FlashShare: Punching Through Server
Storage Stack from Kernel to Firmware
for Ultra-Low Latency SSDs

Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon Koh,
Changlim Lee, Mohammad Alian, Myoungjun Chun, Mahmut
Kandemir, Nam Sung Kim, Jihong Kim and Myoungsoo Jung

PennState

\umw«?% ‘}L‘:::’
X% ;E!\ ILLINOIS

Executable Summury
Latency-critical & ' Throughput
application APACHE appllcatlon

average turnaround

Unaware of Sponse times by 22%
ULL-SSD

educe 99t"-percentile

Unaware of
latency-critical haround response times
appllcat|n by 31%
FlashShare
Memory.-like ULL-SSD ? Punches through .
serformance the performance barriers
Datacenter 3

L

Motivation: applications In datacenter

Datacenter executes a wide range of latency-critical workloads.
* Driven by the market of social media and web services;

* Required to satisfy a certain level of service-level agreement;
e Sensitive to the latency (i.e., turn-around response time);

A typical example: Apache
YP PIE- AP apacheserver

I | TCP/IP service
1

:

l
> worker | |
> worker :
l

:

‘data obj.\

HTTP
request

A key metric: \\D I
user experience respond'

Motivation: applications In datacenter

* Latency-critical applications exhibit varying loads during a day.
 Datacenter overprovisions its server resources to meet the SLA.
 However, it results in a low utilization and low energy efficiency.

_':'-_H;-. 100 0.03 [- ; . . .
g Q o0.025 30% avg'
S 80 £ 11l utilization
o L — o.02 1 1
5 60 © l |
= C0.015 | 1
‘E 40 .8 0.01 {1 ||| | y
[= O
@ l
00 12 24 00 01 02 03 04 05 06 07 08 09 1
Hour of the day CPU utilization
Figure 1. Example diurnal pattern in queries Figure 2. CPU utilization analysis of
per second for a Web Search cluster?. Google server cluster?.

lPower Management of Online Data-Intensive Services. 2The Datacenter as a Computer.

Motivation: applications In datacenter

Popular solution: co-locating latency-critical and throughput workloads.
ISCA’15

* /7
Micro’11
Heracles: Improving Resource Efficiency at Scale

BUbee-Up: IncreaSing Utillzatlon in MOdern V_Varehouse David Lo”, Liqun Chengi. Rama Guvindamjui. Parthasarathy F{arlganzll_h:unt and Christos I’Cl.):),fmkj&fr
Scale Computers via Sensible Co-locations Stanford Univemitgfr Google, Inc.?

Jason Mars Lingjia Tang Abstract But, to amortize the much larger capital expenses, an increased

or#g)l(g?:ltsy \?ifrviiﬁianigdu |1gpé\;%r§it\¥it?f i\r‘;iirgigigu User-facing, latency-sensitive services, such as websearch, emphasis on the effective use of server resources is warranted.
I 9) 9 underutilize their computing resowrces during daily periods of : Slewer_al stdics have Estat?llshe:l hat th average server utl-
Robert Hundt Kevin Skadron Mary Lou Soffa low traffic. Reusing those resources for other rasks is rarely done ~ 11Z3tion in most datacenters is low, ranging between 10% and
Google University of.VIr.gn:ua University ?f \f\rglnla in production services since the contention far shared resoltrces 30% [14, 74, 66,7, 19, 13). A primary reason for the low uti-
rhundt@google.com skadron@cs.virginia.edu soffa@cs.virginia.edu can cause hrw_’!“_ spikr:'s that vielaie the “,n,:-‘,;,_!ﬁ_ﬂ. ub-'w:ril'rs lization is the popularity of latency-critical (LC) services such as
= e ———— : social media, search engines, software-as-a-service, online maps,
ABSTRACT 100% webmail, machine translation, online shopping and advertising.
As much of the world’s computing continues to move into % Rect)ll(!lllllg H.lgll SEI'VEI" UtlllZﬂthll These user-facing senrllr:esl are typically "'mh?d across thowsands
the cloud, the overprovisioning of computing resources to 5 % of servers and access distributed state stored in memory or Flash
ensure the performance isolation of latency-sensitive tasks, g 8w and S“b.millisecond Quality.of.Service across these servers. While their load varies significantly due to
such as web search, in modern datacenters is a major con- s 0% diurnal patterns and unpredictable spikes in user accesses, it is
tributor to low machine utilization. Being unable to accu- 2 5% diffienlt ton ranenlidata lnad nn a enhest of hioghlv ntilived cervere

| Jacob Leverich Christos Kozyrakis

Computer Science Department, Stanford University

Qv hrtoe) s sanford o Eurosys’14

Abstract provements. In the past, we could also rely on deploying
new servers with processors offering higher performance at
the same power consumption; in effect. by replacing servers
year after year, we could achieve greater compute capability
without having to invest in new power or cooling infrastruc-
ture. However, the end of voltage scaling has resulted in a
significant slowdown in processor performance scaling [9].

