HPCS

High Performance Computer System Lab

DCS: A Fast, Scalable, Flexible
Device-Centric Server Architecture

Jangwoo Kim

E-mail: jangwoo@snu.ac.kr
Web: https://hpcs.snu.ac.kr/~jangwoo

High Performance Computer System (HPCS) Lab

Department of Electrical and Computer Engineering
Seoul National University



HPCS

High Performance Computer System Lab

Major IT companies run datacenters

4
=
--J
-
S]
=]
P~
in
'
|
=
=1
= L
=
=]
=]
-

Datacenter infra market is huge.

@ 2018 Jangwoo Kim 1



All others use the datacenters

e Buy a SW/HW platform as a service

= Client A

;. o Client B

Client C

Client E

HPCS

High Performance Comy

)
* Client D

Again, datacenter infra market is huge.

@ 2018 Jangwoo Kim



Moore’s Law iIs Dead

10,000,000

1,000,000

100,000

10,000

1,000

100

10

0

1970

HPCS

High Performance Computer System Lab

What is the use

Dual-Core Itanlum 2

/<

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

& A
B Transistors (000) —_—
¢ @ Clock Speed (MHz)
L ] L ] Io)
® o0 A Power (W)
@ Perf/Clock (ILP)

1975 1980 1985 1950 1995 2000 2005 2010

@ 2018 Jangwoo Kim

of extra transistors?

can’t build a faster CPU
due to the power ceiling



HPCS
CPU is NOT the 1st-class citizen any more

“Un-CPU"” devices now dominate
the performance, power, and costs.

@ 2018 Jangwoo Kim 4



- EER » .

Data Acquisition VLDWand Bl Appliances Analytics BPM & Action
23 FY Gsas || 9588 ORACLE | EMC' Gsas ¢ [,|#TIBCO EMC
BTIBCO @_ = =55 (R e, Mobe '«‘ ORACLE
®rAuDO kognltio IBctan @ Mzinga
_C)IQACI__El talen W [ (mwwﬁ(:oodData e, Aidobe scFTWADE
INFORMATICA _splunk> | | EMC® T NAJM\IA [ERADATA. ORACLE ﬁ%
A\Numenta SYNCsort ———rr—
Including Complex Event Processing (CEP) tools I Emﬁ é'_fé_?_i
- OPENTEXT
Data Providers No SQL Data Vlrtuallz= ;g 1 Mi ft :

0 LexisNexis: ) COMSCORE C”"haﬂmmp ORA(_]_—_E_ x ETT :J\(\J?tl‘-'“ .i-—i_;i ][, RADATA e
& windowsazue  INJRIX ClUl{FlE{a EMC == Microsoft -H:- denodo El:a - jA iG f-x.
=" (% REUTERS | |Hertom - onworks. GOOgle @ - 3| S P —"

IllC]‘-&L‘]l i - MAF’R Microsoft .
""""" SymphonylRI 5““‘“ Y ORACLE @ Capgemini - Capping IT off
= factual.y = e | |9 mongoDBsnap INFORMATICA
agpe amazon QPalantir splunk - Manuel Sevilla - 2012
OPEN 2> 000 | | otinan QPolntss
DATA radian® | | EIEEIM o [kX] Bl Tools
l'_'lE‘Z:penan imS Kﬁg‘ﬁ% *sparsity:_%'_ [E RADATA ORACLE Microsoft GoodData “PANORAMA
9 = P TRE: @ranoeticon @5 oixmL Infermation
vE@L* ContentManagement | |==== @ @ Roambi™ EOU T 2
And all your own data "‘ ORACLE EMC TS GSas @r=- ‘l - W 3 @
&% Alfresco b gy w¢tableav QIKView (37§
Andyourparters data Adobe E)PF\JT!\I @"‘"‘""’" !ﬁ BITIBCO &5 5 nemgfo @ ACTUATE
Data Governance gz

-
OI
ﬁl

MATIcA PITIBCO

@ talen

,Sas ¢

T=Es Zyg KAULDO Microsoft ORACLE BT
. raOrchestra

@ 2018 Jangwoo Kim

Storage infra market is EVEN larger!

