
DCS: A Fast, Scalable, Flexible
Device-Centric Server Architecture

Jangwoo Kim

E-mail: jangwoo@snu.ac.kr
Web: https://hpcs.snu.ac.kr/~jangwoo

High Performance Computer System (HPCS) Lab
Department of Electrical and Computer Engineering
Seoul National University

@ 2018 Jangwoo Kim

Major IT companies run datacenters

Datacenter infra market is huge.
1

@ 2018 Jangwoo Kim

All others use the datacenters

• Buy a SW/HW platform as a service

Client A

Client B

Client E

Client D

Client C

Again, datacenter infra market is huge.
2

@ 2018 Jangwoo Kim

Moore’s Law is Dead

can’t build a faster CPU
due to the power ceiling

What is the use
of extra transistors?

3

@ 2018 Jangwoo Kim

CPU is NOT the 1st-class citizen any more

“Un-CPU” devices now dominate
the performance, power, and costs.

VS

4

@ 2018 Jangwoo Kim

Every company now deals with big data

Storage infra market is EVEN larger!

5

@ 2018 Jangwoo Kim

Neuromorphic computer is coming

Brain-inspired computing  New World?

6

@ 2018 Jangwoo Kim

- Message #1 (for system engineers)
We must build a datacenter-friendly, intelligent server

(e.g., cloud, big data, artificial intelligence)

- Message #2 (for system engineers)
The advantage must come from emerging devices

(e.g., Memory, SSD, GPU, ASIC, ..)

7

@ 2018 Jangwoo Kim

My solution:

Let’s use our intelligent server architecture!
“DCS: Device-Centric Server Architecture”

Three papers appeared in
- 2018 ACM/IEEE International Symposium on Computer Architecture (ISCA)
- 2017 ACM/IEEE International Symposium on Microarchitecture (MICRO)
- 2015 ACM/IEEE International Symposium on Microarchitecture (MICRO)

8

@ 2018 Jangwoo Kim

Existing servers do not work

• Host-centric device management
− Host manages every device invocation

− Frequent host-involved layer crossings

 Increases latency and management cost

Userspace

Kernel

Hardware

Application

Device A Device B

Driver B

Kernel stack

Driver A

Kernel stack

Device C

Driver C

Kernel stack

Datapath Metadata/Command path
9

@ 2018 Jangwoo Kim

Latency: High software overhead

• Single sendfile: Storage read & NIC send
− Faster devices, more software overhead

Software overhead

La
te

n
cy

D
ec

om
p
os

it
io

n
(N

o
rm

al
iz

ed
)

7%

HDD
10Gb NIC

50%

NVMe
10Gb NIC

77%

PCM
10Gb NIC

82%

PCM
100Gb NIC

Software Storage NIC

0%

100%

10

@ 2018 Jangwoo Kim

Cost: High host resource demand

• Sendfile under host resource (CPU) contention
− Faster devices, more host resource consumption

Sendfile
bandwidth

100%

No contention

CPU Busy Sendfile bandwidth

*Measured from NVMe SSD/10Gb NIC

Sendfile
CPU usage

34%

High contention

Sendfile
bandwidth

14%

Sendfile
CPU usage

6%

11

@ 2018 Jangwoo Kim

Limitations of existing work

• Single-device optimization
− Do not address inter-device communication

e.g., Moneta (SSD), DCA (NIC), mTCP (NIC), Arrakis (Generic)

• Inter-device communication
− Not applicable for unsupported devices

e.g., GPUNet (GPU-NIC), GPUDirect RDMA (GPU-Infiniband)

• Integrating devices
− Custom devices and protocols, limited applicability

e.g., QuickSAN (SSD+NIC), BlueDBM (Accelerator–SSD+NIC)

