

Over-Provisioning and Performance of Mobile Storage

SKhynix

2016. 10. 21

Contents

- Introduction to Over-Provisioning
 - Over-Provisioning in SSD
 - Over-Provisioning Restrictions in Mobile Products
- Performance Impact of Over-Provisioning
- Extra OP Blocks
- Some Evaluations
 - Evaluation Methodology
 - Case Studies
- Summary

- It is a special region inside flash memory storages
 - Required due to the inability to overwrite flash before erasure
 - Required due to operate the user area
- Over-Provisioning Rate (%)

 $\left(\frac{Physical Capacity - User Capacity}{User Capacity}\right) * 100 = Over Provisioning Rate (\%)$

- 128GiB physical flash capacity vs. 128GB user capacity
 - About 7% of physical capacity is used for over-provisioning

Introduction to Over-Provisioning

- A portion of storage capacity held in reserve
 - Garbage collection (the major use)
 - Controller firmware metadata (small %)
 - Reserved for bad block (small %)
 - Additional features such as data protection

Over-Provisioning in SSD

- Level 1 : 7.37%
 - The capacity of HDDs and SSDs is often measured in GB (power of 10)
 - The capacity of *memory* is represented in Gibibyte (power of 2)
 - Internal over-provisioning given by unit difference
 - Ex) GiB (2^30) GB(10^9)
- Level 2 : 0, 7, 28%
 - SSDs are factory-set with a 2nd OP level to improve performance and life time
 Ex) 128GB, 120GB, 100GB
- Level 3 : Dynamic OP
 - The user space that is not yet occupied by user data can be automatically used as over-provisioning area

OP Restrictions in Mobiles: ① **Smaller Over-Provisioning**

- Level 2 and 3 OP are not allowed in mobiles
- If the size of system area is almost the same, the remaining space (free blocks) for GC is less in mobiles than in SSDs

OP Restrictions in Mobiles: ② Performance Requirement

- Customer requirement
 - Mobile storage should provide a required fraction of the sustain (steady) state performance even when the user space runs out
- The performance is directly effected by over-provisioning size

OP Restrictions in Mobiles: ③ Block Size Increase

- The size of a block increases as the stack of 3D NANDs becomes higher
- Larger blocks may not be efficient when storages use superblock-based mapping
- Assuming the number of system blocks are fixed, less space will be left free as the block size increases

Relation between OP and Performance

- Larger OP space helps to improve performance
 - Higher write performance and lower write amplification
 - Longer life time (endurance)

Reference : "Overprovisioning in All-Flash Arrays", Bill Radke, Skyera, Inc, 2013, Flash Summit

Optimal Over-Provisioning in Mobile

- In summary, we have following limitations in mobile storages
 - Used only internal over-provisioning (the level 1 of SSD)
 - Performance behavior specified by customers
 - Decreased internal over-provisioning as the stack of 3D NAND grows
- Additional OP besides internal OP could be provided with extra cost
 - How to find the optimal amount of additional OP space while satisfying the performance requirement given by the customer?

• Test Cases

- Case #1 : Performance variation depending on OP amount in urgent state
- Case #2 : Analysis of relationship between performance and OP
- Case #3 : Exploration for optimal performance

• Simulator : BrickSim

- Develop by SKhynix and an university lab as industry-academy collaboration
- Objective
 - Integrated simulation of HW/SW sub-systems
 - Architecture and algorithm exploration
 - Easy extension of SW algorithms
 - Event-driven simulation framework for fast simulation
- Key Features
 - Scheduler backbone based on event queue
 - Modular and layered components
 - HW components and SW algorithms to be easily modifiable
 - SW algorithm can be changed using wrapper function

HW Configuration

- 64GB NAND Flash

Algorithms

- The urgent state is triggered when free blocks are about N% of total block (N = 3 by default)
- The performance of urgent state is K% of sustain state (K = 30 by default)

Workload

- TIO (Thread IO) Trace
 - Full user area write : repeat the sequence (Sequential Write 1G -> Random Write 200M)

Block Usage

Main Block : Total 1024 Blocks (100%)		
User Blocks		93%
Internal Over-Provisioning	Free Blocks	2%
	System Blocks	5%

Additional block : Variable Blocks

External Over-Provisioning

0~6%

Case #1 : Performance Variation depending on OP amount

- Performance variation from entering the urgent state to 100% occupation of user area
- The performance increases as the OP rate grows

* Random Write Test

• But, once the performance requirement from customer is satisfied, no more OPs are needed

0.0% 0.4% 0.8% 1.2% 1.6% 2.0% 2.3% 2.7% 3.1% 3.5% 3.9% 4.3% 4.7% 5.1% 5.5% 5.9%

External OP

Case #2 : Analysis for relation of Performance and OP

- Once the sustain-state performance meets the requirement, the OP amount is varied to see the performance in urgent state
- In the urgent state, there is 1.6% of performance gain observed as OP increases by 1%

Case #3 : Exploration for Optimal Performance in Sustain State

- If the performance in urgent state does not meet customer requirement, it could be improved
 - by controlling the performance in sustain state or
 - by early entering the urgent state

User Area

Summary

- Smaller over-provisioning area in mobile than in SSD
 - Either a factory-set OP or a dynamic OP is not used
 - GC operations should work efficiently in urgent state to meet performance requirement
 - Smaller internal OP than in SSD assuming the number of system blocks is almost the same
 - System data consumes more blocks in OP as the 3D stack grows
- An optimal OP rate can be decided by considering the performance of sustain and urgent state
 - Higher OP is better for high performance
 - In mobile, larder over-provisioning helps to increase performance but it will be saturated under customer performance requirement
 - When OP is fixed, the performance could be tailored by controlling the performance in sustain state or by entering the urgent state early

Thank you

References

- "NAND Storage Simulator for Architecture Exploration and Performance Evaluation," SKhynix, 2016.
- 2. "Understanding SSD Over Provisioning", Kent Smith, LSI, 2012.
- 3. https://en.wikipedia.org/wiki/Write_amplification#Over-Provisioning, Wikipedia
- 4. SSD Over-Provisioning And Its Benefits, Seagate

