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Major IT companies run datacenters
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Datacenter infra market is huge.
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All others use the datacenters

e Buy a SW/HW platform as a service

= Client A

;. o Client B

Client C

Client E

HPCS

High Performance Comy

)
* Client D

Again, datacenter infra market is huge.
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Moore’s Law iIs Dead
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What is the use

Dual-Core Itanlum 2
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Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)
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of extra transistors?

can’t build a faster CPU
due to the power ceiling



HPCS
CPU is NOT the 1st-class citizen any more

“Un-CPU"” devices now dominate
the performance, power, and costs.
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Storage infra market is EVEN larger!
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Every company now deals with big data
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Neuromorphic computer is coming
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Brain-inspired computing > New World?

@ 2018 Jangwoo Kim



High Performance Computer System Lab

- Message #1 (for system engineers)
We must build a datacenter-friendly, intelligent server
(e.g., cloud, big data, artificial intelligence)

- Message #2 (for system engineers)

The advantage must come from emerging devices
(e.g., Memory, SSD, GPU, ASIC, ..)
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High Performance Computer System Lab

My solution:

Let’'s use our intelligent server architecture!
“"DCS: Device-Centric Server Architecture”

Three papers appeared in
- 2018 ACM/IEEE International Symposium on Computer Architecture (ISCA)
- 2017 ACM/IEEE International Symposium on Microarchitecture (MICRO)
- 2015 ACM/IEEE International Symposium on Microarchitecture (MICRO)
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HPCS
Existing servers do not work

e Host-centric device management
- Host manages every device invocation

- Frequent host-involved layer crossings

" [ncreases latency and management cost

Userspace Application

. A
B et t -—--l-----t-—--l-----?----
« I Kernel stack Kernel stack Kernel stack

erne Driver A Driver B Driver C

. A
ey sk Sueesn [, e S
Hardware Device A Device B Device C

m) Datapath ---» Metadata/Command path

@ 2018 Jangwoo Kim 9




HPCS
Latency: High software overhead

e Single sendfile: Storage read & NIC send
- Faster devices, more software overhead

Software overhead
7% 50% 77% 82%

|
o
2
>

Latency
Decomposition
(Normalized)

3
=

HDD NVMe PCM PCM
10Gb NIC 10Gb NIC 10Gb NIC 100Gb NIC

[JSoftware [] Storage M NIC
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HPCS
Cost: High host resource demand

e Sendfile under host resource (CPU) contention
- Faster devices, more host resource consumption

Sendfile
bandwidth _ |
100% [J CPU Busy O Sendfile bandwidth
Sendfile Sendfile
CPU usage bandwidth
349% 14%
U~
Sendfile
T = CPU usage
—O- ~ 6%
No contention High contention

*Measured from NVMe SSD/10Gb NIC
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HPCS
Limitations of existing work

e Single-device optimization
- Do not address inter-device communication
e.g., Moneta (SSD), DCA (NIC), mTCP (NIC), Arrakis (Generic)
e Inter-device communication
- Not applicable for unsupported devices
e.g., GPUNet (GPU-NIC), GPUDirect RDMA (GPU-Infiniband)
e Integrating devices
- Custom devices and protocols, limited applicability
e.g., QuickSAN (SSD+NIC), BlueDBM (Accelerator-SSD+NIC)

Need for fast, scalable, and generic
inter-device communication
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HPCS
Our solution: Device-Centric Server

¢ Minimize host involvement & data movement

Application

v v v

Device A #mp Device B ®mmp Device C

m) Datapath > Metadata/Command path

Single command — Optimized multi-device invocation
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HPCS
DCS: Benefits

e Selective, D2D transfer
- Faster data delivery, lower total operation latency

o Better host performance/efficiency

- Resource/time spent for device management
now available for other applications

e High applicability

- Relies on existing drivers / kernel supports / interfaces
- Easy to extend and cover more devices