HPCS

High Performance Computer System Lab

Every company now deals with big data



HPCS

High Performance Computer System Lab

Neuromorphic computer is coming

b o 224224
W54 Convolution network Deconvolution network 1xal
20 P 2828

- 77 7x7

.! - - @

: e otiang Ung

2% paching B - = = - o
b hng - |_‘ Pt
. _Ynpooling

“
-t
L]
I
1
1]
'
]
]
'
leak mode read write H
Leak  yeight  Leak Reversal ggqq Vi(t) Vi :
Unit it H

1 Threshold and
i Reset Unit

14 ;
3+1 1
[
Synapse!
unit YT T - T
Random i-1 ! transmit
Number : !
Generator ; i
neurin instruction ! 2 3
N L T T
sign synaptic  stoch./det. pos/neg mask Ve
select weights [3:0] mode select thresholds

Brain-inspired computing > New World?

@ 2018 Jangwoo Kim



High Performance Computer System Lab

- Message #1 (for system engineers)
We must build a datacenter-friendly, intelligent server
(e.g., cloud, big data, artificial intelligence)

- Message #2 (for system engineers)

The advantage must come from emerging devices
(e.g., Memory, SSD, GPU, ASIC, ..)

@ 2018 Jangwoo Kim 7



High Performance Computer System Lab

My solution:

Let’'s use our intelligent server architecture!
“"DCS: Device-Centric Server Architecture”

Three papers appeared in
- 2018 ACM/IEEE International Symposium on Computer Architecture (ISCA)
- 2017 ACM/IEEE International Symposium on Microarchitecture (MICRO)
- 2015 ACM/IEEE International Symposium on Microarchitecture (MICRO)

@ 2018 Jangwoo Kim 8



HPCS
Existing servers do not work

e Host-centric device management
- Host manages every device invocation

- Frequent host-involved layer crossings

" [ncreases latency and management cost

Userspace Application

. A
B et t -—--l-----t-—--l-----?----
« I Kernel stack Kernel stack Kernel stack

erne Driver A Driver B Driver C

. A
ey sk Sueesn [, e S
Hardware Device A Device B Device C

m) Datapath ---» Metadata/Command path

@ 2018 Jangwoo Kim 9




HPCS
Latency: High software overhead

e Single sendfile: Storage read & NIC send
- Faster devices, more software overhead

Software overhead
7% 50% 77% 82%

|
o
2
>

Latency
Decomposition
(Normalized)

3
=

HDD NVMe PCM PCM
10Gb NIC 10Gb NIC 10Gb NIC 100Gb NIC

[JSoftware [] Storage M NIC

@ 2018 Jangwoo Kim 10




HPCS
Cost: High host resource demand

e Sendfile under host resource (CPU) contention
- Faster devices, more host resource consumption

Sendfile
bandwidth _ |
100% [J CPU Busy O Sendfile bandwidth
Sendfile Sendfile
CPU usage bandwidth
349% 14%
U~
Sendfile
T = CPU usage
—O- ~ 6%
No contention High contention

*Measured from NVMe SSD/10Gb NIC

@ 2018 Jangwoo Kim 11



HPCS
Limitations of existing work

e Single-device optimization
- Do not address inter-device communication
e.g., Moneta (SSD), DCA (NIC), mTCP (NIC), Arrakis (Generic)
e Inter-device communication
- Not applicable for unsupported devices
e.g., GPUNet (GPU-NIC), GPUDirect RDMA (GPU-Infiniband)
e Integrating devices
- Custom devices and protocols, limited applicability
e.g., QuickSAN (SSD+NIC), BlueDBM (Accelerator-SSD+NIC)

Need for fast, scalable, and generic
inter-device communication

@ 2018 Jangwoo Kim 12



HPCS
Our solution: Device-Centric Server

¢ Minimize host involvement & data movement

Application

v v v

Device A #mp Device B ®mmp Device C

m) Datapath > Metadata/Command path

Single command — Optimized multi-device invocation

@ 2018 Jangwoo Kim 13



HPCS
DCS: Benefits

e Selective, D2D transfer
- Faster data delivery, lower total operation latency

o Better host performance/efficiency

- Resource/time spent for device management
now available for other applications

e High applicability

- Relies on existing drivers / kernel supports / interfaces
- Easy to extend and cover more devices