The simplest strategy to guarantee good quality of service
(QoS) for a latency-sensitive workload with sub-millisecond
latency in a shared cluster environment is to never run other
workloads concurrently with it on the same server. Unfortu-
nately, this inevitably leads to low server utilization, reduc-
ing both the capability and cost effectiveness of the cluster. o - -

Tn_thi lyze the chall F quaintuiving A datacenter operator can still increase capability by build-

Challenge: applications in datacenter

Experiment: Apache+PageRank vs. Apache only
Server configuration:

Components | Spec. | Components | Spec.
17-4790 Memor 32GB
CPU 3.6GHz y DDR3
8 cores | Chipset H97
Applications:

Apache — Online latency-critical application;
PageRank — Offline throughput application;

Performance metrics:
SSD device latency;

Response time of latency-critical application;

Challenge: applications in datacenter

Experiment: Apache+PageRank vs. Apache only

o

SSD latency
Increase (times)
L\ .
, Response time
increase (%)

bS5t gofyg O
Fig 1: Apache SSD latency Fig 2:
increases due to PageRank.

 The throughput-oriented application drastically increases the |I/O access

latency of the latency-critical application.

* This latency increase deteriorates the turnaround response time of

the latency-critical application.

N
Q9

P*\‘g 95\“ 99\ 00. 9\“

Apache response time

increases due to PageRank.

—
w
N

L

Challenge: ULL-SSD

There are emerging Ultra Low-Latency SSD (ULL-SSD) technologies,
which can be used for faster I/O services in the datacenter.

Optane nvNitro ZNAND XL-Flash
Technique Phas: Ac&a”ge MRAM New NAND Flash
Vendor Intel Everspin Samsung Toshiba
Read 10us 6uUs 3us N/A
Write 10us 6uUs 100us N/A

Challenge: ULL-SSD

In this work, we use engineering sample of Z-SSD.

Z-NAND?

echnolo SLC based 3D NAND
gy 48 stacked word-line layer
Capacity 64Gb/die
Page Size 2KB/Page

. 111

ives “Z-SSD” T
[1] Cheong, Wooseong, et al. "A flatsh memory controller for 15us ultra-low-latency SSD using high-speed 3D NAND >
flash with 3us read time." 2018 IEEE International Solid-State Circuits Conference-(ISSCC), 2018. L

Challenge: Datacenter server with ULL-SSD

Unfortunately, the short latency characteristics of ULL-SSD cannot be

exposed to users (in particular, for the latency-critical applications).
Server configuration:

y

—=— Offline app. —e— Online app.

O 1 .
Components | Spec. | Components | Spec. %B\]g? 36Us 53U 42X —
74790 | \ro 32GB S £107 —o
CPU 3.6GHz Y DDR3 | : € 10:

8 cores | Chipset HOT | g 58870 58875 (msss) 880 58,885
Applications: 5 Device latency analysis
Apache — online latency-critical
application;

PageRank — offline throughput
application;

Challenge: Datacenter server with ULL-SSD

ULL-SSD fails to bring short latency, because of the storage stack.

B s e

CaCh'” layer The storage stack is unaware of the
F,|esystem characteristics of both latency-critical
workload and ULL-SSD

The current design of blkmq layer,
NVMe driver, and SSD firmware can

NVMe Driver

hurt the performance of latency-
critical applications.

ULL-SSD

: challenge

Software queue: holds latency-critical I/O requests for a long time;

-
O Em Em W] Req | Req | Req

Cachln layer \
Q
I tem ©
Filesys

Y 2
3
o

m [

Quewing

NVMe Driver

/O submission

Hardware
Queue

ULL-SSD /

: challenge

Software queue: holds latency-critical I/O requests for a long time;
Hardware queue: dispatches an 1I/O request without a knowledge of

Efﬂ @ % the latency-criticality;
\

Cachln layer

F|Iesystem

Software
Queue

NVMe Driver

/O submission

Hardware
Queue

Dispatch /

ULL-SSD

s optimization
Caiesolutidticddyp@ss.bypass blkmq for a faster response;
Throughput I/Os: merge in.blkma for a hi dwidth.
JE; :‘f’ . Rl e | Tovsea Y e |

Cachln layer

LatReq \

F|Iesystem

Software
Queue

HEE NN IS IS S S e A S S S S S S S YEE -

Bypass

NVMe Driver

Little penalty

/O submission

I
Addressed
iIn NVMe

Hardware
Queue

ULL-SSD

: challenge (bypass is not simple enough)

NVMe protocol-level queue: a latency-critical I/O request can be blocked

by prior I/O requests; ndmeL

Eﬂ ﬂfﬂ @ requests

Wtch -self + ZXTfetch

Cachm layer

ad

c F|Iesystem ead
9 . ol = O
\ blkmg t ol 9| 2
— + Dpelpet S| o S
g NVMe SQ NVMe CQ 8l©
>
28 NVMe Driver Rin N
3 | Ring
=
SQ doorbell CQ doorbell
register controller register
ULL-SSD

Target: Designing towards a responsiveness-aware NVMe submission.

