
FlashShare: Punching Through Server 

Storage Stack from Kernel to Firmware 

for Ultra-Low Latency SSDs

Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon Koh, 

Changlim Lee, Mohammad Alian, Myoungjun Chun, Mahmut 

Kandemir, Nam Sung Kim, Jihong Kim and Myoungsoo Jung



Executable Summary

FlashShare
Punches through
the performance barriers

Reduce average turnaround
response times by 22%

Reduce 99th-percentile 
turnaround response times 

by 31%

Datacenter

Latency-critical 
application

Throughput 
application

Memory-like
performance

Flash Firmware

NVMe Driver

Block Layer

File System

Interference

Lo
n

ge
r 

I/
O

 la
te

n
cy

ULL-SSD

Unaware of 
ULL-SSD

Unaware of 
latency-critical 

application

Barrier

U
lt

ra
 lo

w
 la

te
n

cy



Motivation: applications in datacenter
Datacenter executes a wide range of latency-critical workloads.
• Driven by the market of social media and web services;
• Required to satisfy a certain level of service-level agreement;
• Sensitive to the latency (i.e., turn-around response time);

A typical example: Apache

respond

serverapache

m
o

n
it

o
r

TCP/IP service

q
u

e
u

e
data obj.

worker

worker

TCP/IP service

worker

data obj.

HTTP
request

A key metric:
user experience



Motivation: applications in datacenter
• Latency-critical applications exhibit varying loads during a day.
• Datacenter overprovisions its server resources to meet the SLA.
• However, it results in a low utilization and low energy efficiency.

Hour of the day

Figure 1. Example diurnal pattern in queries 
per second for a Web Search cluster1.

1Power Management of Online Data-Intensive Services.

Fr
ac

ti
o

n
 o

f 
Ti

m
e

CPU utilization

Figure 2. CPU utilization analysis of 
Google server cluster2.

2The Datacenter as a Computer.

Varying
loads

30% avg.
utilization



Motivation: applications in datacenter
Popular solution: co-locating latency-critical and throughput workloads.

Micro’11 ISCA’15

Eurosys’14



Challenge: applications in datacenter

Applications:
Apache – Online latency-critical application;
PageRank – Offline throughput application;

Server configuration:

Experiment: Apache+PageRank vs. Apache only

Performance metrics:
SSD device latency;
Response time of latency-critical application;



Challenge: applications in datacenter
Experiment: Apache+PageRank vs. Apache only

• The throughput-oriented application drastically increases the I/O access
latency of the latency-critical application.

• This latency increase deteriorates the turnaround response time of
the latency-critical application.

Fig 2: Apache response time 
increases due to PageRank.

Fig 1: Apache SSD latency 
increases due to PageRank.



Challenge: ULL-SSD
There are emerging Ultra Low-Latency SSD (ULL-SSD) technologies,
which can be used for faster I/O services in the datacenter.

ZNAND XL-Flash

New NAND Flash

Samsung Toshiba

3us N/A

100us N/A

Optane nvNitro

Technique
Phase change 

RAM
MRAM

Vendor Intel Everspin

Read 10us 6us

Write 10us 6us



Challenge: ULL-SSD
In this work, we use engineering sample of Z-SSD.

Z-NAND1

Technology
SLC based 3D NAND

48 stacked word-line layer

Capacity 64Gb/die

Page Size 2KB/Page

Z-NAND based archives “Z-SSD”
[1] Cheong, Wooseong, et al. "A flash memory controller for 15μs ultra-low-latency SSD using high-speed 3D NAND 
flash with 3μs read time." 2018 IEEE International Solid-State Circuits Conference-(ISSCC), 2018.



Challenge: Datacenter server with ULL-SSD

Applications:
Apache – online latency-critical 
application;
PageRank – offline throughput 
application;

Device latency analysis

42x
36us 28us

Server configuration:

Unfortunately, the short latency characteristics of ULL-SSD cannot be 
exposed to users (in particular, for the latency-critical applications).