@ 2018 Jangwoo Kim 14



HPCS
Device-Centric Server Components

e DCS Engine

- A custom HW device to selectively connect devices
e DCS drivers

- Convert commodity devices to work with DCS engines

e DCS library

- OS library to hook with the existing system calls

e DCS applications

—- Applications developed or tuned for DCS systems

@ 2018 Jangwoo Kim 15



HPCS
DCS: Architecture overview

Existing System

Applicati
Userspace | sendfile(), encrypted sendfile() ppiication

Kernel DCS Driver Drivers &

Kernel communicator Kernel stack
Command generator

H PCIe Switch
ardware DCS Engine (on NetFPGA NIC)
NVMe SSD
= Command = Per-device GPU
Command |interpreter manager
Queue NetFPGA NIC

Fully compatible with existing systems

@ 2018 Jangwoo Kim 16



High Performance Computer System Lab

Communicating with storage

Userspace DCS Library JE==t

File descriptor

\4
DCS Driver

.......... Application

(Virtual) Filesystem

Block addr (in device) / buffer addr (cached)

_____________________ #___________________________________________________

Hardware DCS Engine

Source device

Y

—

Target device

NVMe SSD

VFS cache

Data consistency guaranteed

@ 2018 Jangwoo Kim

17



HPCS
Communicating with network interface

Application

Kernel

Socket descriptor

\ 4
DCS Drlver ............................................ > Network Stack

Connection information

_____________________ &___________________________________________________

Hardware DCS Engine NetFPGA NIC

Packet generation & Send **|| Data buffer PHW PacketGenb

HW-assisted packet generation

@ 2018 Jangwoo Kim 18



HPCS
Communicating with accelerator

Kernel invocation

Memory allocation Call DCS library
Userspace DCS Library S » GPU user library Application

_________________________________________________________________________

Kernel 5
DCS Driver pibubiEtEiEEEEEEiEl - » GPU kernel driver

Get memory @napping

Hardware DCS Engine GPU
Process data

Source device | =) | Memory (Kernel launch)
DMA / NVMe transfer

Direct data loading without memcpy

@ 2018 Jangwoo Kim 19



DCS sytem in a big picture!

User Application

HPCS

High Performance Computer System Lab

sendfile()
Userspace
sendfile() . GPU Memory Management & GPU Kernel Invocation [ libcudart.so (NVIDIA)
ioctl() Buffer Cache Address (CPU Memory)
& Logical Block Address (SSD) b :
: : > Filesystem
Command Generator | Kernel Communicator [« Connection Inﬁ:rmatlon > Network Stack Kernel
* GPU Memory Information " -
. ocs Jcompleton o Lo
I
Commands | | Interrupts . : NVMe SSD
> PCIe Network “+ » NVIDIA GPU Hardware
N > CPU Memory
:
NetFPGA NIC
PIO/DMA ¢
Interface |* |
- 1 i L B
§ Command Device ;Z;T(r:nand G:nerator Per-Device Manager Data Buffer T AT
w Queue E VMo CooTwTwaannd |NVMe #1 wee : Output Port Lookup
w ]
oy | Command NIC Command & Packet »INIC #1 [Tx[Rx]|+++ L BRAIY OutpUt Quedes
Interpreter : - .

@ 2018 Jangwoo Kim

20



HPCS
Experimental setup

e Host: Power-efficient system
— Core 2 Duo @ 2.00GHz, 2MB LLC
- 2GB DDR2 DRAM

e Device: Off-the-shelf emerging devices
- Storage: Samsung X51715 NVMe SSD
- NIC: NetFPGA with Xilinx Virtex 5 (up to 1Gb bandwidth)
— Accelerator: NVIDIA Tesla K20m

- Device interconnect: Cyclone Microsystems PCle2-2707
(Gen 2 switch, 5 slots, up to 80Gbps)

@ 2018 Jangwoo Kim 21



DCS prototype implementation

e Our 4-node DCS prototype
- Can support many devices per host

User Application

sendfile()
DCS Library

GPU Memory Management & GPU Kernel Invocation

libcudart.so (NVIDIA)

Userspace

& Logical Block Address (SSD)