@ 2018 Jangwoo Kim 14



HPCS
Device-Centric Server Components

e DCS Engine

- A custom HW device to selectively connect devices
e DCS drivers

- Convert commodity devices to work with DCS engines

e DCS library

- OS library to hook with the existing system calls

e DCS applications

—- Applications developed or tuned for DCS systems

@ 2018 Jangwoo Kim 15



HPCS
DCS: Architecture overview

Existing System

Applicati
Userspace | sendfile(), encrypted sendfile() ppiication

Kernel DCS Driver Drivers &

Kernel communicator Kernel stack
Command generator

H PCIe Switch
ardware DCS Engine (on NetFPGA NIC)
NVMe SSD
= Command = Per-device GPU
Command |interpreter manager
Queue NetFPGA NIC

Fully compatible with existing systems

@ 2018 Jangwoo Kim 16



High Performance Computer System Lab

Communicating with storage

Userspace DCS Library JE==t

File descriptor

\4
DCS Driver

.......... Application

(Virtual) Filesystem

Block addr (in device) / buffer addr (cached)

_____________________ #___________________________________________________

Hardware DCS Engine

Source device

Y

—

Target device

NVMe SSD

VFS cache

Data consistency guaranteed

@ 2018 Jangwoo Kim
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HPCS
Communicating with network interface

Application

Kernel

Socket descriptor

\ 4
DCS Drlver ............................................ > Network Stack

Connection information

_____________________ &___________________________________________________

Hardware DCS Engine NetFPGA NIC

Packet generation & Send **|| Data buffer PHW PacketGenb

HW-assisted packet generation

@ 2018 Jangwoo Kim 18



HPCS
Communicating with accelerator

Kernel invocation

Memory allocation Call DCS library
Userspace DCS Library S » GPU user library Application

_________________________________________________________________________

Kernel 5
DCS Driver pibubiEtEiEEEEEEiEl - » GPU kernel driver

Get memory @napping

Hardware DCS Engine GPU
Process data

Source device | =) | Memory (Kernel launch)
DMA / NVMe transfer

Direct data loading without memcpy

@ 2018 Jangwoo Kim 19



DCS sytem in a big picture!

User Application

HPCS

High Performance Computer System Lab

sendfile()
Userspace
sendfile() . GPU Memory Management & GPU Kernel Invocation [ libcudart.so (NVIDIA)
ioctl() Buffer Cache Address (CPU Memory)
& Logical Block Address (SSD) b :
: : > Filesystem
Command Generator | Kernel Communicator [« Connection Inﬁ:rmatlon > Network Stack Kernel
* GPU Memory Information " -
. ocs Jcompleton o Lo
I
Commands | | Interrupts . : NVMe SSD
> PCIe Network “+ » NVIDIA GPU Hardware
N > CPU Memory
:
NetFPGA NIC
PIO/DMA ¢
Interface |* |
- 1 i L B
§ Command Device ;Z;T(r:nand G:nerator Per-Device Manager Data Buffer T AT
w Queue E VMo CooTwTwaannd |NVMe #1 wee : Output Port Lookup
w ]
oy | Command NIC Command & Packet »INIC #1 [Tx[Rx]|+++ L BRAIY OutpUt Quedes
Interpreter : - .
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HPCS
Experimental setup

e Host: Power-efficient system
— Core 2 Duo @ 2.00GHz, 2MB LLC
- 2GB DDR2 DRAM

e Device: Off-the-shelf emerging devices
- Storage: Samsung X51715 NVMe SSD
- NIC: NetFPGA with Xilinx Virtex 5 (up to 1Gb bandwidth)
— Accelerator: NVIDIA Tesla K20m

- Device interconnect: Cyclone Microsystems PCle2-2707
(Gen 2 switch, 5 slots, up to 80Gbps)

@ 2018 Jangwoo Kim 21



DCS prototype implementation

e Our 4-node DCS prototype
- Can support many devices per host

User Application

sendfile()
DCS Library

GPU Memory Management & GPU Kernel Invocation

libcudart.so (NVIDIA)

Userspace

& Logical Block Address (SSD)