Need for fast, scalable, and generic
inter-device communication

12

@ 2018 Jangwoo Kim

Our solution: Device-Centric Server

• Minimize host involvement & data movement

Userspace

Kernel

Hardware

Application

Device A Device B Device C

Driver B

Kernel stack

Driver A

Kernel stack

Driver C

Kernel stack
DCS Driver Device drivers & Kernel stacks

DCS Engine

Device CDevice BDevice A

Datapath Metadata/Command path

Single command → Optimized multi-device invocation

DCS Library Application

13

@ 2018 Jangwoo Kim

DCS: Benefits

• Selective, D2D transfer
− Faster data delivery, lower total operation latency

• Better host performance/efficiency
− Resource/time spent for device management

now available for other applications

• High applicability
− Relies on existing drivers / kernel supports / interfaces
− Easy to extend and cover more devices

14

@ 2018 Jangwoo Kim

Device-Centric Server Components

• DCS Engine
− A custom HW device to selectively connect devices

• DCS drivers
− Convert commodity devices to work with DCS engines

• DCS library
− OS library to hook with the existing system calls

• DCS applications
− Applications developed or tuned for DCS systems

15

@ 2018 Jangwoo Kim

DCS: Architecture overview

Userspace

Kernel

Hardware

ApplicationDCS Library
sendfile(), encrypted sendfile()

DCS Driver

Command generator
Kernel communicator

DCS Engine (on NetFPGA NIC)
NVMe SSD

GPU

NetFPGA NIC

Fully compatible with existing systems

Command
Queue

Command
interpreter

Per-device
manager

PCIe Switch

Drivers &
Kernel stack

Existing System

16

@ 2018 Jangwoo Kim

Communicating with storage

Userspace

Kernel

Hardware

ApplicationDCS Library

DCS Driver

DCS Engine

NVMe SSD

Block addr (in device) / buffer addr (cached)

VFS cache

Source device

File descriptor

Hook / API call

Data consistency guaranteed

Source device

Target

(Virtual) Filesystem

17

@ 2018 Jangwoo Kim

Communicating with network interface

Userspace

Kernel

Hardware

ApplicationDCS Library

DCS Driver

DCS Engine

Data buffer

Network stack
Connection information

NetFPGA NIC

Packet generation & Send HW PacketGen

Socket descriptor

Hook / API call

HW-assisted packet generation

18

@ 2018 Jangwoo Kim

Communicating with accelerator

Userspace

Kernel

Hardware

ApplicationDCS Library

DCS Driver

DCS Engine

Memory

GPU

Memory allocation

GPU user library

GPU kernel driver
Get memory mapping

DMA / NVMe transfer

Source device

Kernel invocation

Process data
(Kernel launch)

Call DCS library

Direct data loading without memcpy

19

@ 2018 Jangwoo Kim

DCS sytem in a big picture!

20

@ 2018 Jangwoo Kim

Experimental setup
• Host: Power-efficient system

− Core 2 Duo @ 2.00GHz, 2MB LLC

− 2GB DDR2 DRAM

• Device: Off-the-shelf emerging devices
− Storage: Samsung XS1715 NVMe SSD

− NIC: NetFPGA with Xilinx Virtex 5 (up to 1Gb bandwidth)

− Accelerator: NVIDIA Tesla K20m

− Device interconnect: Cyclone Microsystems PCIe2-2707
(Gen 2 switch, 5 slots, up to 80Gbps)

21

@ 2018 Jangwoo Kim

DCS prototype implementation
• Our 4-node DCS prototype

− Can support many devices per host

A working prototype of Device-Centric Server (DCS)!

