
Beomseok Nam

UNIST (Ulsan National Institute of Science and Technology)

 Non-Volatile Memory (NVM)

Non-volatile Low Latency Persistent Memory

NAND STT-MRAM PCM DRAM

Non-volatility o o o x

Read (ns) 2.5 X 104 5 - 30 20 – 70 10

Write (ns) 2 X 105 10 - 100 150 - 220 10

Byte-addressable x o o o

Density 185.8 Gbit/cm2 0.36 Gbit/cm2 13.5 Gbit/cm2 9.1 Gbit/cm2

K. Suzuki and S. Swanson. “A Survey of Trends in Non-Volatile Memory Technologies: 2000-2014”, IMW 2015

 When Granularity of Atomicity
= Page

4K Page

fsync()
write()

4K Page

4K Page

3

발표자
프레젠테이션 노트
Emerging persistent memory is non-volatile as in NAND flash memory and its latency is expected to be similar to that of DRAM.
Such nice properties of persistent memory will change various aspect of file systems and DBMS.

4K Page

4K Page
4K Page

4K Page

store A
store B
clflush
clflush

4K Page
4K Page

4K Page

fsync()
write()

Memory level parallelism

A

B

 When Granularity of Atomicity
= Page

 When Granularity of Atomicity
= Cache Line

4

발표자
프레젠테이션 노트
Emerging persistent memory is non-volatile as in NAND flash memory and its latency is expected to be similar to that of DRAM.
Such nice properties of persistent memory will change various aspect of file systems and DBMS.

4K Page

4K Page
4K Page

4K Page

4K Page
4K Page

4K Page

fsync()
write() store A

store B
clflush
clflush

A

B

B can be stored first.

 When Granularity of Atomicity
= Page

 When Granularity of Atomicity
= Cache Line

5

발표자
프레젠테이션 노트
Emerging persistent memory is non-volatile as in NAND flash memory and its latency is expected to be similar to that of DRAM.
Such nice properties of persistent memory will change various aspect of file systems and DBMS.

4K Page

cache line

store
mfence
clflush

4K Page

4K Page
4K Page

4K Page

fsync()
write()

 When Granularity of Atomicity
= Page

 When Granularity of Atomicity
= Cache Line

…

Legacy Block IO Interface requires too
many barriers and clflushes unnecessarily

6

 fsync() vs. a group of mfence and clflush instructions
• Faster than flash memory, but there’s room for improvement.

 Need to make transactions be aware of byte-addressability of NVM

• All or Nothing

Atomicity

• Only valid data

Consistency

• No interference

Isolation

• Data is recoverable

Durability

N O R T H

N O R T H

Single Copy
Minimize redundant write operations

DB File

Block Device StoragePersistent (PM) Buffer Cache

A system crash may result in
inconsistent data.

Query

update(EAST)

N O R T H

N O R T H

E A R T H

발표자
프레젠테이션 노트
However, there is a challenge. How can we guarantee the database transaction principles such as atomicity and consistency?�For example, suppose we want to change NORTH to EAST.�If a system crashes while the transaction is making changes to the page/ in persistent memory, (클릭) �the buffer cache may have partially written inconsistent data.�Therefore, the update must be invisible until the transaction commits.
We achieve such atomicity and consistency using slotted-page structure.

