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Mobile Security

• Mobile Security is an important issue
 More data could be more danger with mobile devices

• Android 6.0 FDE(full-disk encryption)
 User data protected against offline attacks

 Plaintext -> ciphertext

 Based on a Linux Kernel Encryption feature that works at the block 
device layer
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Performance Issue (1/2)

• Android 5.0(Lollipop) was to have device encryption enabled by default 
but …

• According to Android 6.0 CDD

For device implementations supporting full-disk encryption and with 
Advanced Encryption Standard (AES) crypto performance above 50MiB/sec, 
the full-disk encryption MUST be enabled by default at
the time the user has completed the out-of-box setup experience

Excerpted from Android 6.0 Compatibility Definition Document
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Performance Issue (2/2)

• Sequential IO Read/Write
 1 CPU core, freq.(0.6~1 GHz)
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Linux Kernel Encryption (1/2)

• History
 dm-crypt, merged into 2.6.4 kernel(March, 2004)

 eCryptfs, 2.6.19 kernel(November, 2006)

 Ext4 encryption, 4.1 kernel(Jun, 2015)

 VFS Crypto engine, 4.6 kernel
=> Generic File system Encryption Support
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Linux Kernel Encryption (2/2)

• File system-level encryption, FBE
 File-based encryption allows different files to be encrypted with 

different keys that can be unlocked independently. 

 File system-level encryption does not typically encrypt filesystem 
metadata

 eCryptfs, ext4 encryption …

• Disk encryption, FDE
 Disk encryption generally uses the same key for encrypting the 

whole volume, disk partition

 dm-crypt …
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dm-crypt

• Part of the device mapper infrastructure, and uses cryptographic routines

• Encrypt whole disks (including removable media), partitions
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eCryptfs

• Stacked cryptographic file system

• Mount eCryptfs on top of any single directory to protect it
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Ext4 Encryption

• In a directory tree marked for encryption, file contents, filenames, and symbolic link 
targets are all encrypted
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Case Study

• Linux Kernel Encryption Scalability on multi-core system

• Testing Environment
 CPU core(x4), freq.(0.6 ~ 1 GHz)

 CPU based encryption

 Cipher type
eCryptfs, aes-cbc

Ext4-encrypt, aes-xts

dm-crypt, aes-cbc-essiv:sha256
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Sequential Read Prefetching

• Readahead
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Read throughput

• CPU-cores(1/2/4)
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Read throughput

• CPU-cores(1/2/4)
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Write throughput

• CPU-cores(1/2)
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Write throughput

• CPU-cores(1/2)
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Random Read throughput

• Random read(IOPS)
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Random Read throughput

• Random read(IOPS)
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Improving Read performance (1/4)

• Ext4(encrypt) seq. read throughput
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Improving Read performance (2/4)

• Multi-threaded decryption(ext4)
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Improving Read performance (3/4)

• Multi-threaded decryption(ext4)
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Improving Read performance (4/4)

• Ext4(encrypt) seq. read throughput: +50%
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Conclusion

• Seq. read throughput dropped significantly in CPU based encryption, 
leading to performance degradation

• Read(decrypt) overhead: seq. read >> random read

• Seq. write throughput falls slightly except eCryptfs

• IO throughput of eCryptfs is shown less scalable in multi-core system

• Seq. read performance can be improved by applying multi-threaded 
decryption
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Q & A
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