
Linux Kernel Encryption 
Support for File system

Kyungsik Lee

SW Platform Lab., Corporate R&D

LG Electronics, Inc.

2016/10/20



Mobile Security

• Mobile Security is an important issue
 More data could be more danger with mobile devices

• Android 6.0 FDE(full-disk encryption)
 User data protected against offline attacks

 Plaintext -> ciphertext

 Based on a Linux Kernel Encryption feature that works at the block 
device layer

2



Performance Issue (1/2)

• Android 5.0(Lollipop) was to have device encryption enabled by default 
but …

• According to Android 6.0 CDD

For device implementations supporting full-disk encryption and with 
Advanced Encryption Standard (AES) crypto performance above 50MiB/sec, 
the full-disk encryption MUST be enabled by default at
the time the user has completed the out-of-box setup experience

Excerpted from Android 6.0 Compatibility Definition Document

3



Performance Issue (2/2)

• Sequential IO Read/Write
 1 CPU core, freq.(0.6~1 GHz)

0

50

100

150

200

250

ext4 dm-crypt ext4(encrypt) eCryptfs

M
iB

/s
e
c.

Seq. read

Cpu-freq. 598000 Cpu-freq. 819000 Cpu-freq. 1001000

4

0

20

40

60

80

100

120

ext4 dm-crypt ext4(encrypt) eCryptfs

M
iB

/s
e
c.

Seq. write

cpu-freq. 598000 cpu-freq. 819000 cpu-freq. 1001000

-60%
-40%



Linux Kernel Encryption (1/2)

• History
 dm-crypt, merged into 2.6.4 kernel(March, 2004)

 eCryptfs, 2.6.19 kernel(November, 2006)

 Ext4 encryption, 4.1 kernel(Jun, 2015)

 VFS Crypto engine, 4.6 kernel
=> Generic File system Encryption Support

5



Linux Kernel Encryption (2/2)

• File system-level encryption, FBE
 File-based encryption allows different files to be encrypted with 

different keys that can be unlocked independently. 

 File system-level encryption does not typically encrypt filesystem 
metadata

 eCryptfs, ext4 encryption …

• Disk encryption, FDE
 Disk encryption generally uses the same key for encrypting the 

whole volume, disk partition

 dm-crypt …

6



dm-crypt

• Part of the device mapper infrastructure, and uses cryptographic routines

• Encrypt whole disks (including removable media), partitions

Storage

Block layer

User space

File system

Virtual device
Encrypt/Decrypt

Crypto APIs

7

Kernel Internals



eCryptfs

• Stacked cryptographic file system

• Mount eCryptfs on top of any single directory to protect it

Storage

File system(lower)

User space

eCryptfs

Block layer

Crypto APIs

8

Kernel Internals



Ext4 Encryption

• In a directory tree marked for encryption, file contents, filenames, and symbolic link 
targets are all encrypted

Storage

User space

Ext4(encrypt)

Block layer

Crypto APIs

9

Kernel Internals



Case Study

• Linux Kernel Encryption Scalability on multi-core system

• Testing Environment
 CPU core(x4), freq.(0.6 ~ 1 GHz)

 CPU based encryption

 Cipher type
eCryptfs, aes-cbc

Ext4-encrypt, aes-xts

dm-crypt, aes-cbc-essiv:sha256

10



Sequential Read Prefetching

• Readahead

11

0

50

100

150

200

250

ext4 ext4-fde ext4(encrypt) ecryptfs-ext4

M
iB

/s
e
c.

Seq. read(MiB/sec.)

ra=disabled ra=enabled

0

5

10

15

20

25

ext4 dm-crypt ext4(encrypt) eCryptfs

M
iB

/s
e
c.

Seq. read(MiB/sec.)

cpu=1 cpu=2



Read throughput

• CPU-cores(1/2/4)

0

50

100

150

200

250

ext4 dm-crypt ext4(encrypt) eCryptfs

M
iB

/s
e
c.

Seq. read(MiB/sec.)

cpu=1 cpu=2 cpu=4

12



Read throughput

• CPU-cores(1/2/4)

0

50

100

150

200

250

ext4 dm-crypt ext4(encrypt) eCryptfs

M
iB

/s
e
c.

Seq. read(MiB/sec.)

cpu=1 cpu=2 cpu=4

x2

x2

x1

13



Write throughput

• CPU-cores(1/2)

0

20

40

60

80

100

120

140

ext4 dm-crypt ext4(encrypt) eCryptfs

M
iB

/s
e
c.

Seq. write(MiB/sec.)

cpu=1 cpu=2

14



Write throughput

• CPU-cores(1/2)

0

20

40

60

80

100

120

140

ext4 dm-crypt ext4(encrypt) eCryptfs

M
iB

/s
e
c.

Seq. write(MiB/sec.)

cpu=1 cpu=2

x2

x2

x1

15



Random Read throughput

• Random read(IOPS)

0

1000

2000

3000

4000

5000

6000

ext4 dm-crypt ext4(encrypt) eCryptfs

IO
P
S

Random read(IOPS)

IOPS ra=enabled IOPS ra=disabled

16



Random Read throughput

• Random read(IOPS)

0

1000

2000

3000

4000

5000

6000

ext4 dm-crypt ext4(encrypt) eCryptfs

IO
P
S

Random read(IOPS)

IOPS ra=enabled IOPS ra=disabled

Lower File system 
Page Cache

17



Improving Read performance (1/4)

• Ext4(encrypt) seq. read throughput

18

0

50

100

150

200

250

ext4 dm-crypt ext4(encrypt) eCryptfs

M
iB

/s
e
c.

Seq. read(MiB/sec.)

cpu=1 cpu=2

Decrypt 
Overhead

-75%



Improving Read performance (2/4)

• Multi-threaded decryption(ext4)

19

Storage

User space

Ext4(encrypt)

Block layer

Normal IO Heavy IO

Decrypt 
thread

Bottleneck



Improving Read performance (3/4)

• Multi-threaded decryption(ext4)

20

Storage

User space

Ext4(encrypt)

Block layer

Normal IO Heavy IO

Decrypt 
thread
Decrypt 
thread
Decrypt 
thread
Decrypt 
thread



Improving Read performance (4/4)

• Ext4(encrypt) seq. read throughput: +50%

0

10

20

30

40

50

60

70

80

cpu=1 cpu=2 cpu=4

M
iB

/s
e
c.

Seq. read(MiB/sec.)

ext4(encrypt) Patched

21

0

500

1000

1500

2000

2500

3000

3500

cpu=1 cpu=2 cpu=4

IO
P
S

Random read(IOPS)

ext4(encrypt) Patched

-18%

50%



Conclusion

• Seq. read throughput dropped significantly in CPU based encryption, 
leading to performance degradation

• Read(decrypt) overhead: seq. read >> random read

• Seq. write throughput falls slightly except eCryptfs

• IO throughput of eCryptfs is shown less scalable in multi-core system

• Seq. read performance can be improved by applying multi-threaded 
decryption

22



Q & A

23


