
Oct 21, 2016

Biscuit: A Framework for

Near-Data Processing of

Big Data Workloads

Duck-Ho Bae

Memory Business, Samsung Electronics

2 / 40

Outline

 Biscuit: A Framework for Near-Data Processing of Big Data

Workloads, ISCA16

 YourSQL: A High-Performance Database System Leveraging In-

Storage Computing, VLDB16

3 / 40

Near-Data Processing (NDP)

 “Moving Computation is Cheaper than Moving Data”

 Near-data processing moves computation to data

 Computation is performed right at the data source

 Efficient when the cost of moving data is very high

Processing
Server

Traditional data processing Near-data processing

Host interface
/ Network

/ …

* HDFS Architecture Guide

Storage
Server

Client

Data

Processing
Server

Host interface
/ Network

/ …

Storage
Server

Client

Results
Data

NDP
Processing

4 / 40

In-Storage Computing (ISC)

 The ultimate of near-data processing is “In-Storage Computing”

 Most prior work focuses on proving the concept of ISC

 Little attention to designing and realizing a practical framework

 Realistic large application studies were omitted

NDP with ISC

Processing
Server

Storage
Server

Client

ISC

Data

NDP
ISC

5 / 40

Samsung NVMe SSD (PM1725)

6 / 40

Biscuit

 A user-programmable NDP framework for SSDs and data-intensive

applications

 The first reported product-strength NDP system

 Modern C++ support (including C++ standard library)

 Dynamic loading of user programs

 Multi-threading, multi-core support

NDP with ISC

7 / 40

SSD Hardware

 Limitations

 Low compute power, no cache coherence, a small amount of fast

memory, no MMU, and restrictive synchronization primitives

ARM Core

DRAM

NAND

P
C

Ie
 in

te
rf

ac
e

Item Description

Host interface PCIe Gen.3 x4 (3.2GB/s)

Protocol NVMe 1.1

Device density 1 TB

SSD architecture Multiple channels/ways/cores

Storage medium Multi-bit NAND flash memory

Compute resource

for Biscuit

Two ARM Cortex R7 cores

@ 750MHz with L1 cache

On-chip SRAM < 1 MiB

DRAM ≥ 1 GiB

Hardware IP Key-based pattern matcher per channel

8 / 40

Biscuit Runtime

 Cooperative multi-threading

 A limited form of multi-threading (fiber as a scheduling unit)

 Less context switching overhead

 Safe resource sharing without locking

 Shared nothing architecture

 All data transmission among threads through I/O ports

 Enforced by the programming model and APIs

 C++11 move semantics supported

 Dynamic loader for user programs

 User program as position-independent code (PIC)

 Symbol relocation to locate each program in a separate address

space

9 / 40

Biscuit System Architecture

10 / 40

Biscuit Programming Model

 Biscuit follows a data-flow model

 The data movement through ISC tasks determines their order of

execution

 On receiving all required inputs, an ISC task produces output and

passes it to the next ISC tasks in the data-flow path

ISC

tasks

ISC

tasks

Sequence of ISC tasks

ISC

tasks

Data Data Data

11 / 40

Biscuit Programming Model

 An ISC task is a unit of task that

would run on an ISC-enabled

SSD

 A host-side program creates

and manages ISC tasks

 Both run concurrently in the

ISC-enabled SSD and the host,

respectively

SSDletin out

// do
computation
// access file

. . .