Buffer Cache Address (CPU Memory)

focti()
Command Generator | Kernel C 1

Connection Information

Filesystem

GPU Memory Information

Network Stack

DCS Completion

nvidia.ko (NVIDIA)

Kernel

“"Commands| | Interrupts

NVMe SSD

NVIDIA GPU

CPU Memory

ll—ﬂ

Queue E DMA Command —

Interpreter

Input Arbiter

Output Port Lookup
BRAM Output Queues

PIO/DMA |

Interface
o i .
,g’ Command Device Command Generator Per-Device Manager Data Buffer
e NVMe #1 . l—H
73 NVMe Command  —— v
a

o]
Inic #1_ [R]]-+- [ v

NIC Command & Packet

=S

Hardware
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A working prototype of Device-Centric Server (DCS)!
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Reducing device utilization latency

e Single sendfile: Storage read & NIC send

- Host-centric: Per-device layer crossings
- DCS: Batch management in HW layer

@ 2018 Jangwoo Kim

2x latency improvement
(with low-latency devices)

Latency

Host-centric DCS

High Performance Computer System Lab
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HPCS
Host-independent performance

e Sendfile under host resource (CPU) contention

- Host-centric: host-dependent, high management cost
- DCS: host-independent, low management cost

100% BW / CPU 70% busy LCPU Busy gggt'ce"tric
100% BW / CPU 29% busy O Sendfile bandwidth
%
‘9\0\712/)0 BW / CPU 11% busy
\fT 13% BW / CPU 10% busy
()
1 e
No contention High contention

High performance even on weak hosts

24



HPCS
Multi-device invocation

e Encrypted sendfile (SSD - GPU - NIC, 512MB)
- DCS provides much efficient data movement to GPU

— Current bottleneck is NIC (1Gbps)

[] GPU data loading [ GPU processing [ Network send [ NVIDIA driver

Host-centric 32 6 12

Network send (10Gb)
DCS |16(6(6| 13 38% reduction

Normalized processing time
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HPCS
Real-world workload: Hadoop-grep

e Hadoop-grep (10GB)

- Faster input delivery & smaller host resource consumption

o, ~-Map progress -—~—Reduce progress
100 | Host-centric

0)]

o 75
o 50
g_ 25
o 0
O

'g %
& 100
oy
75
> 50

25

409%o faster processing

@ 2018 Jangwoo Kim 26



HPCS

High Performance Comy

Scalability: More devices per host

e Doubling # of devices in a single host

Host-centric DCS S

&

=z

o <

3 3

Q —t

1.3x 2X = =)

Q @)

Devi SSD SSDx2 SSD SSDx2 =
EVICeS  NIC NICx2 NIC NICx2 f_{

CPU Utilization 60% 100% 22% 37%

Scalable many-device support
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1st prototype in 2015 (micro 2015]

e A new server architecture: DCS!
- Device latency reduction: ~25%
- Host resource savings: ~61%

- Hadoop speed improvement: ~40%

@ 2018 Jangwoo Kim 28
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Wait. We can do even better!

@ 2018 Jangwoo Kim 29



HPCS
Limitations of Existing D2D Comm.

e P2P communication
- Direct data transfers through PCI Express = D2D comm.

- Slow, high-overhead control path becomess a killer

R Control OData copy OOthers BSControl

v 120 A S ~100% -

> 90 - § < 75% - §

g 60 4R § S 50% - N .

©

2 30 - 2 250 - N\

= O

ot 0 T 1 OO/O T 1
<=3 Data path SW  pop SW  P2P
<@==3 Control path opt opt
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HPCS
Limitations of Existing D2D Comm.

o Integrated devices
- Integrating heterogeneous devices = D2D comm.

- Fast data & control transfers

- Fixed and inflexible aggregate implementation

$19]|043U0)

New
Dev /.

