
SHRD: Improving Spatial Locality in Flash
Storage Accesses by Sequentializing in Host
and Randomizing in Device

Hyukjoong Kim1, Dongkun Shin1, Yun Ho Jeong2 and Kyung Ho Kim2

Sungkyunkwan University1

Samsung Electronics2

Presented at FAST’17

1

Sungkyunkwan University

Random write is still slow at SSD

2

0

200

400

600

800

1000

1200

eMMC 5.0
(Odroid-XU3)

UFS
(Galaxy S6)

SATA SSD
(Intel 525)

SATA SSD
(Samsung 850 Pro)

NVMe SSD
(Intel 750)

B
a
n

d
w

id
th

 (
M

B
/s

)

random write (4KB)

sequential write (512KB)

Sungkyunkwan University

Why is RW slower than SW?

3

1. Request Handling Overhead

2. Garbage Collection Overhead

3. Mapping Table Handling Overhead

Sungkyunkwan University

Why is RW slower than SW?

4

1. Request Handling Overhead

• Sequential write
 Large, few requests

• Random write
 Small, many requests

• Packed command
▪ e.g. eMMC

• Interrupt coalescing
▪ e.g. NVMe, SATA NCQ

• Vectored I/O
▪ e.g. OpenChannel SSD [FAST’17]

Sungkyunkwan University

Why is RW slower than SW?

5

2. Garbage Collection Overhead

• Hot/cold separation
 Stores hot and cold data
into different blocks

• Incremental GC / bgGC
 can hide GC latency

Blocks with RWBlocks with SW

Invalid

I

I

I

Valid

V

V

V

I

V

I

V

V

I

V

I

• RW generates hot/cold-mixed blocks
• Dispersed invalid pages  high GC overhead

Sungkyunkwan University

Why is RW slower than SW?

6

3. Mapping Table Handling Overhead

• Page-level mapping FTL shows good performance on RW
▪ Requires a large DRAM to maintain fine-grained mapping table
▪ 4 byte per 4 KB  8 GB DRAM for 8 TB storage

• Demand loading FTL (DFTL [ASPLOS’08])
▪ Uses a small map cache with on-demand map loading
▪ Random writes invoke frequent map loading/unloading

Sungkyunkwan University

Demand-loading FTL (DFTL)

• Map caching scheme can show
good performance by utilizing
temporal & spatial locality
▪ Page level map load/unload

✓One map page contains multiple
contiguous mapping entries

• Vulnerable to random workload
▪ low temporal & spatial locality

▪ high map miss rate

▪ high map loading overhead

7

NAND Flash Chips

DRAM Map Cache

…

map page

…

map page

…

map page

map blocks data blocks

map

pages

data

O
O

B

loads unloads

LRU list

0 1023 4096 51197168 8191

Write LPN 768

Sungkyunkwan University

Previous Solution: LFS

• Generate only sequential writes
▪ out-of-place append-only write scheme

• Problems
▪ reclaiming log space (cleaning overhead)

• Filesystem needs to copy valid page
 host-to-device data transfer

▪ Large metadata, wandering tree problem

▪ Fragmented read operation

8

Append logging

Invalid Invalid

FS

Storage

copy

read

write

Cleaning requires host-to-device
data transfer operations

storage space

LPN: 32 128

Sungkyunkwan University

Can we remove copy overhead?

• SSD maintains a page-level mapping table

• Address remapping
▪Can change the logical address of a written data

by modifying mapping table

▪AnViL [FAST’15], SHARE [SIGMOD’16]

• Can reclaim log space with address remapping

9

FS

Storage

copy

read

write

< Copying at filesystem >

FS

Storage

< Remapping at storage >

remap
LPN: 32 128

remap request

LPN: 32 128

32
33

128

72
0

72

Logical Physical

Mapping Table

…

Sungkyunkwan University

Which layer? File System or Block Layer

• Our solution is Append logging on Block Layer
▪Append logging on log area temporarily

▪Remap to the original location

▪Can utilize legacy filesystems (e.g. EXT4)

• Simpler metadata management

• Faster sequential read performance

10

Storage

Append-logging D/D

Legacy Filesystems

Legacy Applications

Sungkyunkwan University

SHRD (Sequentializing in Host, Randomizing in Device)

• Sequentializing in Host
▪Host OS writes random requests sequentially at log area

• Randomizing in Device
▪ SSD modifies the mapping table to change the logical address

11

Log area (reserved)Normal area

(1) Sequentializing

(2) Randomizing

Sungkyunkwan University

SHRD Example: write

12

Log area (FS invisible)

Logical address

NAND flash

Normal area (FS visible)

