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Motivation: applications In datacenter

Datacenter executes a wide range of latency-critical workloads.
* Driven by the market of social media and web services;

* Required to satisfy a certain level of service-level agreement;
e Sensitive to the latency (i.e., turn-around response time);

A typical example: Apache
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Motivation: applications In datacenter

* Latency-critical applications exhibit varying loads during a day.
 Datacenter overprovisions its server resources to meet the SLA.
 However, it results in a low utilization and low energy efficiency.
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Motivation: applications In datacenter

Popular solution: co-locating latency-critical and throughput workloads.
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Abstract provements. In the past, we could also rely on deploying
new servers with processors offering higher performance at
the same power consumption; in effect. by replacing servers
year after year, we could achieve greater compute capability
without having to invest in new power or cooling infrastruc-
ture. However, the end of voltage scaling has resulted in a
significant slowdown in processor performance scaling [9].

The simplest strategy to guarantee good quality of service
(QoS) for a latency-sensitive workload with sub-millisecond
latency in a shared cluster environment is to never run other
workloads concurrently with it on the same server. Unfortu-
nately, this inevitably leads to low server utilization, reduc-
ing both the capability and cost effectiveness of the cluster. o - -

Tn_thi lyze the chall F quaintuiving A datacenter operator can still increase capability by build-




Challenge: applications in datacenter

Experiment: Apache+PageRank vs. Apache only
Server configuration:

Components | Spec. | Components | Spec.
17-4790 Memor 32GB
CPU 3.6GHz y DDR3
8 cores | Chipset H97
Applications:

Apache — Online latency-critical application;
PageRank — Offline throughput application;

Performance metrics:
SSD device latency;

Response time of latency-critical application;




Challenge: applications in datacenter

Experiment: Apache+PageRank vs. Apache only
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Fig 1: Apache SSD latency Fig 2:
increases due to PageRank.

 The throughput-oriented application drastically increases the |I/O access

latency of the latency-critical application.

* This latency increase deteriorates the turnaround response time of

the latency-critical application.
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Challenge: ULL-SSD

There are emerging Ultra Low-Latency SSD (ULL-SSD) technologies,
which can be used for faster I/O services in the datacenter.

Optane nvNitro ZNAND XL-Flash
Technique Phas: Ac&a”ge MRAM New NAND Flash
Vendor Intel Everspin Samsung Toshiba
Read 10us 6uUs 3us N/A
Write 10us 6uUs 100us N/A




Challenge: ULL-SSD

In this work, we use engineering sample of Z-SSD.

Z-NAND?

echnolo SLC based 3D NAND
gy 48 stacked word-line layer
Capacity 64Gb/die
Page Size 2KB/Page

. 111

ives “Z-SSD” T
[1] Cheong, Wooseong, et al. "A flatsh memory controller for 15us ultra-low-latency SSD using high-speed 3D NAND >
flash with 3us read time." 2018 IEEE International Solid-State Circuits Conference-(ISSCC), 2018. L




Challenge: Datacenter server with ULL-SSD

Unfortunately, the short latency characteristics of ULL-SSD cannot be

exposed to users (in particular, for the latency-critical applications).
Server configuration:

y

—=— Offline app. —e— Online app.

O 1 .
Components | Spec. | Components | Spec. %B\]g? 36Us 53U 42X —
74790 | \ro 32GB S £107 —o
CPU 3.6GHz Y DDR3 | : € 10:

8 cores | Chipset HOT | g 58870 58875 (msss) 880 58,885
Applications: 5 Device latency analysis
Apache — online latency-critical
application;

PageRank — offline throughput
application;




Challenge: Datacenter server with ULL-SSD

ULL-SSD fails to bring short latency, because of the storage stack.

B s e

CaCh'” layer The storage stack is unaware of the
F,|esystem characteristics of both latency-critical
workload and ULL-SSD

The current design of blkmq layer,
NVMe driver, and SSD firmware can

NVMe Driver

hurt the performance of latency-
critical applications.

ULL-SSD




: challenge

Software queue: holds latency-critical I/O requests for a long time;
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: challenge

Software queue: holds latency-critical I/O requests for a long time;
Hardware queue: dispatches an 1I/O request without a knowledge of

Efﬂ @ % the latency-criticality;
\
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s optimization
Caiesolutidticddyp@ss.bypass blkmq for a faster response;
Throughput I/Os: merge in.blkma for a hi dwidth.
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: challenge (bypass is not simple enough)

NVMe protocol-level queue: a latency-critical I/O request can be blocked

by prior I/O requests; ndmeL
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Target: Designing towards a responsiveness-aware NVMe submission.

Key Insight:

 Conventional NVMe controller(s) allow to customize the standard arbitration
strategy for different NVMe protocol-level queue accesses.

 Thus, we can make the NVMe controller to decide which NVMe command to
fetch by sharing a hint for the I/0 urgency.