@ 2018 Jangwoo Kim 31



HPCS
Limited Performance Potential

while (true) ({
rc recv = recv(fd sock, buffer, recv size, 0);
1f (rc recv <= 0) break;
LProcesging(&md ctx, buffer, recv_size)ﬂ
rc write = write(fd file, buffer, recv size);

e "Intermediate” processing between device ops
- Prevent applications from using direct D2D comm.

— Cause host-side resource contention (CPU and memory)

@ 2018 Jangwoo Kim 32



High nce Computer System Lab

Performance

DCS-v2: Key Ideas & Benefits

void ssd_to_nic()
{
et from ssd(&data) ;
process in HDC (&data) ;
write to nic(&data);

}

CPU

Device
controlle

P Data path
=== Control path %
Optimized dev. control Generic dev. interfaces

= Faster & scalable = Higher flexibility
communication

Near-device processing
— Higher applicability

@ 2018 Jangwoo Kim 33



Computer System Lab

High Performance Comput

DCS-v2: (1) standard device interfaces

e Standard interfaces in DCS Engine
-Based on “scoreboard” with independent queues

= Keep track of (src, dst, commands, status)

Independent
device controller
Standard  Standard | Submission queue | |—>| | |Command buffer| | I—‘ [ Completion queue |
| Standard ¢ Standard ' D2D commands § i

oW NIC interface j SSD interface Scoreboard

3 — — Dev R/W Src Dst Aux State

o . $|: SSD | Read Block # FPGA Memory = Done

: PCI Express sl S NIC | Write | FPGA Memory : Flow ID | lIssue

A B | | . HE %I: NIC | Read = FPGA Memory | FlowID | Issue
\ s o] [ J =

1 -1 A E gE NDP | Proc * - Proc ID Wait
—E' » 3 S+ ssD | write | FPGA Memory Block # - Wait

‘ @)
NIC SSD Others

Standard interface provided by FPGA
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HPCS
DCS-v2: (2) HW-based fast D2D “control”

e Device ctrl functions in DCS Engine
- Bypass OS as much as possible

» Handle kernel-dependent functions (e.g., recvfile)

Submission| : PCle :
&  queue switch;
v . : : Device
> = Doorbell
8 c registers
S Completion
queue

Both data and control managed by FPGA

@ 2018 Jangwoo Kim 35
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High Performance Comput

DCS-v2: (3) Near-Device Processing (NDP)

MD5 Init (&md ctx);

while (true) {
rc recv = recv(fd sock, buffer, recv size, 0);
if (rc recv <= 0) break;
MD5 Update (&md ctx, buffer, recv size);

rc write = write(fd file, buffer, recv size);
if (recv size != rc write)
break;

}
}

MD5 Final (md res, &md ctx);

e Intermediate processing (MD5_Update) between device Ops

e CPU- and memory-intensive routines in existing applications
- Prevent applications from using direct D2D communications

— Cause host-side resource contention (CPU and memory)

Intermediate computation by FPGA
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A new DCS system in a big picture!

DCS2 Library ceveernenens GPY memory management GPU library
A

joctl
...... Block address .z EXT4 file system
Command Completion queue Memory ...... TCP/P header...... > TCP/IP network stack
generator Interrupt handler manager T GPUmemory e GPU driver e
A —— IFTTIIITITIIIIIY A information :
iD2D command
PIO interface 1 Scoreboard NVMe SSD controller NVMe
o IS S : ’ Subr::issio Comr;])letio “T =Y ssps €1
%) 5 & || Command queue Issue : — —_—
5 % S 3 X Broadcom NIC controller 10Gbp
o c : . I -
% £ & || command parser | : Forward e-+"%| Send Recv [ TCP/I < 5 S
A - 5 queue || queue P NIC
e - header
Memory L] Near-device processing units :- NVIDIA :
Buffer | Buffer | Buffer (MD5, CRC32, packet gather) I " GPU [E
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DCS-v2: a working prototype now
m ................ GPY memeny management ... GFU ey | .-:. — Pc; -y —