0

Host redirection table

1024

32
128
765

1024
1026
1025

854 1027

oLPN tLPN

0

multiple small random writes

32 128765 854

single large sequential write

Logging 1024

368

1024
1025
1026

368
369
370

1027 371

LPN PPN
Device mapping table

physical address

oLPN: original LPN
tLPN: temporal LPN

Sungkyunkwan University

SHRD Example: read redirection

13

Logical address

NAND flash

0

Host redirection table

1024

32
128
765

1024
1026
1025

854 1027

oLPN tLPN

0

368

1024
1025
1026

368
369
370

1027 371

LPN PPN
Device mapping table

Read 32

redirect to
1024

physical address

oLPN: original LPN
tLPN: temporal LPN

Sungkyunkwan University

SHRD Example: remap

14

Logical address

NAND flash

0

Host redirection table

1024

32
128
765

1024
1026
1025

854 1027

oLPN tLPN

0

368

1024
1025
1026

368
369
370

1027 371

LPN PPN
Device mapping table

remap 1024-1027

32
765
128

368
369
370

854 371

LPN PPN

oLPN tLPN

physical address

oLPN: original LPN
tLPN: temporal LPN

Sungkyunkwan University

Can we really reduce map loading overhead?

• Remap modifies the mapping entries of sequentialized pages
▪A time-ordered access scheme

inherits the original random pattern

• low spatial locality

• oLPN-ordered map access
▪ The mapping table is oLPN-indexed

▪Can increase spatial locality

15

37
134
774

1028
1029
1030

time-ordered access
8 map loads

900 1031

32
765
128

1024
1025
1026

854 1027

oLPN tLPN

765
774
854

1025
1030
1027

oLPN-ordered access
5 map loads

re
m

ap
p

in
g se

q
u

en
ce

900 1031

32
37

128

1024
1028
1026

134 1029

oLPN tLPN

Sungkyunkwan University

The effect of request reordering

16

0%

20%

40%

60%

80%

100%

0%

5%

10%

15%

NONE 2MB 4MB 8MB 16MB 32MB 64MB

Reordering window size

u
ti

li
za

ti
o
n

 o
f

p
a
ra

ll
el

 u
n

it

M
a
p

 m
is

s
r
a
ti

o
stg_0 proj_0 stg_0 proj_0

reduce map miss

improve parallelism

Sungkyunkwan University

SHRD (Sequentializing in Host, Randomizing in Device)

17

File system, Applications

SSD (SHRD-FTL)

RWLB BlocksData BlocksMap Blocks

Map Cache

Device Driver

Sequentializer
Redirection

Table
Randomizer

map reclaim

remap()

write()

map insert

twrite()

read()

read(

)

Sungkyunkwan University

SHRD (Sequentializing in Host, Randomizing in Device)

18

File system, Applications

Device Driver

Sequentializer
Redirection

Table
Randomizer

• Sequentializer
▪ Gathers random write requests, sequentially logs into temporal location

• Redirection table
▪ Maintains redirection table between temporal address and original address

• Randomizer
▪ Sends remap command to storage device and reclaims temporal location

Sungkyunkwan University

• SHRD-FTL
• Receives twrite and remap command from host OS

• twrite
• Write command with two addresses, temporal/original address

• The data must be stored into separate physical blocks called RWLB

• remap
• Restores the data written at temporal location into original address

• Changes mapping table from temporal address to original address

• Corresponding RWLB blocks will be transferred into data blocks

SHRD (Sequentializing in Host, Randomizing in Device)

19

SSD (SHRD-FTL)

RWLB BlocksData BlocksMap Blocks

Map Cache

twrite (oLPN, tLPN)
remap (tLPN, oLPN)

Sungkyunkwan University

Special commands: twrite & remap

• twrite (oLPN[n], tLPN_start, n, data)
▪Write command sends two addresses, (tLPN, oLPN)

▪ oLPN is stored at the OOB area of physical page

• used for power-off-recovery / GC

▪ Packed command with multiple RW requests

• remap (oLPN[m], tLPN[m], m)
▪m = # of remapping entries per remap command

• oLPN-sorted entries  Improving spatial locality

▪Changes mapping table from tLPN to oLPN

• tLPN : PPN  oLPN : PPN

20

Sungkyunkwan University

Command Sequence: Sequentializing in Host

21

Normal area Log area

1024

a b c d
I/O scheduler

SHRD driver

SATA
Interface

SSD Device

32 765 128 854

mapping

twrite header

oLPN tLPN

32 1024

128 1026

765 1025

854 1027
a b c d

1024 1025 1026 1027

twrite data

SATA write
command (OOB) Completion

SATA write
command (OOB)

a

1024

a 32

data spare

NAND

b c d

Completion

rand_ptr
seq_ptr

Sungkyunkwan University

Command Sequence: Randomizing in Device

22

Normal area Log area

1024

I/O scheduler

SHRD driver

SATA
Interface

SSD Device

a b c d valid log area

oLPN tLPN

32 1024

128 1026

765 1025

854 1027
remap

SATA write
command (OOB)

Change mapping table

rand_ptr seq_ptr

Sungkyunkwan University

• Reverse map in out-of-band (OOB) area
▪ SSD stores corresponding LPN in OOB area