ISC tasks
(computation units)

host-side program
(coordinator)

App. 1

App. 2

12 / 40

Development Process

Write codes1

SSD-side taskHost-side task

2 X86 Compile 3 ARM Cross compile

4 Copy the module
into Biscuit SSD

Host-side
program

SSD-side
module

Run host-side
program5

Host
Computer

ISC

13 / 40

Experimental Setup

 H/W setup

 Basic performance results

 Communication latency, data read latency, data read bandwidth

 Application level results

 String search, pointer chasing, DB scan/filtering, TPC-H

 Notations

 Conv: system configuration with a default conventional SSD

 Biscuit: system configuration with the Biscuit framework on the SSD

System Dell PowerEdge R720 server

CPU
2 Intel Xeon(R) CPU E5-2640

(12 threads per socket) @2.50GHz

Memory 64 GiB DRAM

OS 64-bit Ubuntu 15.04

14 / 40

Basic Performance Results – Data Read Latency

 Conv: Linux pread I/O primitive

 Biscuit: internal data read API

 Biscuit shows 18% shorter latency

 Biscuit has the shorter round-trip “path”— No data transmission

from the device to the host over a host interface

Conv Biscuit

Read Latency (us)

- 4KiB
90.0 75.9

15 / 40

Basic Performance Results – Data Read Bandwidth

 Conv: transfer data to the host-side program

 Biscuit: transfer data to the SSD-side module (i.e., internal read)

 Biscuit exploits the underutilized internal bandwidth

16 / 40

Application Level Results – Pointer Chasing

 Conv: round-trip operation between host and SSD

 Biscuit: perform data-dependent logic entirely within SSD

 Biscuit achieves 11% performance gain

 This gain is comparable to the improvement in read latency with

Biscuit

Conv Biscuit

Execution time (s)

- 20GiB Twitter data

- 100 starting nodes

138.6 124.4

17 / 40

Application Level Results – DB Scan and Filtering

Biscuit
SSD

Biscuit-aware
Database

Engine

Early filtering

Biscuit-aware
Query
Engine

 Data analytics with a real DB engine

 MariaDB 5.5.42 (XtraDB)

 We modified the query engine to

1. identify a candidate table amenable for offloading

2. estimate its selectivity using a sampling method

3. determine whether the table is indeed a good

target (based on a selectivity threshold)

4. and finally offload the identified filter to the SSD

18 / 40

Application Level Results – DB Scan and Filtering

Filtering Query
SELECT l_orderkey, l_shipdate, l_linenumber
FROM lineitem
WHERE l_shipdate = '1995-1-17'

 Biscuit achieves speed-ups of about 11x

 Execution times on Biscuit were very consistent

19 / 40

Application Level Results – Power Consumption

 Biscuit consumes more power during query processing

 Biscuit achieves significantly lower energy consumption thanks to its

reduced execution time

 Filtering Query

Conv Biscuit

Total

Energy

(kJ)

60.5 12.2

20 / 40

Application Level Results – TPC-H Results

 Running all queries, Conv takes nearly two days, while Biscuit takes

about 13 hours (3.6x speed-up)

 Top 5 queries take 70+% of total execution time

21 / 40

Conclusions

 We presented the design and implementation of Biscuit, an NDP

framework built for high-speed SSDs.

 With Biscuit, we pursued achieving high programmability on

distributed resources including processing units of SSDs as well

as host CPUs.

 Biscuit is the first reported product-strength NDP system

implementation.

 We successfully ported Biscuit on small and large data-intensive

applications including MariaDB.

 Biscuit accomplished the performance improvement of up to 166x

for TPC-H queries (average 6.1x improvement).

YourSQL: A High-Performance

Database System Leveraging

In-Storage Computing

23 / 40

YourSQL - ISC-enabled Database System

 Realizes very early-filtering of data by offloading data scanning of

a query to ISC-enabled SSDs

 Why early-filtering?

 Early-filtering is data-intensive, non-complex query operations

 I/O reduction from the optimized join order and irrelevant data

elimination is dramatic!

