
Deukyeon Hwang

UNIST

Wook-Hee Kim

UNIST

Youjip Won

Hanyang Univ.

Beomseok Nam

UNIST/SKKU

Fast but

Asymmetric

Access Latency

Non-Volatility Byte-Addressability Large Capacity

40 30 40

CPU Caches

(Volatile)

Persistent Memory (Non-Volatile)

10 2030 30 30 40

FLUSH

LOST 40!

cache line

10 20 30 40

Inserting 25 into a node

10 20 30 40 40

(0

)

(1

)

Partially updated tree node is inconsistent

Append-Only Update

→

10 20 30 30 40

10 20 25 30 40

(2

)

(3

)

40 60

P4 P6 ʌ

Node B

Logging → Selective Persistence (Internal node in DRAM)

Node Split

10 20 30 40 60

P1 P2 P3 P4 P6 ʌ

Node A

10 20 30

P1 P2 P3 ʌ

Node A

▪ Append-Only
• Unsorted keys

▪ Selective Persistence
• Internal node → DRAM

• Internal nodes have to be reconstructed from leaf nodes after failures

• Logging for leaf nodes

▪ Previous solutions

NV-Tree [FAST’15] Append-Only leaf update + Selective Persistence

wB+-Tree [VLDB’15] Append-Only node update + bitmap/slot array metadata

FP-Tree [SIGMOD’16] Append-Only leaf update + fingerprints + Selective Persistence

Selective Persistence

(DRAM + PM)

Append-Only

(Unsorted keys)

Lock-Free Search

Failure-Atomic ShifT

(FAST)

Failure-Atomic

In-place Rebalancing

(FAIR)

▪ Modern processors reorder instructions to utilize the memory bandwidth

▪ Memory ordering in x86 and ARM

▪ x86 guarantees Total Store Ordering (TSO)

▪ Dependent instructions are not reordered

x86 ARM

stores-after-stores Y N

stores-after-loads N N

loads-after-stores N N

loads-after-loads N N

Inst. w/ dependency Y Y

▪ Pointers in B+-Tree store unique memory addresses

▪ 8-byte pointer can be atomically updated

Read transactions detect transient inconsistency

between duplicate pointers

▪ transient inconsistency
• In-flight state partially updated by a write transaction

10 20 30 40 40

P1 P2 P3 P4 P5 P5

10 20 30 40

P1 P2 P3 P4 P5 P5

10 20 30 40 40

P1 P2 P3 P4 P5 P5

mfence();mfence(); TSO

10 20 30 40 g

P1 P2 P3 P4 P5 ʌ

g

ʌ

Read transactions can succeed in finding a key

even if a system crashes in any step

Insert (25, P6) into a node using FAST

g: Garbage

ʌ: Null

10 20 30 40 g

P1 P2 P3 P4 P5 P5

g

ʌ

Insert (25, P6) into a node using FAST

10 20 30 40 40

P1 P2 P3 P4 P5 P5

g

ʌ

Insert (25, P6) into a node using FAST

10 20 30 40 40

P1 P2 P3 P4 P5 P5

g

ʌ

Insert (25, P6) into a node using FAST

10 20 30 40 40

P1 P2 P3 P4 P5 P5

g

ʌ

Key 40 between duplicate pointers is ignored!

Insert (25, P6) into a node using FAST read transaction

10 20 30 40 40

P1 P2 P3 P4 P4 P5

g

ʌ

Shifting P4 invalidates the left 40

Insert (25, P6) into a node using FAST

10 20 30 30 40

P1 P2 P3 P4 P4 P5

g

ʌ

Insert (25, P6) into a node using FAST

10 20 30 30 40

P1 P2 P3 P3 P4 P5

g

ʌ

Insert (25, P6) into a node using FAST

10 20 25 30 40

P1 P2 P3 P3 P4 P5

g

ʌ

Insert (25, P6) into a node using FAST

10 20 25 30 40

P1 P2 P3 P6 P4 P5

g

ʌ

Storing P6 validates 25

Insert (25, P6) into a node using FAST

▪ It is necessary to call clflush at the boundary of cache line

10 20 30 40 g

P1 P2 P3 P4 P5 ʌ

g

ʌ

Cache Line

1
Cache Line 2

10 20 30 30 40

P1 P2 P3 P3 P4 P5

g

ʌ

Cache Line

1
Cache Line

2

mfence()
clflush()
mfence()

Cache Line 2

▪ Let’s avoid expensive logging

by making read transactions

be aware of rebalancing operations

10 20 30 40 70 80 90

▪ Blink-Tree

10 20 30 40 60

P1 P2 P3 P4 P6 ʌ

Node A

A read transaction can detect transient inconsistency

if keys are out of order

FAIR split a node

40 60

P4 P6 ʌ

Node B

10 20 30

P1 P2 P3 ʌ

40 60

P4 P6 ʌ

Node BNode A

Setting NULL pointer validates Node B.