¢ foct]
e ihs g EXTAFile Sysiem
Command Completion queue Memory e GPAR Header ™ TCP/IP Network Stack i .q,'ﬁ a
generator Interrupt handler Manager 5 e W F— - ‘ ‘! A
Information P\ i o ii
: D2D commands - = q h
i NVMe SSD controll Lo\ = e 4l ' * =
I PIO interface w| Scoreboard | _ E_ contro e-r NVMe - 1 i ‘ P‘Ci Switch |
() gt 3 "% | Submission || Completion | [+~ ggps [T =
c 3 : queue queue : W — |
a 59 | Command queue | | Issue | g
c I : 3 i [ Broadcom NIC Controller 'g Broadcom 10-GbE NIC [.
ol [ £ 5 = : - iof[Send | R TCP/IP s 10Gbps 1| 'L’_'u 1
POl | = 5| commandparser [{|  Forwara  feuitef| Send | Recv nc [ 2= HDC Engine (VC707) |
7)) T queue || queue || header H
Memory s Near-device processing units NVIDIA .: !
[ Buffer | Buffer | Buffer | (MD5, CRC32, packet gather) GPU [ m MVIDHA GPU

'l'n—'—-.lr_'q_;- !H +

o Off-the-shelf emerging devices
—- Storage: Intel 750 Series SSD 400GB
- NIC: Broadcom Corporation NetXtreme II BCM57711(10Gb)
— Accelerator: NVIDIA Tesla K20m

- PClIe switch: Cyclone Microsystems PCle2-2707 (Gen2)

- FPGA: Xilinx Virtex 7 VC 707 board
[ISCA'18]
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High Performance Comput

Performance: Low D2D Latency

» encrypted sendfile(): SSD - hash - NIC

- SW opt (+P2P): frequent boundary crossings, complex software

- DCS-ctrl: less crossings, hardware-based device control

BHW 0OKernel 8Dev ctrl BHW OKernel OData Copy 8Dev ctrl
% 80 7 a9, % 300 -
-] -
G 40 - DR }sw 9 DI 72%
9 20 - et 100
(V] (v}
-l O | - 0 _
SW opt DCS-ctrl SW opt SW opt DCS-ctrl
+ P2P
without processing with processing (AES256)

Significant performance boost!
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Utilization: CPU become silent

e Swift & HDFS workloads

- Offload device control & data transfers to hardware

Normalized
CPU utilization

Kernel (GET)

@ Kernel ( PUT)

N GPU control OOthers
100% -
75% - N
50% -
250/0 l
0% Y _ [T
SW opt SW opt DCS-ctrl
+P2P
Swift

Significant host CPU saving!

@ 2018 Jangwoo Kim

Normalized
CPU utilization

Kernel (Sender)

B GPU control

B Kernel (Receiver)

Oothers

100% -
75% -
50% -
25% -

0%

|
% \

Send Recv |Send Recv |Send Recv
SW opt SW opt DCS-ctrl
+P2P

HDFS

40
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Scalability: support many devices

e Swift & HDFS workloads

- More CPU-efficient = support more high-performance devices

-< SW opt -4~ SW opt = -DCS-ctrl

+ P2P
.S 6 1 X
RO a- T
=y -7 _a--h
-] 2 . _ - < - -
Se?|  panttl—
U O -'% lllllllllllllllll
0 10 20 30 40
Throughput (Gbps)
Swift

CPU utilization

(# cores)

o N - (@)
1

=% SW opt -a~SW opt =-DCS-ctrl
+ P2P

- -

- "/

T T 1 . 1 1 1 17 ° 1 17 1

0 10 20 30
Throughput (Gbps)

HDFS

Significant scalability boost!
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What we are doing now! e

. - ..
New applications require new systems!

We are currently building
(1) Scale-up DCS engine
(2) Scale-out DCS engine

(3) DCS- -enabled Al processing

(e.g., fast training, real-time processing)

@ 2018 Jangwoo Kim
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HPCS
Question?

Thank You!

Jangwoo Kim
e-mail: jangwoo@snu.ac.kr
https://hpcs.snu.ac.kr/~jangwoo
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