Buffer Cache Address (CPU Memory)

focti()
Command Generator | Kernel C 1

Connection Information

Filesystem

GPU Memory Information

Network Stack

DCS Completion

nvidia.ko (NVIDIA)

Kernel

“"Commands| | Interrupts

NVMe SSD

NVIDIA GPU

CPU Memory

ll—ﬂ

Queue E DMA Command —

Interpreter

Input Arbiter

Output Port Lookup
BRAM Output Queues

PIO/DMA |

Interface
o i .
,g’ Command Device Command Generator Per-Device Manager Data Buffer
e NVMe #1 . l—H
73 NVMe Command  —— v
a

o]
Inic #1_ [R]]-+- [ v

NIC Command & Packet

=S

Hardware

@ 2018 Jangwoo Kim

A working prototype of Device-Centric Server (DCS)!

HPCS

High Performance Computer System Lab

22



Reducing device utilization latency

e Single sendfile: Storage read & NIC send

- Host-centric: Per-device layer crossings
- DCS: Batch management in HW layer

@ 2018 Jangwoo Kim

2x latency improvement
(with low-latency devices)

Latency

Host-centric DCS

High Performance Computer System Lab

23



HPCS
Host-independent performance

e Sendfile under host resource (CPU) contention

- Host-centric: host-dependent, high management cost
- DCS: host-independent, low management cost

100% BW / CPU 70% busy LCPU Busy gggt'ce"tric
100% BW / CPU 29% busy O Sendfile bandwidth
%
‘9\0\712/)0 BW / CPU 11% busy
\fT 13% BW / CPU 10% busy
()
1 e
No contention High contention

High performance even on weak hosts

24



HPCS
Multi-device invocation

e Encrypted sendfile (SSD - GPU - NIC, 512MB)
- DCS provides much efficient data movement to GPU

— Current bottleneck is NIC (1Gbps)

[] GPU data loading [ GPU processing [ Network send [ NVIDIA driver

Host-centric 32 6 12

Network send (10Gb)
DCS |16(6(6| 13 38% reduction

Normalized processing time

@ 2018 Jangwoo Kim 25



HPCS
Real-world workload: Hadoop-grep

e Hadoop-grep (10GB)

- Faster input delivery & smaller host resource consumption

o, ~-Map progress -—~—Reduce progress
100 | Host-centric

0)]

o 75
o 50
g_ 25
o 0
O

'g %
& 100
oy
75
> 50

25

409%o faster processing

@ 2018 Jangwoo Kim 26



HPCS

High Performance Comy

Scalability: More devices per host

e Doubling # of devices in a single host

Host-centric DCS S

&

=z

o <

3 3

Q —t

1.3x 2X = =)

Q @)

Devi SSD SSDx2 SSD SSDx2 =
EVICeS  NIC NICx2 NIC NICx2 f_{

CPU Utilization 60% 100% 22% 37%

Scalable many-device support

@ 2018 Jangwoo Kim 27



1st prototype in 2015 (micro 2015]

e A new server architecture: DCS!
- Device latency reduction: ~25%
- Host resource savings: ~61%

- Hadoop speed improvement: ~40%

@ 2018 Jangwoo Kim 28



HPCS

High Performance Computer System Lab

Wait. We can do even better!

@ 2018 Jangwoo Kim 29



HPCS
Limitations of Existing D2D Comm.

e P2P communication
- Direct data transfers through PCI Express = D2D comm.

- Slow, high-overhead control path becomess a killer

R Control OData copy OOthers BSControl

v 120 A S ~100% -

> 90 - § < 75% - §

g 60 4R § S 50% - N .

©

2 30 - 2 250 - N\

= O

ot 0 T 1 OO/O T 1
<=3 Data path SW  pop SW  P2P
<@==3 Control path opt opt

@ 2018 Jangwoo Kim 30



HPCS
Limitations of Existing D2D Comm.

o Integrated devices
- Integrating heterogeneous devices = D2D comm.

- Fast data & control transfers

- Fixed and inflexible aggregate implementation

$19]|043U0)

New
Dev /.