22

@ 2018 Jangwoo Kim

Reducing device utilization latency

• Single sendfile: Storage read & NIC send
− Host-centric: Per-device layer crossings

− DCS: Batch management in HW layer
La

te
n
cy

 (
ms

)

HW75

SW79

75

Host-centric DCS

DCS39

2x latency improvement
(with low-latency devices)

Host-centric DCS

La
te

n
cy

23

@ 2018 Jangwoo Kim

71% BW / CPU 11% busy

100% BW / CPU 29% busy

Host-independent performance
• Sendfile under host resource (CPU) contention

− Host-centric: host-dependent, high management cost

− DCS: host-independent, low management cost

CPU Busy
Sendfile bandwidth

Host-centric
DCS

100% BW / CPU 70% busy

13% BW / CPU 10% busy

No contention High contention

High performance even on weak hosts
24

@ 2018 Jangwoo Kim

Multi-device invocation
• Encrypted sendfile (SSD → GPU → NIC, 512MB)

− DCS provides much efficient data movement to GPU

− Current bottleneck is NIC (1Gbps)

Normalized processing time

68

62

6

Host-centric

DCS

32 6

6 6
Network send (1Gb)

14% reduction13

12

Network send (10Gb)

38% reduction

GPU data loading GPU processing Network send NVIDIA driver

25

@ 2018 Jangwoo Kim

Real-world workload: Hadoop-grep
• Hadoop-grep (10GB)

− Faster input delivery & smaller host resource consumption

0
25
50
75

100
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

Map progress Reduce progress

Host-centric

%

0
25
50
75

100 DCS
%

M
ap

/R
ed

u
ce

 p
ro

g
re

ss

40% faster processing
26

@ 2018 Jangwoo Kim

Scalability: More devices per host
• Doubling # of devices in a single host

CPU Utilization 60%

To
tal d

evice th
ro

u
g
h
p
u
t

(N
o
rm

alized
)

2x1.3x

Scalable many-device support

100% 22% 37%

Devices
SSD
NIC

SSDx2
NICx2

SSD
NIC

SSDx2
NICx2

Host-centric DCS

27

@ 2018 Jangwoo Kim

1st prototype in 2015

• A new server architecture: DCS!
− Device latency reduction: ~25%

− Host resource savings: ~61%

− Hadoop speed improvement: ~40%

[MICRO 2015]

28

@ 2018 Jangwoo Kim

Wait. We can do even better!

29

@ 2018 Jangwoo Kim

Limitations of Existing D2D Comm.

• P2P communication
− Direct data transfers through PCI Express  D2D comm.

− Slow, high-overhead control path becomess a killer

Data path

Control path

Dev
A

Dev
C

CPUDev
B

0

30

60

90

120

Control Data copy

S
W

 L
at

en
cy

 (
u
s)

SW
opt

P2P
0%

25%

50%

75%

100%

Others Control

C
P
U

 u
ti
l.
 (

%
)

SW
opt

P2P

30

@ 2018 Jangwoo Kim

Limitations of Existing D2D Comm.

• Integrated devices
− Integrating heterogeneous devices  D2D comm.

− Fast data & control transfers

− Fixed and inflexible aggregate implementation

CPU

Dev
A

Dev
C

Dev
B

New
Dev$$$

C
o
n

tro
lle

rs

31

@ 2018 Jangwoo Kim

Limited Performance Potential

while (true) {
rc_recv = recv(fd_sock, buffer, recv_size, 0);
if (rc_recv <= 0) break;
processing(&md_ctx, buffer, recv_size);
rc_write = write(fd_file, buffer, recv_size);
…

}

• “Intermediate” processing between device ops
− Prevent applications from using direct D2D comm.

− Cause host-side resource contention (CPU and memory)

Dev
A

Dev
B

CPU

32

@ 2018 Jangwoo Kim

DCS-v2: Key Ideas & Benefits

DCS

HDC

void ssd_to_nic()
{

get_from_ssd(&data);
process_in_HDC(&data);
write_to_nic(&data);

}

Dev
A

Dev
B

CPU

Optimized dev. control

 Faster & scalable
communication

Generic dev. interfaces

 Higher flexibility

Near-device processing

 Higher applicability

New
Dev

CPU
Dev

A

Dev
C

Dev
B

DCS

Device
controlle

r
Data path

Control path

CPU
Dev

A

Dev
C

Dev
B

DCS

33

@ 2018 Jangwoo Kim

DCS-v2: (1) standard device interfaces

• Standard interfaces in DCS Engine
−Based on “scoreboard” with independent queues

