NVRAMOS 2018

2B-SSD: The Case for
Dual, Byte- and Block-Addressable
Solid-State Drives

Duck-Ho Bae, Insoon Jo, Youra Adel Choi, Joo-Young Hwang,
Sangyeun Cho, Dong-Gi Lee, Jaeheon Jeong

Memory Business, Samsung Electronics

Memory Hierarchies

Block Memory
I/F I/F
/Hsl,)s?) PM | SSD PM
Conventional Het:\e/:‘ ogeneous Hybrid Store Persistent
Two-level emory : Memor
PM in SSD Y
Hierarchy (DRAM + PM) () Store

2/21

Heterogeneous Memory System

= Its NVRAM (a battery-backed DRAM) requires expensive and complex logic

= e.g., External power source, FPGA for power failure detection & recovery

= |In this memory system, NVRAM is used as write buffers
= DRAM-like fast, yet persistent
= Perfect fit for database logging and file system journaling due to lazy flushing

" e.g., 2X speed up with Microsoft SQL Server 2016

= SSD-based hybrid store can be a better solution for this scenario!

3/21

SSD-based Hybrid Store

= Why? NVMe SSDs already have right ingredients to realize persistent memory
= Memory interface: PCle interconnect

= Persistent memory (PM): a portion of internal DRAM plus additional capacitors
(No external power source!)

= Power failure handling: Added logic to SSD controller (No newly added FPGA!)

= Moreover, an internal datapath between PM and NAND flash can be built

= Typically, logs and journals are written as bytes, but read by large chunk later

4/21

Overall Architecture

Channel #0
ARM — FMC |
Block 1/0 < NVMe chlé%ﬁer cores]
access ot controller DNAND

© SRAM .

‘© + .

b 1

£ | '

Q PLP :

— G e ———————— -

e -I : Channel #(n_.-1)

Byte «— % ATU - > DRAM " FMC =
access I “ I |
Hard H Reaf'\ | | N
ardware } DM I I
component 1 o I i NAND
== . i 1
: T S — - :
Software & | &
component BAR BA-buffer manager Read DMA| | Recovery
manager Mapping table Engine manager
- EID |[start offset |start LBA | length
1
2

5/21

BAR Manager

Host System

Application

" Host Virtual Address
] L]

IIIIIIIIIII x sssnnnnn?
Rea rite LOAD/STORE

NVMe I/F

DRAM Buffer
NAND NAND NAND NAND

1. Opens up a memory space
visible to CPU

= BAR manager enables an additional
BAR (BAR1) for byte granule file access

= BAR: “How the device advertise the
amount of address range it needs”

2. Redirects memory accesses
from CPU into internal DRAM

* The device is responsible for mapping
internal resources to the host-visible
memory ranges

* BAR manager employs an address
translation unit (ATU)

6/21

BAR Manager (contd.)

Host System

Application

Host Virtual Address E

4pEEEEEEEESR x lllllllll ‘.

3. Exploits write combining (WC)
mode of the underlying CPU

* Individual writes are combined into a larger
burst in CPU’s WC buffer
* 64 bytes in size in current x86 CPUs

* ltleads to a significant reduction of memory

Rea rite LOAD/STORE

NVMe I/F

DRAM Buffer
NAND NAND NAND NAND

accesses

Register store

}

B e

7/21

BA-buffer Manager

Host System
A I. i .o L L]
Maintains a memory hierarchy
: Host Virtual Address : Of DRAM and NAND
T) ’ * BA-buffer logic runs on an ARM core
Rea rite LOAD/STORE within 2B-SSD

* The BA-buffer management APIs are
designed to enable applications to allocate
memory on the BA-buffer, and read and
write files using them

NVMe I/F

* The mapping table stores information
between DRAM addresses and NAND data

DRAM Buffer * (1) entry_id, (2) start_offset in the BA-buffer, (3)

start_LBA of a given file, and (4) length

8/21

Recovery Manager

= Recovery manager to turn the BA-buffer into a persistent
memory consists of

* Additional capacitance large enough to save BA-buffer contents and the
BA-buffer mapping table in a reserved area of the NAND flash memory
before 2B-SSD turns completely off

* Recovery logic that runs data protection procedures launched by power
loss detection circuitry

9/21

Usage and Durability Guarantee

= Two steps for ensuring ordering and durability of writes

CPU

= WC buffer - Root Complex

= Root Complex - BA-buffer

\ 4

@ clflush() & mfence() ® BA-SYNC()
Y
Caches «—
J Root
BA-Buffer
Complex PCle
WC Buffer —>K

) @ BA-PIN()

@ BA-FLUSH()

NAND
Flash

10/21

2B-SSD API

= BA_PIN(EID, offset, LBA, length) (. Host Application]
Block|/O A ™
= BA_FLUSH(EID) (Et')
[POSI)?Gbrar\;] Zi-;sn
= BA_SYNC(EID) A\ ® o
systemcall()] E v 1 {E:TE]
= BA_GET_ENTRY_INFO(EID) (i
N /\ r
- BA_READ_DMA(EID, dst, length) submitbio(| | Jioctt
L NVM&Eriver I 2[?;'32? |
NVMe_cmd(ﬂ E iVU_cmd{}