@ 2018 Jangwoo Kim 31



HPCS
Limited Performance Potential

while (true) ({
rc recv = recv(fd sock, buffer, recv size, 0);
1f (rc recv <= 0) break;
LProcesging(&md ctx, buffer, recv_size)ﬂ
rc write = write(fd file, buffer, recv size);

e "Intermediate” processing between device ops
- Prevent applications from using direct D2D comm.

— Cause host-side resource contention (CPU and memory)

@ 2018 Jangwoo Kim 32



High nce Computer System Lab

Performance

DCS-v2: Key Ideas & Benefits

void ssd_to_nic()
{
et from ssd(&data) ;
process in HDC (&data) ;
write to nic(&data);

}

CPU

Device
controlle

P Data path
=== Control path %
Optimized dev. control Generic dev. interfaces

= Faster & scalable = Higher flexibility
communication

Near-device processing
— Higher applicability

@ 2018 Jangwoo Kim 33



Computer System Lab

High Performance Comput

DCS-v2: (1) standard device interfaces

e Standard interfaces in DCS Engine
-Based on “scoreboard” with independent queues

= Keep track of (src, dst, commands, status)

Independent
device controller
Standard  Standard | Submission queue | |—>| | |Command buffer| | I—‘ [ Completion queue |
| Standard ¢ Standard ' D2D commands § i

oW NIC interface j SSD interface Scoreboard

3 — — Dev R/W Src Dst Aux State

o . $|: SSD | Read Block # FPGA Memory = Done

: PCI Express sl S NIC | Write | FPGA Memory : Flow ID | lIssue

A B | | . HE %I: NIC | Read = FPGA Memory | FlowID | Issue
\ s o] [ J =

1 -1 A E gE NDP | Proc * - Proc ID Wait
—E' » 3 S+ ssD | write | FPGA Memory Block # - Wait

‘ @)
NIC SSD Others

Standard interface provided by FPGA

@ 2018 Jangwoo Kim 34



HPCS
DCS-v2: (2) HW-based fast D2D “control”

e Device ctrl functions in DCS Engine
- Bypass OS as much as possible

» Handle kernel-dependent functions (e.g., recvfile)

Submission| : PCle :
&  queue switch;
v . : : Device
> = Doorbell
8 c registers
S Completion
queue

Both data and control managed by FPGA

@ 2018 Jangwoo Kim 35



puter System Lab

High Performance Comput

DCS-v2: (3) Near-Device Processing (NDP)

MD5 Init (&md ctx);

while (true) {
rc recv = recv(fd sock, buffer, recv size, 0);
if (rc recv <= 0) break;
MD5 Update (&md ctx, buffer, recv size);

rc write = write(fd file, buffer, recv size);
if (recv size != rc write)
break;

}
}

MD5 Final (md res, &md ctx);

e Intermediate processing (MD5_Update) between device Ops

e CPU- and memory-intensive routines in existing applications
- Prevent applications from using direct D2D communications

— Cause host-side resource contention (CPU and memory)

Intermediate computation by FPGA

@ 2018 Jangwoo Kim 36



HPCS

High Performance Computer System Lab

A new DCS system in a big picture!

DCS2 Library ceveernenens GPY memory management GPU library
A

joctl
...... Block address .z EXT4 file system
Command Completion queue Memory ...... TCP/P header...... > TCP/IP network stack
generator Interrupt handler manager T GPUmemory e GPU driver e
A —— IFTTIIITITIIIIIY A information :
iD2D command
PIO interface 1 Scoreboard NVMe SSD controller NVMe
o IS S : ’ Subr::issio Comr;])letio “T =Y ssps €1
%) 5 & || Command queue Issue : — —_—
5 % S 3 X Broadcom NIC controller 10Gbp
o c : . I -
% £ & || command parser | : Forward e-+"%| Send Recv [ TCP/I < 5 S
A - 5 queue || queue P NIC
e - header
Memory L] Near-device processing units :- NVIDIA :
Buffer | Buffer | Buffer (MD5, CRC32, packet gather) I " GPU [E

@ 2018 Jangwoo Kim 37



HPCS

High Performance Computer System Lab

DCS-v2: a working prototype now
m ................ GPY memeny management ... GFU ey | .-:. — Pc; -y —