Join
order

Table name Access
method

of read
requests

1 Region All 16

2 Nation Ref 13

3 Supplier Ref 36,867

4 Partsupp Ref 2,842,639

5 Part Eq_ref 651,525

Total 3,531,060

Join
order

Table name Access
method

of read
requests

1 Part Ref 245

2 Partsupp Ref 98,520

3 Supplier Eq_ref 45,679

4 Nation Eq_ref 5

5 Region All 4

Total 144,453

* TPC-H Q.2 on TPC-H dataset with a scale factor of 100

(a) MySQL w/o ICP (b) MySQL w/ ICP

24 / 40

YourSQL Architecture

YourSQL
Storage Engine

YourSQL
Query Engine

Parser
YourSQL

Query
Planner

YourSQL
Query

Executor

Prefetcher

Host-side
Sampler

Host-side
Filter

Bulk
Random Read

Sampler
Task

Filter
Tasks

Internal
Sequential Read

ISC Framework

ISC-enabled SSD

1 2

3

4

5

6

25 / 40

YourSQL Query Engine – Join Order Optimization

 Early-filtering target table is placed first in the join order

 YourSQL assigns a limiting score for each filter predicate, which

represents how restrictive its filter predicates are

 The table with the highest limiting score is determined as the early

filtering target

 For the remaining join order, it follows MySQL's decision

26 / 40

YourSQL Query Engine – Join Order Optimization

TPC-H Query 2
SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr,
s_address, s_phone, s_comment
FROM part, supplier, partsupp, nation, region
WHERE p_partkey = ps_partkey AND s_suppkey =
ps_suppkey AND p_size = 15 AND p_type LIKE
'%BRASS‘ AND s_nationkey = n_nationkey AND
n_regionkey = r_regionkey
AND r_name = 'EUROPE‘ AND ps_supplycost =

(SELECT MIN(ps_supplycost)
FROM partsupp, supplier, nation, region
WHERE p_partkey = ps_partkey AND s_suppkey =
ps_suppkey AND s_nationkey = n_nationkey AND
n_regionkey = r_regionkey
AND r_name = 'EUROPE')

ORDER BY s_acctbal DESC, n_name, s_name, p_partkey
LIMIT 100;

List all the tables with filter predicates

Calculate the limiting score of
each remaining table

Select the table with
the highest limiting score as the candidate

Eliminate small tables

Eliminate the tables whose
limiting score is below a given threshold

- Region table: Single predicate
- Part table: Two predicate

27 / 40

YourSQL Query Engine – Join Order Optimization

TPC-H Query 2
SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr,
s_address, s_phone, s_comment
FROM part, supplier, partsupp, nation, region
WHERE p_partkey = ps_partkey AND s_suppkey =
ps_suppkey AND p_size = 15 AND p_type LIKE
'%BRASS‘ AND s_nationkey = n_nationkey AND
n_regionkey = r_regionkey
AND r_name = 'EUROPE‘ AND ps_supplycost =

(SELECT MIN(ps_supplycost)
FROM partsupp, supplier, nation, region
WHERE p_partkey = ps_partkey AND s_suppkey =
ps_suppkey AND s_nationkey = n_nationkey AND
n_regionkey = r_regionkey
AND r_name = 'EUROPE')

ORDER BY s_acctbal DESC, n_name, s_name, p_partkey
LIMIT 100;

List all the tables with filter predicates

Calculate the limiting score of
each remaining table

Select the table with
the highest limiting score as the candidate

Eliminate small tables

Eliminate the tables whose
limiting score is below a given threshold

- Region table: Single predicate
- Part table: Two predicate

only five rows

28 / 40

YourSQL Query Engine – Join Order Optimization

TPC-H Query 2
SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr,
s_address, s_phone, s_comment
FROM part, supplier, partsupp, nation, region
WHERE p_partkey = ps_partkey AND s_suppkey =
ps_suppkey AND p_size = 15 AND p_type LIKE
'%BRASS‘ AND s_nationkey = n_nationkey AND
n_regionkey = r_regionkey
AND r_name = 'EUROPE‘ AND ps_supplycost =

(SELECT MIN(ps_supplycost)
FROM partsupp, supplier, nation, region
WHERE p_partkey = ps_partkey AND s_suppkey =
ps_suppkey AND s_nationkey = n_nationkey AND
n_regionkey = r_regionkey
AND r_name = 'EUROPE')