Key Insight:

 Conventional NVMe controller(s) allow to customize the standard arbitration
strategy for different NVMe protocol-level queue accesses.

 Thus, we can make the NVMe controller to decide which NVMe command to
fetch by sharing a hint for the I/0 urgency.

: optimization
Our Solution: 3 Neubde Htk%ia dswdhegyragiséerthe highest priority to the Lat-SQ

(one for Iafngoc%crltl

cal IEOSE ano

ThrReq

ther for throughput 1/0s)
LatReq

Efa mlgg % requests

/O submission

Cachln layer

cQ

Core 0

Core 2

Core 1

pch Fg;jgo stpone

F|Iesystem
blkmg
Lat-S
NVMe Driver mmedi
Lat-SQ
doorbell

ULL-SSD

| Thr-sq MINIYED
rldoorbel| (sl G1AN

CQ
doorbell

SSD firmware: challenge

Embedded cache canuisigpdihte dakteas tiesmo eghipalt If€trestsan eviction;
(DRAM service)

o

/O submission

Cachln layer

F|Iesystem

blkmg

|

NVMe Driver

Incoming requests

(UMY IEL[@L0RY | Req@0x04] | Reqf Req@0x0b]

T Cost: T+ TeackEnano + T cacHe)

NVMe Controller

FTL \

\ "NAND Flash

=

SSD firmware: optimization

Our design: splits the internal cache space to protect latency-critical I/O

requests;

o

/O submission

Cachln layer

F|Iesystem

blkmg

|

NVMe Driver

Incoming requests

SEL[CLOON BACLIRINGEY | Req@0x04| | Req@0x08]

!

NVMe Controller

Caching Layer

!

FTL

!

\ "NAND Flash

pEN

=
- =
Gl G G eéaG aGe @& ¢

o
=

: challenge

NVMe completion: MSI overhead for eaelapdfG requesks. Tic

-1

Caching layer

1

Filesystem

4
blkmqg

NVMe Driver

/0 completion

ULL-SSD

% Controller

Interrupt

CPU

context

>

Interrupt

switch ISRV eI0idlal=R s\witch

MSI Interrupt

Cost: Tes
context —

ayer

J

> T
=
=
faa)

SQ doorbell
register

Message

INVIVICT

controller

CQ doorbell
register

Key insight: state-of-the-art Linux supports a poll mechanism; a;
Interrupt =
Controller =3
A A
j (aa]
Ca chmfg layer §-
Filesystem -
4 e ol = %
blkmg = ol @ %
24 N\VMe SQ NVMeCQ S oFS

NVMe Driver

/0 completion

SQ doorbell I\I/I“evslsv?ge CQ doorbell

register controller register
ULL-SSD _)

Poll mechanism can bring benefits to fast storage device.

ULL SSD

~

930; Read ‘022t Write
QO
0 28t N
Soel Interrupt £ 3201 Interrupt
z24f 2180\
g 22 A 3 16}
® 20+ 4 ° E ’
218} / Poliing | =141
16y o7 . L
o 14 5 10} ° Polling

>

Decreases by
Read: 7.5% & Write: 13.2%

However, the poll-based 1/0O services consume most host resources.

A1oo—/'— < 100; Pol}ing
S - S 80|
< 8orPolling = 80_’Interert
@)
= 60) Interrupt é 60
S oy o
L O |
E 20 - 20
S o s ol

Time D:L‘Q)%%i?'é‘iﬁ‘@

Our solution: selective interrupt service routine (Select-ISR).
Sleep
In

intersy LatRe _ i Interrupt
% & Controer g CPU sl Service Routine
j N

Caching layer

1

Filesystem

4
blkmqg

Core O
Core 1
Core 2

NVMe SQ NVMe CQ

MSI Interrupt

NVMe Driver

/0 completion

SQ doorbell Muevsﬁf?ge CQ doorbell

register controller register
ULL-SSD _)

Design: Responsiveness Awareness

Key Insight: users have a better knowledge of 1/0O responsiveness (i.e., latency

critical/throughput).

