioning &

Cleaning
I/O Scheduling …

Flash Translation Layer (FTL)

Address

Remapping

Garbage

Collection

I/O

Scheduling

Wear-leveling &

Bad-block
…

 This duplicate management not only (1) incurs serious performance

penalties but also (2) wastes hardware resources

Address

Remapping

Garbage

Collection

I/O

Scheduling

Wear-leveling &

Bad-block
…

Flash Translation Layer (FTL)

Duplicate Management

Which Applications???

6

F2FS

WAFL

Btrfs

NILFS

RethinkDBLevelDB
RocksDB

FlexVol

BlueSky

LogBase

Hyder

SpriteLFS

BigTable

MongoDB

Cassandra

HDFS

Which

Applications

???LSM-Tree

File Systems

Key-value Stores Databases

Storage Virtualization

Question:

What if we removed FTL from storage

devices and allowed host applications to

directly manage NAND flash?

Application-Managed Flash (AMF)

8

Host Applications (Log-structured)

Block I/O Layer

Flash Device

Host System
Object-to-storage

Remapping

Versioning &

Cleaning
I/O Scheduling …

NAND Flash

Flash Translation Layer (FTL)

Address

Remapping

Garbage

Collection

I/O

Scheduling

Wear-leveling &

Bad-block
…

…

NAND Flash

Light-weight Flash Translation Layer

(2) The host runs almost all of the complicated algorithms
- Reuse existing algorithms to manage storage devices

(1) The device runs essential device management algorithms
- Manages unreliable NAND flash and hides internal storage architectures

AMF Block I/O Layer (AMF I/O)

(3) A new AMF block I/O abstraction enables us to separate

the roles of the host and the device

Log-structured Host Applications

Object-to-storage

Remapping

Versioning &

Cleaning
I/O Scheduling ……

AMF Block I/O Abstraction (AMF I/O)

9

 AMF I/O is similar to a conventional block I/O interface

 A linear array of fixed-size sectors (e.g., 4 KB) with existing

I/O primitives (e.g., READ and WRITE)

Host Applications

A logical layout exposed to applications Sector (4KB)
READ and WRITE

AMF Block I/O Layer
Host System

Flash Device …

Minimize changes in existing host applications

Append-only Segment

10

 Segment: a group of 4 KB sectors (e.g., several MB)

 A unit of free-space allocation and free-space reclamation

 Append-only: overwrite of data is prohibited

Host Applications

Host System
AMF Block I/O Layer

Flash Device …

Segment (MB)

Appending new data (WRITE)Overwrite TRIMAppending

Only sequential writes with no in-place updates

→ Minimize the functionality of the FTL

Case Study with AMF

11

F2FS

WAFL

Btrfs

NILFS

RethinkDBLevelDB
RocksDB

FlexVol

BlueSky

LogBase

Hyder

SpriteLFS

BigTable

MongoDB

Cassandra

HDFS

LSM-Tree

File Systems

Key-value Stores Databases

Storage Virtualization

Which

Applications

???

Case Study with File System

12

Host Applications (Log-structured)

AMF Block I/O Layer

Object-to-storage

Remapping

Versioning &

Cleaning
I/O Scheduling ……

NAND Flash

AMF Log-structured File System (ALFS)
(based on F2FS)

Host System

Flash Device AMF Flash Translation Layer (AFTL)

Segment-level Address

Remapping

Wear-leveling &

Bad-block

0 4000 8000 12000 16000

ALFS F2FS

<A comparison of source-code lines of F2FS and ALFS>

AMF Log-structured File System (ALFS)

13

 ALFS is based on the F2FS file system

 How did we modify F2FS for ALFS?

 Eliminate in-place updates

 F2FS overwrites check-points and inode-map blocks

 Change the TRIM policy

 TRIM is issued to individual sectors

 How many new codes were added?