ORDER BY s_acctbal DESC, n_name, s_name, p_partkey
LIMIT 100;

List all the tables with filter predicates

Calculate the limiting score of
each remaining table

Select the table with
the highest limiting score as the candidate

Eliminate small tables

Eliminate the tables whose
limiting score is below a given threshold

- Region table: Single predicate
- Part table: Two predicate

• Add a limiting score of each filter predicate

• A filter predicate gets a higher score as its type of

operation is more restrictive (e.g., EQUAL)

29 / 40

YourSQL Query Engine – Join Order Optimization

TPC-H Query 2
SELECT s_acctbal, s_name, n_name, p_partkey, p_mfgr,
s_address, s_phone, s_comment
FROM part, supplier, partsupp, nation, region
WHERE p_partkey = ps_partkey AND s_suppkey =
ps_suppkey AND p_size = 15 AND p_type LIKE
'%BRASS‘ AND s_nationkey = n_nationkey AND
n_regionkey = r_regionkey
AND r_name = 'EUROPE‘ AND ps_supplycost =

(SELECT MIN(ps_supplycost)
FROM partsupp, supplier, nation, region
WHERE p_partkey = ps_partkey AND s_suppkey =
ps_suppkey AND s_nationkey = n_nationkey AND
n_regionkey = r_regionkey
AND r_name = 'EUROPE')

ORDER BY s_acctbal DESC, n_name, s_name, p_partkey
LIMIT 100;

List all the tables with filter predicates

Calculate the limiting score of
each remaining table

Select the table with
the highest limiting score as the candidate

Eliminate small tables

Eliminate the tables whose
limiting score is below a given threshold

- Region table: Single predicate
- Part table: Two predicate

30 / 40

YourSQL Query Engine – Join Order Optimization

 Query Plan of YourSQL for TPC-H Query 2

 Intermediate row sets can significantly be reduced at the earliest

stage of join!

 MySQL w/ICP performs early filtering by secondary indexes on filter

columns. In contrast, YourSQL performs early filtering with the ISC

filters, which scan the early filtering target.

Join
order

Table
name

Access
method

Key

1 Part All Null

2 Partsupp Ref PK

3 Supplier Eq_ref PK

4 Nation Eq_ref PK

5 Region All Null

(a) MySQL w/o ICP (b) MySQL w/ ICP

Join
order

Table name Access
method

1 Region All

2 Nation Ref

3 Supplier Ref

4 Partsupp Ref

5 Part Eq_ref

Join
order

Table name Access
method

1 Part Ref

2 Partsupp Ref

3 Supplier Eq_ref

4 Nation Eq_ref

5 Region All

(c) YourSQL

31 / 40

YourSQL Storage Engine - Filtering Condition Pushdown (FCP)

 An optimization for the case where YourSQL retrieves rows from a

table using filter predicates

 YourSQL’s filter leverages the H/W pattern matcher

 Transforms filter predicates into binary patterns and feeds them to

the ISC Filter task

 E.g., in TPC-H Query2, p_type LIKE ‘%BRASS’ is converted into binary keys, ‘42 52

41 53 53’

Filter Task

Hardware filter
arguments

Host-side
Filter Module

Match hints

Hardware
Filter

• Match hints: a byte array whose element is set to 1
if the corresponding page satisfies filtering conditions.

32 / 40

YourSQL Storage Engine – Table Access using Match Hints

 YourSQL checks match hints first, and fetches pages whose match

hint is set to one with “normal host read”

 Early filtering task and the remaining tasks (i.e., match page reads

and row processing) run concurrently in the ISC-enabled SSD and

the host

ISC-enabled
SSD

Host-side
YourSQL

Early
filtering

(b) Concurrent processing

Start

Early
filtering

Read of match page CPU
exec.

Read of match page CPU
exec.

ISC-enabled
SSD

Host-side
YourSQL

Read of match page

Early
filtering

(a) Sequential processing

CPU
exec.

Start
Read of match page

Early
filtering

CPU
exec.