¢ foct]
e ihs g EXTAFile Sysiem
Command Completion queue Memory e GPAR Header ™ TCP/IP Network Stack i .q,'ﬁ a
generator Interrupt handler Manager 5 e W F— - ‘ ‘! A
Information P\ i o ii
: D2D commands - = q h
i NVMe SSD controll Lo\ = e 4l ' * =
I PIO interface w| Scoreboard | _ E_ contro e-r NVMe - 1 i ‘ P‘Ci Switch |
() gt 3 "% | Submission || Completion | [+~ ggps [T =
c 3 : queue queue : W — |
a 59 | Command queue | | Issue | g
c I : 3 i [ Broadcom NIC Controller 'g Broadcom 10-GbE NIC [.
ol [ £ 5 = : - iof[Send | R TCP/IP s 10Gbps 1| 'L’_'u 1
POl | = 5| commandparser [{|  Forwara  feuitef| Send | Recv nc [ 2= HDC Engine (VC707) |
7)) T queue || queue || header H
Memory s Near-device processing units NVIDIA .: !
[ Buffer | Buffer | Buffer | (MD5, CRC32, packet gather) GPU [ m MVIDHA GPU

'l'n—'—-.lr_'q_;- !H +

o Off-the-shelf emerging devices
—- Storage: Intel 750 Series SSD 400GB
- NIC: Broadcom Corporation NetXtreme II BCM57711(10Gb)
— Accelerator: NVIDIA Tesla K20m

- PClIe switch: Cyclone Microsystems PCle2-2707 (Gen2)

- FPGA: Xilinx Virtex 7 VC 707 board
[ISCA'18]

@ 2018 Jangwoo Kim 38



Computer System Lab

High Performance Comput

Performance: Low D2D Latency

» encrypted sendfile(): SSD - hash - NIC

- SW opt (+P2P): frequent boundary crossings, complex software

- DCS-ctrl: less crossings, hardware-based device control

BHW 0OKernel 8Dev ctrl BHW OKernel OData Copy 8Dev ctrl
% 80 7 a9, % 300 -
-] -
G 40 - DR }sw 9 DI 72%
9 20 - et 100
(V] (v}
-l O | - 0 _
SW opt DCS-ctrl SW opt SW opt DCS-ctrl
+ P2P
without processing with processing (AES256)

Significant performance boost!

@ 2018 Jangwoo Kim 39



High formance Computer System Lab

Utilization: CPU become silent

e Swift & HDFS workloads

- Offload device control & data transfers to hardware

Normalized
CPU utilization

Kernel (GET)

@ Kernel ( PUT)

N GPU control OOthers
100% -
75% - N
50% -
250/0 l
0% Y _ [T
SW opt SW opt DCS-ctrl
+P2P
Swift

Significant host CPU saving!

@ 2018 Jangwoo Kim

Normalized
CPU utilization

Kernel (Sender)

B GPU control

B Kernel (Receiver)

Oothers

100% -
75% -
50% -
25% -

0%

|
% \

Send Recv |Send Recv |Send Recv
SW opt SW opt DCS-ctrl
+P2P

HDFS

40



High Performance Computer System Lab

Scalability: support many devices

e Swift & HDFS workloads

- More CPU-efficient = support more high-performance devices

-< SW opt -4~ SW opt = -DCS-ctrl

+ P2P
.S 6 1 X
RO a- T
=y -7 _a--h
-] 2 . _ - < - -
Se?|  panttl—
U O -'% lllllllllllllllll
0 10 20 30 40
Throughput (Gbps)
Swift

CPU utilization

(# cores)

o N - (@)
1

=% SW opt -a~SW opt =-DCS-ctrl
+ P2P

- -

- "/

T T 1 . 1 1 1 17 ° 1 17 1

0 10 20 30
Throughput (Gbps)

HDFS

Significant scalability boost!

@ 2018 Jangwoo Kim



What we are doing now! e

. - ..
New applications require new systems!

We are currently building
(1) Scale-up DCS engine
(2) Scale-out DCS engine

(3) DCS- -enabled Al processing

(e.g., fast training, real-time processing)

@ 2018 Jangwoo Kim
42



HPCS
Question?

Thank You!

Jangwoo Kim
e-mail: jangwoo@snu.ac.kr
https://hpcs.snu.ac.kr/~jangwoo

@ 2018 Jangwoo Kim 43