Node A and Node B are virtually a single node

FAIR split a node

10 20 30

P1 P2 P3 ʌ

40 60

P4 P6 ʌ

Node BNode A

Migrated keys can be accessed via sibling pointer

FAIR split a node

10 20 30

P1 P2 P3 ʌ

40 50

P4 P6 ʌ

Node BNode A

60

P5

FAIR split a node

10 20 30 40 50 60

10 70 70

Node R

70 80 90

Node A Node B Node C

root

C2 C3 C3

Insert a key into the parent node using FAST after FAIR split

10 20 30 40 50 60

10 70 70

Node R

70 80 90

Node A Node B Node C

root

C2 C2 C3

Node B can be accessed from Node A

Insert a key into the parent node using FAST after FAIR split

10 20 30 40 50 60

10 70 70

Node R

70 80 90

Node A Node B Node C

root

C2 C2 C3

Node B can be accessed from Node A

➢ Searching the key 50 from the root after a system crash

key accessed by read transaction

Insert a key into the parent node using FAST after FAIR split

10 20 30 40 50 60

10 40 70

Node R

70 80 90

Node A Node B Node C

root

C2 C4 C3

FAST inserting makes Node B visible atomically

Insert a key into the parent node using FAST after FAIR split

Read transactions can tolerate any inconsistency

caused by write transactions

Read transactions can access the transient inconsistent

tree node being modified by a write transaction

Lock-Free Search

→
→

Read transaction

Write transaction

10 20 30 40 g

P1 P2 P3 P4 P5 ʌ

g

ʌ

[Example 1] Searching 30 while inserting (15, P6)

read →

shift →

10 20 30 40 g

P1 P2 P3 P4 P5 P5

g

ʌ

Read transaction

Write transaction

[Example 1] Searching 30 while inserting (15, P6)

read →

shift →

10 20 30 40 40

P1 P2 P3 P4 P5 P5

g

ʌ

Read transaction

Write transaction

[Example 1] Searching 30 while inserting (15, P6)

read →

shift →

10 20 30 40 40

P1 P2 P3 P4 P4 P5

g

ʌ

Read transaction

Write transaction

[Example 1] Searching 30 while inserting (15, P6)

read →

shift →

10 20 30 30 40

P1 P2 P3 P4 P4 P5

g

ʌ

Read transaction

Write transaction

[Example 1] Searching 30 while inserting (15, P6)

read →

shift →

10 20 30 30 40

P1 P2 P3 P3 P4 P5

g

ʌ

Read transaction

Write transaction

[Example 1] Searching 30 while inserting (15, P6)

read →

shift →

10 20 20 30 40

P1 P2 P3 P3 P4 P5

g

ʌ

Read transaction

Write transaction

[Example 1] Searching 30 while inserting (15, P6)

read →

shift →

10 20 20 30 40

P1 P2 P2 P3 P4 P5

g

ʌ

Read transaction

Write transaction

[Example 1] Searching 30 while inserting (15, P6)

read →

shift →

10 20 20 30 40

P1 P2 P2 P3 P4 P5

g

ʌ

Read transaction

Write transactionFOUND!

[Example 1] Searching 30 while inserting (15, P6)

read →

shift →

Read transaction

Write transaction

[Example 2] Searching 30 while deleting (20, P2)

10 20 30 40 g

P1 P2 P3 P4 P5 ʌ

g

ʌ

read →

 shift

Read transaction

Write transaction

10 20 30 40 g

P1 P3 P3 P4 P5 ʌ

g

ʌ

[Example 2] Searching 30 while deleting (20, P2)

read →

 shift

Read transaction

Write transaction

10 30 30 40 g

P1 P3 P3 P4 P5 ʌ

g

ʌ

[Example 2] Searching 30 while deleting (20, P2)

read →

 shift

Read transaction

Write transaction

10 30 30 40 g

P1 P3 P4 P4 P5 ʌ

g

ʌ

[Example 2] Searching 30 while deleting (20, P2)