Our Approach:

 Open a set of APIs to users, which pass the workload attribute to Linux PCB.
chworkload_attr
USAGE: chworkload_attr -t type [-p process_id] [user_program]

DESCRIPTION: set application type

Invoke new Modify Linux PCB
= (T~ G

Call a new utility:

chworkload attr

Int s_ched__setworklo_ad_ attr(){ SYSCALL_DEFINE2(
sched_setworkload_attr, pid_t, pid, struct task_struct {
int, workload_attr)

return syscall(

sys_sched _setworkload _attr, pid, attr); volatile long state;
e cehed aetworkload att int sched_setworkload_attr unsigned int policy;
int sched_getworkload_attr(){ (_st{uct t/?fk_jtrﬁt)?p' unsigned int
int workload_attr. i
return syscall(- workload_attr;
sys_sched_getworkload_attr, pid, attr); p->workload_attr =
}) workload_attr;)

—
w
N

L

Design: Responsiveness Awareness

Key Insight: users have a better knowledge of 1/0O responsiveness (i.e., latency

critical/throughput).

Our Approach:

 Open a set of APIs to users, which pass the workload attribute to Linux PCB.
* Deliver the workload attribute to each layer of storage stack.

User Process >
Workload L — — —
l task struct attr"bute 1 q;g
D
File system \ 4 Q| o
+ |y BIO €« —=-— &3
| N 2
Block layer | a
(blk-mq) \4 v
¢ request : 3
0
NVMe driver \ 4 ®
nvme rw command |rsvd2
D G G G @G i ---------
|
NVMe ¥ » Embedded
controller cache

nvme cmd | [F==—=—= » | tag array

More optimizations

Advanced caching layer designs:

* Dynamic cache split scheme: to maximize cache hits in various request
patterns;

* Read prefetching: better utilize SSD internal parallelism;

* Adjustable read prefetching with ghost cache: adaptive to different
request patterns;

Hardware accelerator designs:

* Conduct simple but timing-consuming tasks such as I/O poll and I/O
merge;

* Simplify the design of blkmqg and NVMe driver.

—
w
N

L

Experiment Setup

Test Environment

gems SimpleSSD P N
parameters value parameters values ’ Y
core 64-bit ARM, 8, 2GHz | read/write/erase 3us/100us/1ms
L1DS/L1I$ 64KB, 64KB channel/package 16/1
mem ctrler 1 die/plane 8/8
memory DDR3, 2GB page size 2KB
Kernel 4.9.30 DMA/PClIe 800MHz,3.0, x4
Tmage Ubuntu 14.04 DRAM cache [5GB http://simplessd.org

System configurations:

* Vanilla—a vanilla Linux-based computer system running on ZSSD;

e CacheOpt —compared to Vanilla, it optimizes the cache layer of SSD firmware;
* KernelOpt — it optimizes blkmg layer and NVMe 1/O submission;

* SelectISR — compared to KernelOpt, it adds the optimization of selective ISR;

—
w
N

L

Evaluation: latency breakdown

—_
(7))
-]

N

NVMe SQ W ait time

B0 completion [IIS/W & H/W Q

SSD

o
S

I/O service brkdown
N RO o
R

\
NEAOrY \A

* KernelOpt reduces the time cost of blkmqg layer by 46% thanks to no queuing time;
* As latency-critical I/Os are fetched by NVMe controller immediately, KernelOpt drastically

reduces the waiting time;

1V
o S5us reduction

: $46% reduction

(3

* CacheOpt better utilizes the embedded cache layer and reduces the SSD access delays by 38%;

* By selectively using polling mechanism, SelectISR can reduce the I/O completion time by 5us

l‘

N

L

Evaluation: online I/O access

Vanilla—CacheOpt———KernelOpt
SelectlS

~300{

1 ' 1 ! | ! | !
, P i
B rat - 1
' Y " 2\J '
T L

/O service
latency (us

%0 180 130
/O request ID

* CacheOpt reduces the average I/O service latency, but it cannot eliminate the long tails;

* KernelOpt can remove the long tails, because it can avoid long queuing time and prevents
throughput I/Os from blocking latency-critical I/Os;

» SelectISR reduces the average latency further, thanks to selectively using poll mechanism.

—
w
N

L

Observation

The ultra-low latency of new memory-based SSDs is not exposed to latency-critical
application and have no benefit from user-experience angle;

Challenge

Piecemeal reformations of the current storage stack won’t work due to multiple
barriers; the storage stack is unaware of all behaviors of ULL-SSD and latency-
critical applications;

Our solution

FlashShare: We expose different levels of I/O responsiveness to the key
components in the current storage stack and optimize the corresponding system
layers to make ULL visible to users (latency-critical applications).

 Reducing average turnaround response times by 22%;

e Reducing 99t"-percentile turnaround response times by 31%. g??
_/

L

Thank you