33 / 40

Optimization – Sampling-driven FCP

List all the tables with filter predicates

Calculate the limiting score of
each remaining table

Select the table with
the highest limiting score as the candidate

Eliminate small tables

Eliminate the tables whose
limiting score is below a given threshold

Estimate the filtering ratio of the candidate
by the ISC sampler

Determine the candidate as the target if the
estimated filtering ratio is sufficiently high

 The limiting score is a simple heuristic,

but not quantitatively correlated with

filtering ratio

 An ISC task called “sampler” is used to

provide a quantitative estimation of

filtering ratio

 Sampler is the same as the filter

functionality-wise, but scans the sampling

region only

 The estimated filtering ratio enables

YourSQL to check further if early filtering

for a candidate table would really be

beneficial in terms of execution time

34 / 40

Optimization – Software Filtering

 Hardware matcher only performs byte-granular matching and the

filtered data may still contain false positives depending on the

filtering conditions

 e.g., shipdate > `1995-09-01' and l shipdate <`1995-09-01' + INTERVAL 1 MONTH

-> `8F 97 21' and `8F 97 41‘ -> `8F 97‘ (extract common two byte sequence)

 ‘8F 97’ would match sequences from ‘8F 97 00’ through ‘8F 97 FF’

Filter Task

Hardware filter
arguments

Host-side
Filter Module

Match hints

Hardware
Filter

Software
Filter

Match hints

Match hints

Software filter arguments

35 / 40

Optimization – Highly Accurate Bulk Prefetch

ISC-enabled
SSD

Host-side
YourSQL

Read of match page

Early
filtering

(a) Synchronous reads of single-page units

CPU
exec.

Start
Read of match page

Early
filtering

ISC-enabled
SSD

Host-side
YourSQL

Early
filtering

(b) Synchronous reads of multi-page units

Start

Early
filtering

Read of match page CPU
exec.

Read of match page CPU
exec.

ISC-enabled
SSD

Host-side
YourSQL

Bulk read of
match pages

Early
filtering

(c) Asynchronous reads of multi-page units

CPU
exec.

Start

Early
filtering

CPU
exec.

Prefetcher
Bulk read of
match pages

CPU
exec.

36 / 40

 H/W setup

 Baseline system and workload

 MariaDB 5.5.42 was integrated with Biscuit framework

 TPC-H with a scale factor of 100 was chosen

Experimental Setup

System Dell PowerEdge R720 server

CPU
2 Intel Xeon(R) CPU E5-2640

(12 threads per socket) @2.50GHz

Memory 16 GiB DRAM

SSD Samsung PM1725 1TB (ISC-enabled)

OS 64-bit Ubuntu 15.04

37 / 40

 Out of 22 queries, eight queries were FCP-enabled

 The rest queries had no filter predicates or YourSQL did not expect speed-

up for FCP

 The average speed-up of the top five queries reached 15x

 3.6x reduction of the overall execution time was achieved

Evaluation Results – TPC-H results

FCP enabled!!

38 / 40

 More optimizations yield higher speed-up, since each optimization

scheme is orthogonal to one another

 The biggest improvement seen in Opt-PSH implies that the host-side

read operation was the limiting factor in accelerating the overall

performance

Evaluation Results – Optimization Techniques

Scheme Configuration

Opt-P Hardware filter

OPT-PS Hardware filter + Software filter

OPT-PSH
Hardware filter + Software filter

+ HABP (Highly Accurate Bulk Prefetch)

39 / 40

 As the memory size decreases, the resulting speed-up becomes

higher

 When the memory usage becomes tighter, the relative cost of read

I/O is increased and the impact of its reduction becomes more

prominent

Evaluation Results – Memory Size

40 / 40

Conclusions

 We presented the design and implementation of YourSQL, an ISC-

enabled database system.

 With YourSQL, we pursued accelerating data-intensive queries

with the help of additional in-storage computing capabilities.

 We seamlessly integrated query offloading to SSDs into one of the

most popular database systems, MySQL.