1300 lines

How Conventional LFS (F2FS) Works

14

LFS

PFTL

Check-Point

Segment

Inode-Map

Segment

Data

Segment 0

Data

Segment 1

Data

Segment 2
Segment

Block with 2 pages

* PFTL: page-level FTL

How Conventional LFS (F2FS) Works

15

LFS

CP

Check-Point

Segment

Inode-Map

Segment

CP

Data

Segment 0

Data

Segment 1

Data

Segment 2

IM

#0
A B C D E B F GCP

IM

#0
B

Invalid

Check-point and inode-map blocks are overwritten

CP

PFTL

* PFTL: page-level FTL

How Conventional LFS (F2FS) Works

16

LFS

CP

Check-Point

Segment

Inode-Map

Segment

CP

Data

Segment 0

Data

Segment 1

Data

Segment 2

IM

#0
A B C D E B F GCP

IM

#0
B

IM

#0
A B C D E F GBCP CP CP

IM

#0

The FTL appends incoming data to NAND flash

PFTL

* PFTL: page-level FTL

How Conventional LFS (F2FS) Works

17

LFS

CP

Check-Point

Segment

Inode-Map

Segment

CP

Data

Segment 0

Data

Segment 1

Data

Segment 2

IM

#0
A B C D E B F GCP

IM

#0
B

IM

#0
A B C D E F GBCP CP CP

IM

#0
A C D E

The FTL triggers garbage collection

A C D E

: 4 page copies and 4 block erasures

PFTL

* PFTL: page-level FTL

How Conventional LFS (F2FS) Works

18

LFS

CP

Check-Point

Segment

Inode-Map

Segment

CP

Data

Segment 0

Data

Segment 1

Data

Segment 2

IM

#0
A B C D E B F GCP

IM

#0
B

IM

#0
A B C D E F GBCP CP CP

IM

#0
A C D EA C D E

The LFS triggers garbage collection

A C DA C D

A C DDA C

TRIM

: 3 page copies

PFTL

* PFTL: page-level FTL

How ALFS Works

19

ALFS

AFTL

Check-Point

Segment

Inode-Map

Segment

Data

Segment 0

Data

Segment 1

Data

Segment 2
Segment

Segment with 2 flash blocks

How ALFS Works

20

ALFS

AFTL

Check-Point

Segment

Inode-Map

Segment

Data

Segment 0

Data

Segment 1

Data

Segment 2

A B C D E B F GCP
IM

#0
CP

IM

#0
BCPCP

IM

#0
CP

CP A B C D
IM

#0
CP E B F G

IM

#0
CP

No in-place updates

No obsolete pages – GC is not necessary

How ALFS Works

21

ALFS

AFTL

Check-Point

Segment

Inode-Map

Segment

CP
IM

#0
CP

IM

#0
CPCP

IM

#0
CP

CP A B C D
IM

#0
CP E B F G

IM

#0
CP

Data

Segment 0

Data

Segment 1

Data

Segment 2

A B C D E B F GB A C DA C D

A B C D

TRIM

A C D

The ALFS triggers garbage collection : 3 page copies and 2 block erasures

Comparison of F2FS and AMF

22

F2FS AMF

File System PFTL File System

3 page copies 4 copies + 4 erasures 3 copies + 2 erasures

7 copies + 4 erasures 3 copies + 2 erasures

Duplicate Management

Experimental Setup

23

 Implemented ALFS and AFTL in the Linux kernel 3.13

 Compared AMF with different file-systems
 Two file-systems: EXT4 and F2FS with page-level FTL (PFTL)

 Ran all of them in our in-house SSD platform
 BlueDBM developed by MIT

Performance with FIO

 For random writes, AMF shows better throughput

 F2FS is badly affected by the duplicate management problem

24

Performance with Databases

 AMF outperforms EXT4 with more advanced GC policies

 F2FS shows the worst performance

25

Erasure Counts

26

 AMF achieves 6% and 37% better lifetimes than EXT4 and

F2FS, respectively, on average

Resource (DRAM & CPU)

27

 FTL mapping table size

 Host CPU usage

SSD Capacity Block-level FTL Hybrid FTL Page-level FTL AMF

512 GB 4 MB 96 MB 512 MB 4 MB

1 TB 8 MB 186 MB 1 GB 8 MB

Conclusion

28

 We proposed the Application-Managed Flash (AMF)

architecture.

 AMF was based on a new block I/O interface, called AMF IO, which

exposed flash storage as append-only segments

 Based on AMF IO, we implemented a new FTL scheme (AFTL) and a

new file system (ALFS) in the Linux kernel and evaluated them using our

in-house SSD prototype

 Our results showed that DRAM in the flash controller was reduced by

128X and performance was improved by 80%

 Future Work

 We are doing case studies with key-value stores, database systems, and

storage virtualization platforms

Discussion

29

 Hardware Implementation of AFTL

 Smaller segment size

 Open-Channel SSDs vs AMF

 …

Hardware Implementation of AFTL

30

 Implement pure hardware-based FTL in FPGA that

support the basic functions of AFTL

 Expose block I/O interfaces to host

 Segment-level remapping

 Dynamic wear-leveling

 Bad-block management

 …

 It is still a proof-of-concept prototype

 But, it strongly shows that CPU-less and DRAM-less flash

storage could be a promising design choice

Smaller Segments

31

 ALFS shows good performance with smaller segments

 F2FS and ALFS(small) are with 2MB segments

 The segment size of ALFS increase in proportional to channel and way #

EXT4

F2FS(FTL)

F2FS(FS)

ALFS

ALFS(Small)

Open-Channel SSDs vs AMF

32

 Two different approaches are based on similar ideas

 The main difference is a level of abstraction

 AMF still maintains block I/O abstraction

 AMF respects the unreliable NAND management by FTL

 AMF allows SSD vendors to hide the details of their SSDs

 AMF requires small modification on the host kernel side

 AMF exhibits better data persistency and reliability

 …

Source Code

33

 All of the software/hardware is being developed under

the GPL license

 Please refer to our Git repositories

 Hardware Platform: https://github.com/sangwoojun/bluedbm.git

 FTL: https://github.com/chamdoo/bdbm_drv.git

 File-System: https://bitbucket.org/chamdoo/risa-f2fs

Thank you!

https://github.com/sangwoojun/bluedbm.git
https://github.com/chamdoo/bdbm_drv.git
https://bitbucket.org/chamdoo/risa-f2fs