: optimization
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SSD firmware: challenge

Embedded cache canuisigpdihte dakteas tiesmo eghipalt If€trestsan eviction;
(DRAM service)

o
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SSD firmware: optimization

Our design: splits the internal cache space to protect latency-critical I/O

requests;
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: challenge

NVMe completion: MSI overhead for eaelapdfG requesks. Tic
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Key insight: state-of-the-art Linux supports a poll mechanism; a;
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Poll mechanism can bring benefits to fast storage device.

ULL SSD
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However, the poll-based 1/0O services consume most host resources.
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Our solution: selective interrupt service routine (Select-ISR).
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Design: Responsiveness Awareness

Key Insight: users have a better knowledge of 1/0O responsiveness (i.e., latency

critical/throughput).

Our Approach:

 Open a set of APIs to users, which pass the workload attribute to Linux PCB.
chworkload_attr
USAGE: chworkload_attr -t type [-p process_id] [user_program]

DESCRIPTION: set application type

Invoke new Modify Linux PCB
= (T~ G

Call a new utility:

chworkload attr

Int s_ched__setworklo_ad_ attr(){ SYSCALL_DEFINE2(
sched_setworkload_attr, pid_t, pid, struct task_struct {
int, workload_attr)

return syscall(

sys_sched _setworkload _attr, pid, attr); volatile long state;
e cehed aetworkload att int sched_setworkload_attr unsigned int policy;
int sched_getworkload_attr(){ (_st{uct t/?fk_jtrﬁt)?p' unsigned int
int workload_attr. i
return syscall( - workload_attr;
sys_sched_getworkload_attr, pid, attr); p->workload_attr =
} ) workload_attr; )
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Design: Responsiveness Awareness

Key Insight: users have a better knowledge of 1/0O responsiveness (i.e., latency

critical/throughput).

Our Approach:

 Open a set of APIs to users, which pass the workload attribute to Linux PCB.
* Deliver the workload attribute to each layer of storage stack.

User Process >
Workload L — — —
l task struct attr"bute 1 q;g
D
File system \ 4 Q| o
+ |y BIO €« —=-— &3
| N 2
Block layer | a
(blk-mq) \4 v
¢ request : 3
0
NVMe driver \ 4 ®
nvme rw command |rsvd2
D G G G @G i ---------
|
NVMe ¥ » Embedded
controller cache

nvme cmd | [F==—=—= » | tag array




More optimizations

Advanced caching layer designs:

* Dynamic cache split scheme: to maximize cache hits in various request
patterns;

* Read prefetching: better utilize SSD internal parallelism;

* Adjustable read prefetching with ghost cache: adaptive to different
request patterns;

Hardware accelerator designs:

* Conduct simple but timing-consuming tasks such as I/O poll and I/O
merge;

* Simplify the design of blkmqg and NVMe driver.
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Experiment Setup

Test Environment

gems SimpleSSD P N
parameters value parameters values ’ Y
core 64-bit ARM, 8, 2GHz | read/write/erase 3us/100us/1ms
L1DS/L1I$ 64KB, 64KB channel/package 16/1
mem ctrler 1 die/plane 8/8
memory DDR3, 2GB page size 2KB
Kernel 4.9.30 DMA/PClIe 800MHz,3.0, x4
Tmage Ubuntu 14.04 DRAM cache [5GB http://simplessd.org

System configurations:

* Vanilla—a vanilla Linux-based computer system running on ZSSD;

e CacheOpt —compared to Vanilla, it optimizes the cache layer of SSD firmware;
* KernelOpt — it optimizes blkmg layer and NVMe 1/O submission;

* SelectISR — compared to KernelOpt, it adds the optimization of selective ISR;
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Evaluation: latency breakdown
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* KernelOpt reduces the time cost of blkmqg layer by 46% thanks to no queuing time;
* As latency-critical I/Os are fetched by NVMe controller immediately, KernelOpt drastically

reduces the waiting time;

1V
o S5us reduction

: $46% reduction

(3

* CacheOpt better utilizes the embedded cache layer and reduces the SSD access delays by 38%;

* By selectively using polling mechanism, SelectISR can reduce the I/O completion time by 5us
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Evaluation: online I/O access

Vanilla—CacheOpt———KernelOpt
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* CacheOpt reduces the average I/O service latency, but it cannot eliminate the long tails;

* KernelOpt can remove the long tails, because it can avoid long queuing time and prevents
throughput I/Os from blocking latency-critical I/Os;

» SelectISR reduces the average latency further, thanks to selectively using poll mechanism.
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Observation

The ultra-low latency of new memory-based SSDs is not exposed to latency-critical
application and have no benefit from user-experience angle;

Challenge

Piecemeal reformations of the current storage stack won’t work due to multiple
barriers; the storage stack is unaware of all behaviors of ULL-SSD and latency-
critical applications;

Our solution

FlashShare: We expose different levels of I/O responsiveness to the key
components in the current storage stack and optimize the corresponding system
layers to make ULL visible to users (latency-critical applications).

 Reducing average turnaround response times by 22%;

e Reducing 99t"-percentile turnaround response times by 31%. g??
\_/
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