Challenge: Datacenter server with ULL-SSD

The storage stack is unaware of the 
characteristics of both latency-critical 

workload and ULL-SSD

App App App

ULL-SSD

Caching layer

Filesystem

blkmq

NVMe Driver

blkmq

The current design of blkmq layer, 
NVMe driver, and SSD firmware can 

hurt the performance of latency-
critical applications.

ULL-SSD fails to bring short latency, because of the storage stack.

NVMe Driver

ULL-SSD



Blkmq layer: challenge

App App App

ULL-SSD

Caching layer

Filesystem

blkmq

NVMe Driver

I/
O

 s
u

b
m

is
si

o
n

blkmq
So

ft
w

ar
e

 Q
u

eu
e

H
ar

d
w

ar
e

 Q
u

eu
e

Req
Req

Merge

Req

Req Req ReqIncoming 
requests

Req

Req

Merge

Req

Queuing Queuing

Software queue: holds latency-critical I/O requests for a long time;



Blkmq layer: challenge

App App App

ULL-SSD

Caching layer

Filesystem

blkmq

NVMe Driver

blkmq
So

ft
w

ar
e

 Q
u

eu
e

H
ar

d
w

ar
e

 Q
u

eu
e

Dispatch

Token=1 Token=0Token=0

Req
Req
Req

Req
Req

Software queue: holds latency-critical I/O requests for a long time;
Hardware queue: dispatches an I/O request without a knowledge of

the latency-criticality;

I/
O

 s
u

b
m

is
si

o
n



Blkmq layer: optimization

App App App

ULL-SSD

Caching layer

Filesystem

blkmq

NVMe Driver

blkmq
So

ft
w

ar
e

 Q
u

eu
e

H
ar

d
w

ar
e

 Q
u

eu
e

Req
Req
Req

Our solution: bypass.

Req

Req

Req

Req

So
ft

w
ar

e
 Q

u
eu

e
H

ar
d

w
ar

e
 Q

u
eu

e

B
yp

as
s

LatReq ThrReq ThrReqIncoming 
requests

LatReq

No merge

No I/O 
scheduling

Latency-critical I/Os: bypass blkmq for a faster response;

ThrReq ThrReq

Throughput I/Os: merge in blkmq for a higher storage bandwidth.

Little penalty

Addressed
in NVMe

I/
O

 s
u

b
m

is
si

o
n



NVMe SQ: challenge (bypass is not simple enough)

App App App

ULL-SSD

Caching layer

Filesystem

blkmq

NVMe DriverNVMe Driver

ULL-SSD

SQ doorbell
register

NVMe
controller

CQ doorbell
register

C
o

re
 1

C
o

re
 0

C
o

re
 2

NVMe SQ NVMe CQ

Incoming 
requests

Ring

Head

Tail
Tail

Req

Wait

Head

Head

Fetch

+ Tfetch+ 2xTfetch

NVMe protocol-level queue: a latency-critical I/O request can be blocked
by prior I/O requests; Time Cost = Tfetch-self + 2xTfetch >200%

overhead

I/
O

 s
u

b
m

is
si

o
n



NVMe SQ: optimization
Incoming 

+ 2xT

Target: Designing towards a responsiveness-aware NVMe submission.
Key Insight: 
• Conventional NVMe controller(s) allow to customize the standard arbitration 

strategy for different NVMe protocol-level queue accesses.
• Thus, we can make the NVMe controller to decide which NVMe command to 

fetch by sharing a hint for the I/O urgency.



NVMe SQ: optimization

App App App

ULL-SSD

Caching layer

Filesystem

blkmq

NVMe DriverNVMe Driver

ULL-SSD

SQ doorbell
register

NVMe
controller

CQ doorbell
register

C
o

re
 1

C
o

re
 0

C
o

re
 2

NVMe SQ NVMe CQ

Ring

+ 2xT

Our Solution:

Lat-SQ 
doorbell

Thr-SQ 
doorbell

NVMe
CTL

CQ 
doorbell

C
o

re
 2

Lat-SQ Thr-SQ C
o

re
 1

C
o

re
 0

CQ

Incoming 
requests ThrReq ThrReq LatReq

Ring Postpone

1. Double SQs 
(one for latency-critical I/Os, another for throughput I/Os)
2. Double the SQ doorbell register3. New arbitration strategy: gives the highest priority to the Lat-SQ

