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Motivation: applications in datacenter
Datacenter executes a wide range of latency-critical workloads.
• Driven by the market of social media and web services;
• Required to satisfy a certain level of service-level agreement;
• Sensitive to the latency (i.e., turn-around response time);
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Motivation: applications in datacenter
• Latency-critical applications exhibit varying loads during a day.
• Datacenter overprovisions its server resources to meet the SLA.
• However, it results in a low utilization and low energy efficiency.

Hour of the day

Figure 1. Example diurnal pattern in queries 
per second for a Web Search cluster1.

1Power Management of Online Data-Intensive Services.
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Figure 2. CPU utilization analysis of 
Google server cluster2.

2The Datacenter as a Computer.
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Motivation: applications in datacenter
Popular solution: co-locating latency-critical and throughput workloads.

Micro’11 ISCA’15

Eurosys’14



Challenge: applications in datacenter

Applications:
Apache – Online latency-critical application;
PageRank – Offline throughput application;

Server configuration:

Experiment: Apache+PageRank vs. Apache only

Performance metrics:
SSD device latency;
Response time of latency-critical application;



Challenge: applications in datacenter
Experiment: Apache+PageRank vs. Apache only

• The throughput-oriented application drastically increases the I/O access
latency of the latency-critical application.

• This latency increase deteriorates the turnaround response time of
the latency-critical application.

Fig 2: Apache response time 
increases due to PageRank.

Fig 1: Apache SSD latency 
increases due to PageRank.



Challenge: ULL-SSD
There are emerging Ultra Low-Latency SSD (ULL-SSD) technologies,
which can be used for faster I/O services in the datacenter.

ZNAND XL-Flash

New NAND Flash

Samsung Toshiba

3us N/A

100us N/A

Optane nvNitro

Technique
Phase change 

RAM
MRAM

Vendor Intel Everspin

Read 10us 6us

Write 10us 6us



Challenge: ULL-SSD
In this work, we use engineering sample of Z-SSD.

Z-NAND1

Technology
SLC based 3D NAND

48 stacked word-line layer

Capacity 64Gb/die

Page Size 2KB/Page

Z-NAND based archives “Z-SSD”
[1] Cheong, Wooseong, et al. "A flash memory controller for 15μs ultra-low-latency SSD using high-speed 3D NAND 
flash with 3μs read time." 2018 IEEE International Solid-State Circuits Conference-(ISSCC), 2018.



Challenge: Datacenter server with ULL-SSD

Applications:
Apache – online latency-critical 
application;
PageRank – offline throughput 
application;

Device latency analysis

42x
36us 28us

Server configuration:

Unfortunately, the short latency characteristics of ULL-SSD cannot be 
exposed to users (in particular, for the latency-critical applications).



Challenge: Datacenter server with ULL-SSD

The storage stack is unaware of the 
characteristics of both latency-critical 

workload and ULL-SSD
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The current design of blkmq layer, 
NVMe driver, and SSD firmware can 

hurt the performance of latency-
critical applications.

ULL-SSD fails to bring short latency, because of the storage stack.
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Blkmq layer: challenge
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Blkmq layer: challenge
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Blkmq layer: optimization
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NVMe SQ: challenge (bypass is not simple enough)
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NVMe SQ: optimization
Incoming 

+ 2xT

Target: Designing towards a responsiveness-aware NVMe submission.
Key Insight: 
• Conventional NVMe controller(s) allow to customize the standard arbitration 

strategy for different NVMe protocol-level queue accesses.
• Thus, we can make the NVMe controller to decide which NVMe command to 

fetch by sharing a hint for the I/O urgency.



NVMe SQ: optimization
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SSD firmware: challenge
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SSD firmware: optimization

App App App
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Our design: splits the internal cache space to protect latency-critical I/O
requests;
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Filesystem

NVMe Driver

Caching layer
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NVMe CQ: challenge

App App App

ULL-SSD

NVMe completion: MSI overhead for each I/O request;

ULL-SSD

NVMe Driver

C
o

re
 1

C
o

re
 0

C
o

re
 2

NVMe SQ NVMe CQ

SQ doorbell
register

NVMe
controller

CQ doorbell
register

Message

Head
Tail

Interrupt
Controller CPU Interrupt 

Service Routine

M
SI

 In
te

rr
u

p
t

context
switch

B
lk

m
q

la
ye

r

context
switch

Tail

Cost: 2xTCS +TISR

I/
O

 c
o

m
p

le
ti

o
n

Cost: TCS Cost: TCSCost: TISR



Filesystem
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NVMe CQ: optimization
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Key insight: state-of-the-art Linux supports a poll mechanism;

Poll
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NVMe CQ: optimization
Poll mechanism can bring benefits to fast storage device.
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NVMe CQ: optimization
However, the poll-based I/O services consume most host resources.
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NVMe CQ: optimization
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Design: Responsiveness Awareness
Key Insight: users have a better knowledge of I/O responsiveness (i.e., latency 
critical/throughput).
Our Approach:
• Open a set of APIs to users, which pass the workload attribute to Linux PCB.

Call a new utility: 
chworkload_attr

Modify Linux PCB
data structure

Invoke new 
system call



Design: Responsiveness Awareness
Key Insight: users have a better knowledge of I/O responsiveness (i.e., latency 
critical/throughput).
Our Approach:
• Open a set of APIs to users, which pass the workload attribute to Linux PCB.
• Deliver the workload attribute to each layer of storage stack.
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More optimizations
Advanced caching layer designs:

• Dynamic cache split scheme: to maximize cache hits in various request 
patterns;

• Read prefetching: better utilize SSD internal parallelism;
• Adjustable read prefetching with ghost cache: adaptive to different 

request patterns;

Hardware accelerator designs:
• Conduct simple but timing-consuming tasks such as I/O poll and I/O

merge;
• Simplify the design of blkmq and NVMe driver.



Experiment Setup

Test Environment

System configurations:
• Vanilla – a vanilla Linux-based computer system running on ZSSD;
• CacheOpt – compared to Vanilla, it optimizes the cache layer of SSD firmware;
• KernelOpt – it optimizes blkmq layer and NVMe I/O submission;
• SelectISR – compared to KernelOpt, it adds the optimization of selective ISR;

http://simplessd.org



Evaluation: latency breakdown

46% reduction

38% reduction 5us reduction

• KernelOpt reduces the time cost of blkmq layer by 46% thanks to no queuing time;
• As latency-critical I/Os are fetched by NVMe controller immediately, KernelOpt drastically 

reduces the waiting time;
• CacheOpt better utilizes the embedded cache layer and reduces the SSD access delays by 38%;
• By selectively using polling mechanism, SelectISR can reduce the I/O completion time by 5us.



Evaluation: online I/O access

• CacheOpt reduces the average I/O service latency, but it cannot eliminate the long tails;
• KernelOpt can remove the long tails, because it can avoid long queuing time and prevents 

throughput I/Os from blocking latency-critical I/Os;
• SelectISR reduces the average latency further, thanks to selectively using poll mechanism.



Conclusion
Observation 
The ultra-low latency of new memory-based SSDs is not exposed to latency-critical 
application and have no benefit from user-experience angle;
Challenge
Piecemeal reformations of the current storage stack won’t work due to multiple 
barriers; the storage stack is unaware of all behaviors of ULL-SSD and latency-
critical applications; 
Our solution
FlashShare: We expose different levels of I/O responsiveness to the key 
components in the current storage stack and optimize the corresponding system 
layers to make ULL visible to users (latency-critical applications). 
Major results
• Reducing average turnaround response times by 22%;
• Reducing 99th-percentile turnaround response times by 31%.
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