N
2B-S5D

11/21

Experimental Setup

H/W setup

System

Dell PowerEdge R730 server

CPU

2 Intel Xeon(R) CPU E5-2699
(18 threads per socket) @2.30GHz

Memory

256 GiB DRAM

(ON

64-bit Ubuntu 14.04

SSD

DC-SSD (PM963), ULL-SSD (SZ985), 2B-SSD

Basic performance results

* Write/read latencies, write/Read bandwidth

Application level results

* Database logging (PostgreSQL, RocksDB, Redis)

12/21

2B-SSD
2B-SSD prototype implemented on Samsung Z-SSD

W ,. : . Write Latency (api, 4kB random write)
| : 13.2 us

6.6X

630ns 930ins

4KB 8B 1KB 4KB
[LLILLLY] a LU AL L
- PClei | Z-SSD 2B-SSD
(5Z985)
Item Description

Host interface PCle Gen.3 x4 (3.2GB/s), NVMe 1.2
Device density 800 GB Z-SSD (SZ985) performance
Storage medium Samsung Z-NAND flash memory * 4KBRandom Read Latency ~13us

. . * 4KB Random Write Latency ~10us
Capacitance of capacitors (270 uF x3

BA-buffer size 8 MB
13/21

Max entries of BA-buffer |18

Two Separate Datapaths on 2B-SSD

Host System

Application

" Host Virtual Address
] L]

lllllllllll x smsnmnnn?
Readf\Write LOAD/STORE
(PAGE) (BMITE)

NVMe I/F

DRAM Buffer

NAND NAND NAND

* Read Latency

151 ps
58 us
13 us
- I | |
4KB 8B 2568 4KB
Block I/0 Memory w/ DMA
* Write Latency
10 ps
630ns 930 2 |J.S
AL
4KB 88 1KB 4KB
Block Memory

14/21

Write Latency

Write latency (us)

30

25

20

15

10

—(— Block I/O (DC-55D)
|~ Blockl/O(ULLSsD)| |
—~— Block I/O (2B-SSD)
—8— MMIO
| —A— MMIO+BA SYNC() [rmrmrmmmmmmmss s oo oo oo s -
¢ * 0 ¢ & 0 o $
. A A A A i A A A £ _
MMIO < ULL-SSD
(630ns vs. 13.2us) :—

(2us vs. 4us)

N 2 N
@ O AV

I
G L NS S o

N
Request size

I MMIO < MMIO + BA_SYNC

15/21

Write Bandwidth

* Latest NVMe SSDs exploit

v - hardware-automated datapath
S 2500 P - for optimized block 1/0

= ULL-SSD > 2B-SSD * Internal datapath between BA-
S) S buffer and NAND flash are

% __ + excluded from this automation
g 2B-SSD > DC-SSD

0 Y

2

=

—)— DC-SSD
: —{+— ULL-SSD
i —8— 2B-SSD (Internal)
0 l l 1 T
0 2000 4000 6000 8000

Request size [KB]

16/21

Read Latency

160 | | | 1 1 1 I I
—)— Block I/O (DC SSD) Y
140H—3~ Block /O (ULL SSD) [------rrmmssmremmmmmrmmmr s oo
- —#~ Block /O (2B-S5D)
S5 1201 g mmio [
g MMIO < DC-SSD
> 100L =4 MMIO (Read DMA) l ______________
-
Y 80
L
S 60
g 40
ke i
201 r: 2 i
° Q2 2 N N 2 2 IQ} Q? g} :%
NN A A A PR S

Request size

150us

PCle Read is non-posted
(sync) transaction

13.2us

17/21

Read Latency

160 | | | 1 1 1 I I
—— Block I/O (DC SSD)
140H—0~ Block /O (ULL SSD) [---=-rrmmsrmrrmmmmmsmms e mmi oo o .
—~ Block I/O (2B-5SSD)
120_ . MM'D """""""""""""""""""""""""""""""""]
100l MMIO (ReadDMA) | Non-DMA>DMA/ |

--- ULL-SSD < Read DMA
(13us vs. 58us)

Read latency (us)

0 , hld hlu . = The read DMA engine helps
> Nel N N N N D el 2 accelerate slow memory read.
NN A A A PR S
R £ i = Reading by DMA is faster than
equest size MMIO, but still slower than

block 1/0.

18/21

Read Bandwidth

101010 ARSI g 4
")
S— -
T R e 1 5D > 2B-SSD
Z,
£ 2000
o
=2
T 1500 @7
-
8
e L
g —(— DC-SSD
a1 1] TP ' .
) —— ULL-SSD . .
| —8— BA-55D (Internal) 2B-55D Internal B/W
0 | | | I _
0 2000 4000 6000 8000 NAND - BA-buffer

Request size [KB]

19/21

Case Study: Database Logging

Linkbench on PostgreSQL YCSB-A on RocksDB YCSB-A on Redis

27K
SYNC BA Commit SYNC BA Commit SYNC BA Commit
Commit Commit Commit

- : Asynchronous logging

- Dell R730, Xeon E5-2699@2.3GHz * 36, 256GB DDR4, Ubuntu 14.04 (kernel v4.6.3), PgSQL v9.6.0, RocksDB v5.1.4,
Redis 3.2.4, SZ985 storage with ext4 mounted, 64 clients (Linkbench), 64B payload size (YCSB-A)

20/21

Conclusions

* This paper described the motivation, design, and implementation of
a byte- and block-addressable solid-state drive.

 Through 2B-SSD APIs, applications can write and read any number of bytes on it
without forcing the data being buffered in the host memory.

 We demonstrate the results where major database engines can see a
throughput gain of up to 2.8X without the risk of data loss.

21/21

Thank You