Immediate fetch

I/
O

 s
u

b
m

is
si

o
n



SSD firmware: challenge

App App App

ULL-SSD

Caching layer

Filesystem

blkmq

NVMe Driver

Embedded cache cannot protect the latency-critical I/O from an eviction;

ULL-SSD

NVMe Controller

Caching Layer

FTL

NAND Flash

Caching Layer
I/O Hit

Miss

E
m

b
e

d
d

e
d

 C
a

ch
e

way addr

0 0x0

1 0x1

2 0x2

0x1

0x5

0x8

Req@0x01 Req@0x05 Req@0x04

Cost: TCL+TCACHECost: TCL+TFTL+TNAND +TCACHE

0x4

0x1

Evict

Req@0x08
Incoming requests

Embedded cache provides the fastest response
(DRAM service)

0x0

I/
O

 s
u

b
m

is
si

o
n

Embedded cache can be polluted by the throughput requests;

Req@0x0b

0xb 0x5



SSD firmware: optimization

App App App

ULL-SSD

Caching layer

Filesystem

blkmq

NVMe Driver

Our design: splits the internal cache space to protect latency-critical I/O
requests;

ULL-SSD

NVMe Controller

Caching Layer

FTL

NAND Flash

Caching Layer

E
m

b
e

d
d

e
d

 C
a

ch
e

way addr

0 0x0

1 0x1

2 0x2

0x1

0x5

Req@0x01 Req@0x05 Req@0x04

0x4

Evict

Req@0x08
Incoming requests

0x0

Protection
region

0x40x8

I/
O

 s
u

b
m

is
si

o
n



Filesystem

NVMe Driver

Caching layer

blkmq

NVMe CQ: challenge

App App App

ULL-SSD

NVMe completion: MSI overhead for each I/O request;

ULL-SSD

NVMe Driver

C
o

re
 1

C
o

re
 0

C
o

re
 2

NVMe SQ NVMe CQ

SQ doorbell
register

NVMe
controller

CQ doorbell
register

Message

Head
Tail

Interrupt
Controller CPU Interrupt 

Service Routine

M
SI

 In
te

rr
u

p
t

context
switch

B
lk

m
q

la
ye

r

context
switch

Tail

Cost: 2xTCS +TISR

I/
O

 c
o

m
p

le
ti

o
n

Cost: TCS Cost: TCSCost: TISR



Filesystem

NVMe Driver

Caching layer

blkmq

NVMe CQ: optimization

App App App

ULL-SSDULL-SSD

NVMe Driver

C
o

re
 1

C
o

re
 0

C
o

re
 2

NVMe SQ NVMe CQ

SQ doorbell
register

NVMe
controller

CQ doorbell
register

Interrupt
Controller CPU Interrupt 

Service Routine

M
SI

 In
te

rr
u

p
t

context
switch

B
lk

m
q

la
ye

r

context
switch

I/
O

 c
o

m
p

le
ti

o
n

Key insight: state-of-the-art Linux supports a poll mechanism;

Poll

Message

Blkmq
layer Save: 2xTCS +TISRSave: TCSSave: TISRSave: TCS



NVMe CQ: optimization
Poll mechanism can bring benefits to fast storage device.

4KB
8KB

16KB
32KB

14
16
18
20
22
24
26
28
30

A
v
e
ra

g
e
 L

a
te

n
c
y
 (


s
e
c
)

Interrupt

Polling

4KB
8KB

16KB
32KB

10

12

14

16

18

20

22

Polling

A
v
e
ra

g
e
 L

a
te

n
c
y
 (


s
e
c
)

Interrupt

ULL SSD

Decreases by

Read: 7.5% & Write: 13.2%

Read Write



NVMe CQ: optimization
However, the poll-based I/O services consume most host resources.