▪ Reverse map is used for GC & recovery

• GC: change the mapping table of victim valid page

• Recovery: recover the mapping table of active blocks

GC & Power Off Recovery (POR)

23

Data OOB

ECC LPN

Physical page layout

Sungkyunkwan University

• Store oLPN at the OOB area of RWLB
▪ RWLB blocks must be excluded from choosing victim

• until entire data stored in the blocks are remapped

▪Non-remapped data will be auto-remapped at POR

• by scanning the OOB area of RWLB blocks

GC & Power Off Recovery (POR)

24

1
85

1023
72

Data OOB

RWLB Block

oLPN • moved into data block
• can be victim of GC

• POR will scan OOB
• do auto-remap

after remap

before remap

twrite

Sungkyunkwan University

Implementation

• SHRD D/D is implemented in Linux kernel 3. 17.4
▪Additional kernel module at SCSI D/D layer

▪Host redirection table: about 1 MB for 64 MB log area

• Prototype SSD device
▪Modified the firmware of a commercial

SATA3 SSD device (Samsung 843)

▪DFTL & SHRD-FTL are implemented

▪Map cache size is configurable

25

Sungkyunkwan University

RW Performance According to cache

• Better performance than DFTL
▪ By reducing map loading/unloading overhead

• SHRD shows steady performance regardless of cache size

26

0

10

20

30

40

50

60

128KB 256KB 512KB 1MB 2MB 4MB 8MB fully
loaded

b
a

n
d

w
id

th
 (

M
B

/s
)

Map cache size

DFTL SHRD

30x faster than DFTL at
tiny size of cache

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

128KB 256KB 512KB 1MB 2MB 4MB 8MB fully
loaded

m
a
p

 l
o

a
d

 p
e
r

p
a
g

e
 I

O

Map cache size

DFTL SHRD

fio random write test
(32GB space, 4KB
write)

Sungkyunkwan University

0

0.5

1

1.5

2

2.5

3

3.5

4

tpcc YCSB postmark fileserver varmail

th
ro

u
g

h
p

u
t

(n
o

rm
a
li

z
e
d

 t
o

 D
F

T
L

)

Performance on Real Benchmarks

• Better performance at all workloads

• Small gains at sequential or read dominant workload
▪ still better than DFTL

27

small random write
dominant workloads

sequential write
workload

read/flush dominant
workload

CMT caches about 5% of
entire workload space

Sungkyunkwan University

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

b
a
n

d
w

id
th

 (
M

B
/s

)

time(s)

F2FS (SSR) w/ DFTL

EXT4 w/ DFTL

SHRD gains at EXT4 vs. F2FS

• EXT4 shows bad performance on random write

• Performance of F2FS decreases due to SSR at high utilization

28

low utilization high utilization

Sungkyunkwan University

0

20

40

60

80

100

0 20 40 60 80 100

b
a
n

d
w

id
th

 (
M

B
/s

)

time(s)

F2FS (SSR) w/ DFTL

F2FS (SSR) w/ SHRD

EXT4 w/ DFTL

EXT4 w/ SHRD

SHRD gains at EXT4 vs. F2FS

• SHRD improves both EXT4 and F2FS
▪ SHRD improves the bandwidth of aged F2FS

▪ EXT4 shows similar performance as F2FS by using SHRD

29

low utilization high utilization

ext4
improvement

F2FS
improvement

Sungkyunkwan University

0

20

40

60

80

100

0 20 40 60 80 100

b
a
n

d
w

id
th

 (
M

B
/s

)

time(s)

F2FS (SSR) w/ DFTL

F2FS (SSR) w/ SHRD

EXT4 w/ DFTL

EXT4 w/ SHRD

SHRD gains at EXT4 vs. F2FS

• Sequential read performance of EXT4 is much better
▪ The out-of-place scheme of F2FS scatters the data blocks of a file

30

0

20

40

60

80

100

120

Sequential read Random read

b
a

n
d

w
id

th
 (

M
B

/s
)

EXT4 w/ SHRD

F2FS (SSR) w/ SHRD

Sungkyunkwan University

Latency Comparison

31

0

5

10

15

20

25

DFTL SHRD

b
a
n
d
w

id
th

 (
M

B
/s

) read write fio mixed workload
(32GB area, 4KB random
read/write mixed)

• Remap command can delay read operations
▪ Several remapping entries are batched into a single command

▪ # of remapping entries per command can control the maximum latency of
following I/O operations

remap
period

Sungkyunkwan University

Visualizing address accessing pattern: postmark

< without SHRD > < with SHRD >

remap command access
seqeuntialized write

Sungkyunkwan University

Conclusion

• SHRD is an address reshaping technique
▪ transforms RW into SW at the block D/D

▪ restores the original addresses without copy operations

▪ Solves POR / GC issues of address remapping

• SHRD improves 30x better performance at a small map
cache
▪ reduces DRAM drastically

33

Thank you.

34

