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Random write is still slow at SSD
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Why is RW slower than SW?

3

1. Request Handling Overhead

2. Garbage Collection Overhead

3. Mapping Table Handling Overhead
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Why is RW slower than SW?
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1. Request Handling Overhead

• Sequential write 
 Large, few requests

• Random write 
 Small, many requests

• Packed command
▪ e.g. eMMC

• Interrupt coalescing
▪ e.g. NVMe, SATA NCQ

• Vectored I/O
▪ e.g. OpenChannel SSD [FAST’17]
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Why is RW slower than SW?
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2. Garbage Collection Overhead

• Hot/cold separation
 Stores hot and cold data 
into different blocks

• Incremental GC / bgGC
 can hide GC latency
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• RW generates hot/cold-mixed blocks
• Dispersed invalid pages  high GC overhead
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Why is RW slower than SW?
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3. Mapping Table Handling Overhead

• Page-level mapping FTL shows good performance on RW
▪ Requires a large DRAM to maintain fine-grained  mapping table
▪ 4 byte per 4 KB  8 GB DRAM for 8 TB storage

• Demand loading FTL (DFTL [ASPLOS’08])
▪ Uses a small map cache with on-demand map loading
▪ Random writes invoke frequent map loading/unloading



Sungkyunkwan University

Demand-loading FTL (DFTL)

• Map caching scheme can show 
good performance by utilizing 
temporal & spatial locality
▪ Page level map load/unload

✓One map page contains multiple 
contiguous mapping entries

• Vulnerable to random workload
▪ low temporal & spatial locality

▪ high map miss rate 

▪ high map loading overhead

7

NAND Flash Chips

DRAM Map Cache

…

map page

…

map page

…

map page

map blocks data blocks

map 

pages

data

O
O

B

loads unloads

LRU list

0 1023 4096 51197168 8191

Write LPN 768



Sungkyunkwan University

Previous Solution: LFS

• Generate only sequential writes
▪ out-of-place append-only write scheme

• Problems
▪ reclaiming log space (cleaning overhead)

• Filesystem needs to copy valid page
 host-to-device data transfer

▪ Large metadata, wandering tree problem

▪ Fragmented read operation
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Can we remove copy overhead?

• SSD maintains a page-level mapping table

• Address remapping
▪Can change the logical address of a written data 

by modifying mapping table 

▪AnViL [FAST’15], SHARE [SIGMOD’16]

• Can reclaim log space with address remapping
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Which layer? File System or Block Layer

• Our solution is Append logging on Block Layer
▪Append logging on log area temporarily

▪Remap to the original location

▪Can utilize legacy filesystems (e.g. EXT4)

• Simpler metadata management

• Faster sequential read performance
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SHRD (Sequentializing in Host, Randomizing in Device) 

• Sequentializing in Host
▪Host OS writes random requests sequentially at log area

• Randomizing in Device
▪ SSD modifies the mapping table to change the logical address
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SHRD Example: write
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SHRD Example: read redirection
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SHRD Example: remap
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Can we really reduce map loading overhead?

• Remap modifies the mapping entries of sequentialized pages
▪A time-ordered access scheme 

inherits the original random pattern

• low spatial locality

• oLPN-ordered map access
▪ The mapping table is oLPN-indexed

▪Can increase spatial locality
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The effect of request reordering
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SHRD (Sequentializing in Host, Randomizing in Device)
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SHRD (Sequentializing in Host, Randomizing in Device)
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File system, Applications

Device Driver

Sequentializer
Redirection 

Table
Randomizer

• Sequentializer
▪ Gathers random write requests, sequentially logs into temporal location

• Redirection table
▪ Maintains redirection table between temporal address and original address

• Randomizer
▪ Sends remap command to storage device and reclaims temporal location
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• SHRD-FTL
• Receives twrite and remap command from host OS

• twrite
• Write command with two addresses, temporal/original address 

• The data must be stored into separate physical blocks called RWLB

• remap
• Restores the data written at temporal location into original address

• Changes mapping table from temporal address to original address

• Corresponding RWLB blocks will be transferred into data blocks

SHRD (Sequentializing in Host, Randomizing in Device)
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Special commands: twrite & remap

• twrite (oLPN[n], tLPN_start, n, data)
▪Write command sends two addresses, (tLPN, oLPN)

▪ oLPN is stored at the OOB area of physical page 

• used for power-off-recovery / GC

▪ Packed command with multiple RW requests

• remap (oLPN[m], tLPN[m], m)
▪m = # of remapping entries per remap command

• oLPN-sorted entries  Improving spatial locality

▪Changes mapping table from tLPN to oLPN

• tLPN : PPN  oLPN : PPN

20



Sungkyunkwan University

Command Sequence: Sequentializing in Host
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Command Sequence: Randomizing in Device
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• Reverse map in out-of-band (OOB) area
▪ SSD stores corresponding LPN in OOB area

▪ Reverse map is used for GC & recovery

• GC: change the mapping table of victim valid page

• Recovery: recover the mapping table of active blocks

GC & Power Off Recovery (POR)
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• Store oLPN at the OOB area of RWLB
▪ RWLB blocks must be excluded from choosing victim

• until entire data stored in the blocks are remapped

▪Non-remapped data will be auto-remapped at POR

• by scanning the OOB area of RWLB blocks

GC & Power Off Recovery (POR)
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Implementation

• SHRD D/D is implemented in Linux kernel 3. 17.4
▪Additional kernel module at SCSI D/D layer

▪Host redirection table: about 1 MB for 64 MB log area

• Prototype SSD device
▪Modified the firmware of a commercial 

SATA3 SSD device (Samsung 843)

▪DFTL & SHRD-FTL are implemented

▪Map cache size is configurable
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RW Performance According to cache

• Better performance than DFTL
▪ By reducing map loading/unloading overhead

• SHRD shows steady performance regardless of cache size
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Performance on Real Benchmarks

• Better performance at all workloads

• Small gains at sequential or read dominant workload
▪ still better than DFTL
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• EXT4 shows bad performance on random write

• Performance of F2FS decreases due to SSR at high utilization

28

low utilization high utilization



Sungkyunkwan University

0

20

40

60

80

100

0 20 40 60 80 100

b
a
n

d
w

id
th

 (
M

B
/s

)

time(s)

F2FS (SSR) w/ DFTL

F2FS (SSR) w/ SHRD

EXT4 w/ DFTL

EXT4 w/ SHRD

SHRD gains at EXT4 vs. F2FS

• SHRD improves both EXT4 and F2FS
▪ SHRD improves the bandwidth of aged F2FS

▪ EXT4 shows similar performance as F2FS by using SHRD
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SHRD gains at EXT4 vs. F2FS

• Sequential read performance of EXT4 is much better
▪ The out-of-place scheme of F2FS scatters the data blocks of a file
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Latency Comparison
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Visualizing address accessing pattern: postmark
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Conclusion

• SHRD is an address reshaping technique
▪ transforms RW into SW at the block D/D

▪ restores the original addresses without copy operations

▪ Solves POR / GC issues of address remapping 

• SHRD improves 30x better performance at a small map 
cache
▪ reduces DRAM drastically

33



Thank you.
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