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Heterogeneous Memory System

= Its NVRAM (a battery-backed DRAM) requires expensive and complex logic

= e.g., External power source, FPGA for power failure detection & recovery

= |In this memory system, NVRAM is used as write buffers
= DRAM-like fast, yet persistent
= Perfect fit for database logging and file system journaling due to lazy flushing

" e.g., 2X speed up with Microsoft SQL Server 2016

= SSD-based hybrid store can be a better solution for this scenario!
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SSD-based Hybrid Store

= Why? NVMe SSDs already have right ingredients to realize persistent memory
= Memory interface: PCle interconnect

= Persistent memory (PM): a portion of internal DRAM plus additional capacitors
(No external power source!)

= Power failure handling: Added logic to SSD controller (No newly added FPGA!)

= Moreover, an internal datapath between PM and NAND flash can be built

= Typically, logs and journals are written as bytes, but read by large chunk later
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Overall Architecture
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BAR Manager

Host System

Application

-----------------------

" Host Virtual Address
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NVMe I/F

DRAM Buffer
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1. Opens up a memory space
visible to CPU

= BAR manager enables an additional
BAR (BAR1) for byte granule file access

= BAR: “How the device advertise the
amount of address range it needs”

2. Redirects memory accesses
from CPU into internal DRAM

*  The device is responsible for mapping
internal resources to the host-visible
memory ranges

*  BAR manager employs an address
translation unit (ATU)
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BAR Manager (contd.)
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3. Exploits write combining (WC)
mode of the underlying CPU

* Individual writes are combined into a larger
burst in CPU’s WC buffer
* 64 bytes in size in current x86 CPUs

* ltleads to a significant reduction of memory
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BA-buffer Manager

Host System
A I. i .o L L]
Maintains a memory hierarchy
: Host Virtual Address : Of DRAM and NAND
T ) ’ *  BA-buffer logic runs on an ARM core
Rea rite LOAD/STORE within 2B-SSD

*  The BA-buffer management APIs are
designed to enable applications to allocate
memory on the BA-buffer, and read and
write files using them

NVMe I/F

*  The mapping table stores information
between DRAM addresses and NAND data

DRAM Buffer * (1) entry_id, (2) start_offset in the BA-buffer, (3)

start_LBA of a given file, and (4) length
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Recovery Manager

= Recovery manager to turn the BA-buffer into a persistent
memory consists of

* Additional capacitance large enough to save BA-buffer contents and the
BA-buffer mapping table in a reserved area of the NAND flash memory
before 2B-SSD turns completely off

* Recovery logic that runs data protection procedures launched by power
loss detection circuitry
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Usage and Durability Guarantee

= Two steps for ensuring ordering and durability of writes

CPU

= WC buffer - Root Complex

= Root Complex - BA-buffer

\ 4

@ clflush() & mfence() ® BA-SYNC()
Y
Caches «—
J Root
BA-Buffer
Complex PCle
WC Buffer —>K

) @ BA-PIN()

@ BA-FLUSH()

NAND
Flash

10/21



2B-SSD API
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Experimental Setup

H/W setup

System

Dell PowerEdge R730 server

CPU

2 Intel Xeon(R) CPU E5-2699
(18 threads per socket) @2.30GHz

Memory

256 GiB DRAM

(ON

64-bit Ubuntu 14.04

SSD

DC-SSD (PM963), ULL-SSD (SZ985), 2B-SSD

Basic performance results

* Write/read latencies, write/Read bandwidth

Application level results

* Database logging (PostgreSQL, RocksDB, Redis)
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2B-SSD
2B-SSD prototype implemented on Samsung Z-SSD

W ,. : . Write Latency (api, 4kB random write)
| : 13.2 us

6.6X

630ns 930ins

4KB 8B 1KB 4KB
[ LLILLLY] a LU AL L
- PClei | Z-SSD 2B-SSD
(5Z985)
Item Description

Host interface PCle Gen.3 x4 (3.2GB/s), NVMe 1.2
Device density 800 GB Z-SSD (SZ985) performance
Storage medium Samsung Z-NAND flash memory * 4KBRandom Read Latency ~13us

. . * 4KB Random Write Latency ~10us
Capacitance of capacitors (270 uF x3

BA-buffer size 8 MB
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Two Separate Datapaths on 2B-SSD
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Write Latency
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Write Bandwidth

* Latest NVMe SSDs exploit
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Read Latency
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Read Latency
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Read Bandwidth
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Case Study: Database Logging

Linkbench on PostgreSQL YCSB-A on RocksDB YCSB-A on Redis

27K
SYNC BA Commit SYNC BA Commit SYNC BA Commit
Commit Commit Commit

- : Asynchronous logging

- Dell R730, Xeon E5-2699@2.3GHz * 36, 256GB DDR4, Ubuntu 14.04 (kernel v4.6.3), PgSQL v9.6.0, RocksDB v5.1.4,
Redis 3.2.4, SZ985 storage with ext4 mounted, 64 clients (Linkbench), 64B payload size (YCSB-A)
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Conclusions

* This paper described the motivation, design, and implementation of
a byte- and block-addressable solid-state drive.

 Through 2B-SSD APIs, applications can write and read any number of bytes on it
without forcing the data being buffered in the host memory.

 We demonstrate the results where major database engines can see a
throughput gain of up to 2.8X without the risk of data loss.
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