4KB
8KB

16KB
32KB

0

20

40

60

80

100

M
e

m
o

ry
 B

o
u

n
d

 (
%

) Polling

Interrupt

0

20

40

60

80

100

Time

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Interrupt

0

20

40

60

80

100

Time

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Polling



Interrupt
Controller

Filesystem

NVMe Driver

Caching layer

blkmq

NVMe CQ: optimization

App App App

ULL-SSD

Our solution: selective interrupt service routine (Select-ISR).

ULL-SSD

NVMe Driver

C
o

re
 1

C
o

re
 0

C
o

re
 2

NVMe SQ NVMe CQ

SQ doorbell
register

NVMe
controller

CQ doorbell
register

Message

M
SI

 In
te

rr
u

p
t

Incoming 
requests ThrReqLatReq CPU

Blkmq
layer

Message

Interrupt 
Service Routine

context
switch

I/
O

 c
o

m
p

le
ti

o
n

Sleep



Design: Responsiveness Awareness
Key Insight: users have a better knowledge of I/O responsiveness (i.e., latency 
critical/throughput).
Our Approach:
• Open a set of APIs to users, which pass the workload attribute to Linux PCB.

Call a new utility: 
chworkload_attr

Modify Linux PCB
data structure

Invoke new 
system call



Design: Responsiveness Awareness
Key Insight: users have a better knowledge of I/O responsiveness (i.e., latency 
critical/throughput).
Our Approach:
• Open a set of APIs to users, which pass the workload attribute to Linux PCB.
• Deliver the workload attribute to each layer of storage stack.

Workload
attribute

rsvd2

nvme_cmd

NVMe 
controller

task_struct
User Process

tag array

Embedded
cache

a
d

d
re

ss_
sp

a
ce

P
a

g
e

 c
a

c
h

e

BIO
File system

request

Block layer
(blk-mq)

nvme_rw_command
NVMe driver



More optimizations
Advanced caching layer designs:

• Dynamic cache split scheme: to maximize cache hits in various request 
patterns;

• Read prefetching: better utilize SSD internal parallelism;
• Adjustable read prefetching with ghost cache: adaptive to different 

request patterns;

Hardware accelerator designs:
• Conduct simple but timing-consuming tasks such as I/O poll and I/O

merge;
• Simplify the design of blkmq and NVMe driver.



Experiment Setup

Test Environment

System configurations:
• Vanilla – a vanilla Linux-based computer system running on ZSSD;
• CacheOpt – compared to Vanilla, it optimizes the cache layer of SSD firmware;
• KernelOpt – it optimizes blkmq layer and NVMe I/O submission;
• SelectISR – compared to KernelOpt, it adds the optimization of selective ISR;

http://simplessd.org



Evaluation: latency breakdown

46% reduction

38% reduction 5us reduction

• KernelOpt reduces the time cost of blkmq layer by 46% thanks to no queuing time;
• As latency-critical I/Os are fetched by NVMe controller immediately, KernelOpt drastically 

reduces the waiting time;
• CacheOpt better utilizes the embedded cache layer and reduces the SSD access delays by 38%;
• By selectively using polling mechanism, SelectISR can reduce the I/O completion time by 5us.



Evaluation: online I/O access

• CacheOpt reduces the average I/O service latency, but it cannot eliminate the long tails;
• KernelOpt can remove the long tails, because it can avoid long queuing time and prevents 

throughput I/Os from blocking latency-critical I/Os;
• SelectISR reduces the average latency further, thanks to selectively using poll mechanism.



Conclusion
Observation 
The ultra-low latency of new memory-based SSDs is not exposed to latency-critical 
application and have no benefit from user-experience angle;
Challenge
Piecemeal reformations of the current storage stack won’t work due to multiple 
barriers; the storage stack is unaware of all behaviors of ULL-SSD and latency-
critical applications; 
Our solution
FlashShare: We expose different levels of I/O responsiveness to the key 
components in the current storage stack and optimize the corresponding system 
layers to make ULL visible to users (latency-critical applications). 
Major results
• Reducing average turnaround response times by 22%;
• Reducing 99th-percentile turnaround response times by 31%.



Thank you


