2B-SSD: The Case for Dual, Byte- and Block-Addressable Solid-State Drives

Duck-Ho Bae, Insoon Jo, Youra Adel Choi, Joo-Young Hwang, Sangyeun Cho, Dong-Gi Lee, Jaeheon Jeong

Memory Business, Samsung Electronics

Memory Hierarchies

Heterogeneous Memory System

- Its NVRAM (a battery-backed DRAM) requires expensive and complex logic
 - e.g., External power source, FPGA for power failure detection & recovery
- In this memory system, NVRAM is used as write buffers
 - DRAM-like fast, yet persistent
 - Perfect fit for database logging and file system journaling due to lazy flushing
 - e.g., 2X speed up with Microsoft SQL Server 2016
- SSD-based hybrid store can be a better solution for this scenario!

SSD-based Hybrid Store

- Why? NVMe SSDs already have right ingredients to realize persistent memory
 - Memory interface: PCle interconnect
 - Persistent memory (PM): a portion of internal DRAM plus additional capacitors (No external power source!)
 - Power failure handling: Added logic to SSD controller (No newly added FPGA!)
- Moreover, an internal datapath between PM and NAND flash can be built
 - Typically, logs and journals are written as bytes, but read by large chunk later

Overall Architecture

BAR Manager

1. Opens up a memory space visible to CPU

- BAR manager enables an additional
 BAR (BAR1) for byte granule file access
- BAR: "How the device advertise the amount of address range it needs"

2. Redirects memory accesses from CPU into internal DRAM

- The device is responsible for mapping internal resources to the host-visible memory ranges
- BAR manager employs an address translation unit (ATU)

BAR Manager (contd.)

3. Exploits write combining (WC) mode of the underlying CPU

- Individual writes are combined into a larger burst in CPU's WC buffer
 - 64 bytes in size in current x86 CPUs
- It leads to a significant reduction of memory accesses

BA-buffer Manager

Maintains a memory hierarchy of DRAM and NAND

- BA-buffer logic runs on an ARM core within 2B-SSD
- The BA-buffer management APIs are designed to enable applications to allocate memory on the BA-buffer, and read and write files using them
- The mapping table stores information between DRAM addresses and NAND data
 - (1) entry_id, (2) start_offset in the BA-buffer, (3) start LBA of a given file, and (4) length

Recovery Manager

- Recovery manager to turn the BA-buffer into a persistent memory consists of
 - Additional capacitance large enough to save BA-buffer contents and the BA-buffer mapping table in a reserved area of the NAND flash memory before 2B-SSD turns completely off
 - Recovery logic that runs data protection procedures launched by power loss detection circuitry

Usage and Durability Guarantee

- Two steps for ensuring ordering and durability of writes
 - WC buffer → Root Complex
 - Root Complex → BA-buffer

2B-SSD API

- BA_PIN(EID, offset, LBA, length)
- BA_FLUSH(*EID*)
- BA_SYNC(*EID*)
- BA_GET_ENTRY_INFO(EID)
- BA_READ_DMA(EID, dst, length)

Experimental Setup

H/W setup

System	Dell PowerEdge R730 server	
СРИ	2 Intel Xeon(R) CPU E5-2699	
	(18 threads per socket) @2.30GHz	
Memory	256 GiB DRAM	
OS	64-bit Ubuntu 14.04	
SSD	DC-SSD (PM963), ULL-SSD (SZ985), 2B-SSD	

- Basic performance results
 - Write/read latencies, write/Read bandwidth
- Application level results
 - Database logging (PostgreSQL, RocksDB, Redis)

2B-SSD

2B-SSD prototype implemented on Samsung Z-SSD

Item	Description
Host interface	PCIe Gen.3 x4 (3.2GB/s), NVMe 1.2
Device density	800 GB
Storage medium	Samsung Z-NAND flash memory
Capacitance of capacitors	270 uF x3
BA-buffer size	8 MB
Max entries of BA-buffer	8

Write Latency (QD1, 4KB random write)

Z-SSD (SZ985) performance

- 4KB Random Read Latency ~13us
- 4KB Random Write Latency ~10us

Two Separate Datapaths on 2B-SSD

Read Latency

Write Latency

Write Latency

Write Bandwidth

- Latest NVMe SSDs exploit hardware-automated datapath for optimized block I/O
- Internal datapath between BAbuffer and NAND flash are excluded from this automation

Read Latency

Read Latency

ULL-SSD < Read DMA (13us vs. 58us)

- The read DMA engine helps accelerate slow memory read.
- Reading by DMA is faster than MMIO, but still slower than block I/O.

Read Bandwidth

Case Study: Database Logging

---: Asynchronous logging

⁻ Dell R730, Xeon E5-2699 @2.3GHz * 36, 256GB DDR4, Ubuntu 14.04 (kernel v4.6.3), PgSQL v9.6.0, RocksDB v5.1.4, Redis 3.2.4, SZ985 storage with ext4 mounted, 64 clients (Linkbench), 64B payload size (YCSB-A)

Conclusions

- This paper described the motivation, design, and implementation of a byte- and block-addressable solid-state drive.
- Through 2B-SSD APIs, applications can write and read any number of bytes on it
 without forcing the data being buffered in the host memory.
- We demonstrate the results where major database engines can see a throughput gain of up to 2.8X without the risk of data loss.

Thank You