Free space1000

Slot Header

Record Offset Array

1 900 Free space

Record Content Area

Key = 50 Key = 30

Metadata

Number of Records
1000900

2

Record Content AreaRecord Offset Array

1024

Slot Header

Logical view
of this page 5030

Invisible

1000 Free space

Slot Header

Record Offset Array

1 10001000 900 Free space

Record Content Area

Key = 50 Key = 30

Metadata

Number of Records
1000900

2 Key = 40Free space
800

900800 Free space3

Record Content AreaRecord Offset Array

1024

Slot Header

Logical view
of this page 5030

40

Invisible

1000 Free space

Record Offset Array

1 10001000 900 Free space

Record Content Area

Key = 50 Key = 30

Metadata

Number of Records
1000900

2 Key = 40Free space
800

900
1024

Slot Header

Logical view
of this page 5030

Invisible

Dirty Record of
Slotted Page

Slot Header

3

Page A

Page B

800 900 1000
900 800 Key = 10 Key = 30Key = 20Free space10003

900 1000
1000 900 Key = 50 Key = 40Free space2

800 900 1000
900 800 Key = 10 Key = 30Key = 20Free space10003

900 1000
1000 900 Key = 50 Key = 40Free space2 Key = 20

① Writing the record

invisible

Page A

Page B

800 900 1000
900 1000 Key = 10 Key = 30Key = 20Free space2

900 1000
1000 900 Key = 50 Key = 40Free space2 Key = 20

invisible

invisible

② Updating the slot header APage A

Page B

3 20 10 30

2 3A B commit

A

B

dirty record

2 20 50 40

3 20 10 30A

B 2 20 50 40

10 30

20 50 40

dirty record

A B commit2 3

Dirty Slotted
Page A

Dirty Slotted
Page B

commit

Slot Header
of Page A

Slot Header
of Page B

Recovery

A
2 3

B

NVWAL FASH FAST

Single page
update

Differential logging Slot-header logging
In-place commit

Multiple page
update Slot-header logging

Buffer cache In DRAM In PM In PM

Log In PM In PM In PM

Hybrid memory architecture PM-only architecture

DB File

WAL File

Volatile Buffer Cache

Persistent Buffer Cache

2.1x 2.6x

 FAST and FASH consistently outperform NVWAL
• FAST and FASH do not duplicate write operations for records
• NVWAL generates large log frames for large records

 FASH calls more clflush instructions for small record sizes
• The reason is that with smaller records, the slotted-page can hold more records

 FAST calls about 3 clflush instructions when the record is smaller than 64 bytes
• The slot-header size of FAST must be less than 64bytes.

발표자
프레젠테이션 노트
These experiments show the insertion time and the number of called clflush instructions for various record sizes.
When the record size is bigger, the performance gap between failure-atomic slotted paging and NVWAL increases.
It is because FAST and FASH do not duplicate write operations for records, but NVWAL generates large log frames for large records.

 “Failure-atomic slotted paging scheme” eliminates the necessity of redundant
copies by integrating logging into database buffer caching.

 PM-only memory systems can perform faster than hybrid memory systems
that consist of both PM and DRAM

 Even with a small PM, we can significantly reduce IO traffic via Slot-Header
Journaling.

http://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=WO3CFisM6ExYuM&tbnid=Zl4dSIX_fZWCfM:&ved=0CAUQjRw&url=http://www.teamjunell.com/&ei=RWLBUeK6NYHxkAXMnYG4DA&bvm=bv.47883778,d.dGI&psig=AFQjCNEOOwtcDe_3FNNW3eETT2Ky6j_SVw&ust=1371714348613795
http://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=WO3CFisM6ExYuM&tbnid=Zl4dSIX_fZWCfM:&ved=0CAUQjRw&url=http://www.teamjunell.com/&ei=RWLBUeK6NYHxkAXMnYG4DA&bvm=bv.47883778,d.dGI&psig=AFQjCNEOOwtcDe_3FNNW3eETT2Ky6j_SVw&ust=1371714348613795

	Failure-Atomic Slotted Paging for Persistent Memory
	Byte-Addressable Non-Volatile Memory
	Byte-Addressable Persistency
	Byte-Addressable Persistency
	Byte-Addressable Persistency
	Byte-Addressable Persistency
	Byte-Addressable ACID
	Failure-Atomic Slotted Paging for Persistent Memory
	How can DBMS benefit from non-volatile buffer cache?
	How can DBMS benefit from persistent memory?
	Failure-Atomic Slotted-Paging
	Failure-Atomic Slotted-Paging
	Failure-Atomic Slotted-Paging
	Failure-Atomic Slotted-Paging
	Failure-Atomic Slotted-Paging
	Failure-Atomic Slotted-Paging
	Failure-Atomic Slotted-Paging
	Failure-Atomic Slotted-Paging
	Failure-Atomic Slotted-Paging
	Failure-Atomic Slotted-Paging
	Experimental Environment
	Experimental Environment
	Experimental Results
	Insertion Performance
	Conclusions
	슬라이드 번호 26