read →

 shift

Read transaction

Write transaction

10 30 40 40 g

P1 P3 P4 P4 P5 ʌ

g

ʌ

[Example 2] Searching 30 while deleting (20, P2)

read →

 shift

Read transaction

Write transaction

10 30 40 40 g

P1 P3 P4 P5 P5 ʌ

g

ʌ

[Example 2] Searching 30 while deleting (20, P2)

read →

 shift

Read transaction

Write transaction

10 30 40 40 g

P1 P3 P4 P5 P5 ʌ

g

ʌ

30 NOT FOUND

The read transaction cannot find the key 30 due to shift operation

[Example 2] Searching 30 while deleting (20, P2)

read →

 shift

▪ Direction flag:
• Even Number

– Insertion shifts to the right.

– Search must scan from Left to Right

shift →

read →

10 20 30 40 g

P1 P2 P3 P4 P5 ʌ

g

ʌ

• Odd Number

– Deletion shifts to the left.

– Search must scan from Right to Left

counter 2

Search 40

Insert 25

▪ Direction flag:
• Even Number

– Insertion shifts to the right.

– Search must scan from Left to Right

 shift

 read

10 20 30 40 g

P1 P2 P3 P4 P5 ʌ

g

ʌ

• Odd Number

– Deletion shifts to the left.

– Search must scan from Right to Left

counter 3

Search 40

Delete 25

▪ Direction flag:
• Even Number

– Insertion shifts to the right.

– Search must scan from Left to Right

 shift

10 20 30 40 g

P1 P2 P3 P4 P5 ʌ

g

ʌ

• Odd Number

– Deletion shifts to the left.

– Search must scan from Right to Left

counter 2

Search 40 read →

Delete 25

3

The read transaction has to check the counter once again to make

sure the counter has not changed. Otherwise, search the node again.

Transaction A Transaction B

The ordering of Transaction A and Transaction B cannot be determined

BEGIN
INSERT 10
SUSPENDED

WAKE UP

ABORT

BEGIN
SEARCH 10(FOUND)
COMMIT

Dirty reads problem

Our Lock-Free Search supports low isolation level

Highest

Lowest

Isolation Level

Serializable

Repeatable reads

Read committed

Read uncommitted

10 13 40 ... 99 150 1601

50 70 9010

...

...

...

For higher isolation level, read lock is necessary for leaf nodes

Leaf

Root

Lock-Free Search

High

Low

Lock Contention

▪ Xeon Haswell-Ex E7-4809 v3 processors
• 2.0 GHz, 16 vCPUs with hyper-threading enabled, and 20 MB L3 cache

• Total Store Ordering (TSO) is guaranteed

▪ g++ 4.8.2 with -O3

▪ PM latency

• Read latency

– A DRAM-based PM latency emulator, Quartz

• Write latency

– Injecting delay

• Sorted keys, cache locality, and memory level parallelism

→ up to 20X speed up

FAST+FAIR→ FP-Tree → wB+-Tree → WORT → Skiplist

• FAST+Logging uses logging instead of FAIR when splitting a node

WORT, FAST+FAIR, FP-Tree → FAST+Logging → wB+-Tree → Skiplist

• clflush: I/O time

• Search: Tree traversal time

• Node Update: Computation

time

New
Order

Paymen
t

Order
Status

Delivery Stock
Level

W1 34% 43% 5% 4% 14%

W2 27% 43% 15% 4% 11%

W3 20% 43% 25% 4% 8%

W4 13% 43% 35% 4% 5%

• FAST+FAIR consistently outperforms other indexes because of its good

insertion performance and superior range query performance

Specification of TPCC workloads
More Range

Queries

(a) 50M Search (b) 50M Insertion (c) 200M Search /

50M Insertion / 12.5M Deletion

• Lock-free search with FAST+FAIR shows high scalability and performance

• FAST+FAIR+LeafLock shows comparable scalability and provides high

concurrency level

▪ We designed a byte addressable persistent B+-Tree that
• stores keys in order

• avoids expensive logging

▪ FAST and FAIR always transform B+-Trees into consistent/transient
inconsistent B+-Trees

▪ Lock-Free search
• By tolerating transient inconsistency

Deukyeon Hwang

UNIST

Wook-Hee Kim

UNIST

Youjip Won

Hanyang Univ.

Beomseok Nam

UNIST

• To guarantee the order of instructions, the dmb instruction is used for

FAST+FAIR

• Although there is an overhead by dmb, FAST+FAIR is less affected by latency