 YourSQL accomplished the 3.6x reduced execution time for TPC-H

queries.

Appendix

42 / 40

Wordcount Example

mapper shuffler

reducer

reducer

<word, count>

wordcount module

filename

host-side

program

word

word

word

<word,

vec>

<word,

vec>

mapper

mapper

43 / 40

Wordcount Example – Host-side Code

int main(int argc, char *argv[]) {

// create an instance of the SSD class that corresponds to an Smart SSD

SSD ssd("/dev/nvme0n1p1");

// load an SSDlet stored on the Smart SSD

File file(ssd, "/var/isc/slets/libwordcount.so");

module_id_t mid = ssd.loadModule(std::move(file));

// create an instance of the Application class to manage SSDlets on the Smart SSD

Application wordcount(ssd);

// create instances of necessary SSDlet classes included in the loaded module

auto args = std::make_tuple(File(ssd, argv[1]));

SSDLet mapper(wordcount, mid, "idMapper", std::move(args));

SSDLet shuffler(wordcount, mid, "idShuffler");

SSDLet reducer(wordcount, mid, "idReducer");

Host-side Code
Mapper

SSDlet

Shuffler

SSDlet

Reducer

SSDlet
Arg: File

44 / 40

Wordcount Example – Host-side Code

// make connections between SSDlets

wordcount.connect(mapper.out(0), shuffler.in(0));

wordcount.connect(shuffler.out(0), reducer.in(0));

auto port = wordcount.connectTo<std::pair<std::string, uint32_t>>(reducer.out(0));

// starting application would make all SSDlets begin execution

wordcount.start();

std::pair<std::string, uint32_t> value;

// keep reading as long as output is available

while (port.get(value))

std::cout << value.first << "\t" << value.second << std::endl;

ssd.unloadModule(mid);

return 0;

}

Host-side Code
Mapper

SSDlet

Shuffler

SSDlet

Reducer

SSDlet
Arg: File

D

45 / 40

Wordcount Example – SSDlet: Mapper

class Mapper

: public SSDLet<OUT_TYPE<std::pair<std::string, uint32_t>>,

ARG_TYPE<File>> {

public:

// SSDlet start function

void run() {

// get filename as argument from host-side code

auto& file = getArgument<0>();

// get outputPort connected with Shuffler SSDlet

auto output = getOutputPort<0>();

// do Mapper tasks

FileStream fs(std::move(file));

while (true) {

sstring line;

if (!readline(fs, line))

break;

line.tokenize();

sstring::const_iterator word;

while ((word = line.next_token()) != line.cend()) {

// send results to Shuffler SSDlet through pipe

if (!output.put({std::string(word), 1}))

return;

}}}};

// register ‘Mapper’ SSDlet

RegisterSSDLet(idMapper, Mapper)

Mapper

SSDlet
Arg: File

Out: <str, uint32_t>

46 / 40

Biscuit I/O Ports

 Communication through ports

 (a) Inter-SSDlet ports: among SSDlet instances belonging to a single

Application instance

 (b) Host-to-device ports: between an SSDlet instance and a host

program

 (c) Inter-application ports: between two SSDlets from different

Application instances

host-side

program
SSDlet

Biscuit runtime

SSDlet

host I/F

input port output port

(a)

App. 1

SSDlet

(c)

App. 2

(b)

47 / 40

ISC-enabled Database System

Normal SSD

Storage Engine

Query Engine

Parser Query
Planner

ISC-enabled SSD

Storage Engine

Query Engine

Parser
ISC-aware

Query
Planner

ISC-aware
Query

Executor

Host I/F Host I/F

Host-side
ISC module

Host-side
ISC module

Traditional ISC-enabled DBMS

ISC task ISC task

Query
Executor

 Design Considerations

 Partitioning host/ISC

tasks

 Defining interfaces

between a host and ISC

tasks

 Optimizing query planner

for ISC

 Reorganizing datapath

for ISC database system