 Keep track of (src, dst, commands, status)

Standard interface provided by FPGA
34

@ 2018 Jangwoo Kim

DCS-v2: (2) HW-based fast D2D “control”

• Device ctrl functions in DCS Engine
− Bypass OS as much as possible

 Handle kernel-dependent functions (e.g., recvfile)

Both data and control managed by FPGA

D
e
v
ic

e
co

n
tr

o
ll

e
r

Submission
queue

Completion
queue

Device
Doorbell
registers

PCIe
switch

35

@ 2018 Jangwoo Kim

DCS-v2: (3) Near-Device Processing (NDP)

• Intermediate processing (MD5_Update) between device Ops

• CPU- and memory-intensive routines in existing applications

− Prevent applications from using direct D2D communications

− Cause host-side resource contention (CPU and memory)

MD5_Init(&md_ctx);
while (true) {

rc_recv = recv(fd_sock, buffer, recv_size, 0);
if (rc_recv <= 0) break;
MD5_Update(&md_ctx, buffer, recv_size);
rc_write = write(fd_file, buffer, recv_size);
if (recv_size != rc_write) {

break;
}

}
MD5_Final(md_res, &md_ctx);

Intermediate computation by FPGA
36

@ 2018 Jangwoo Kim

A new DCS system in a big picture!

DCS2 Library
ioctl()

DCS2 Driver

Command
generator Interrupt handler

Memory
manager

Completion queue

D2D commands

NVMe SSD controller

D
C

S
2

 E
ng

in
e

Submissio
n

queue

Completio
n

queue
Broadcom NIC controller

Send
queue

Recv
queue

TCP/I
P

header

Memory

NVMe
SSDs

10Gbp
s

NIC

NVIDIA
GPU

Command queue

Command parser

Scoreboard

GPU driver

TCP/IP network stack

EXT4 file system

GPU library

Issue

Forward

Buffer Buffer Buffer

PIO interface

GPU memory
information

Block address

TCP/IP header

GPU memory management

In
te

rr
u

pt
g

en
er

at
o

r

Near-device processing units
(MD5, CRC32, packet gather)

37

@ 2018 Jangwoo Kim

DCS-v2: a working prototype now

• Off-the-shelf emerging devices
− Storage: Intel 750 Series SSD 400GB

− NIC: Broadcom Corporation NetXtreme II BCM57711(10Gb)

− Accelerator: NVIDIA Tesla K20m

− PCIe switch: Cyclone Microsystems PCIe2-2707 (Gen2)

− FPGA: Xilinx Virtex 7 VC 707 board

D
CS

2
En

gi
ne

DCS2 Driver

DCS2 Library

[ISCA’18]

38

@ 2018 Jangwoo Kim

Performance: Low D2D Latency

• encrypted_sendfile(): SSD  hash  NIC
− SW opt (+P2P): frequent boundary crossings, complex software

− DCS-ctrl: less crossings, hardware-based device control

without processing with processing (AES256)

Significant performance boost!
39

@ 2018 Jangwoo Kim

Utilization: CPU become silent

• Swift & HDFS workloads
− Offload device control & data transfers to hardware

Swift HDFS

Significant host CPU saving!
40

@ 2018 Jangwoo Kim

Scalability: support many devices

• Swift & HDFS workloads
− More CPU-efficient  support more high-performance devices

Swift HDFS

Significant scalability boost!
41

@ 2018 Jangwoo Kim

What we are doing now!

• New applications require new systems!

42

@ 2018 Jangwoo Kim

Question?

Thank You!

Jangwoo Kim
e-mail: jangwoo@snu.ac.kr
https://hpcs.snu.ac.kr/~jangwoo

43

