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Major IT companies run datacenters

Datacenter infra market is huge.
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All others use the datacenters

• Buy a SW/HW platform as a service 

Client A

Client B

Client E

Client D

Client C

Again, datacenter infra market is huge.
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Moore’s Law is Dead

can’t build a faster CPU 
due to the power ceiling

What is the use 
of extra transistors?
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CPU is NOT the 1st-class citizen any more

“Un-CPU” devices now dominate 
the performance, power, and costs.

VS
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Every company now deals with big data

Storage infra market is EVEN larger!
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Neuromorphic computer is coming

Brain-inspired computing  New World?
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- Message #1 (for system engineers)
We must build a datacenter-friendly, intelligent server

(e.g., cloud, big data, artificial intelligence)   

- Message #2 (for system engineers)
The advantage must come from emerging devices

(e.g., Memory, SSD, GPU, ASIC, ..)
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My solution:

Let’s use our intelligent server architecture!   
“DCS: Device-Centric Server Architecture”

Three papers appeared in
- 2018 ACM/IEEE International Symposium on Computer Architecture (ISCA)
- 2017 ACM/IEEE International Symposium on Microarchitecture (MICRO)
- 2015 ACM/IEEE International Symposium on Microarchitecture (MICRO)
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Existing servers do not work

• Host-centric device management
− Host manages every device invocation

− Frequent host-involved layer crossings

 Increases latency and management cost

Userspace

Kernel

Hardware

Application

Device A Device B

Driver B

Kernel stack

Driver A

Kernel stack

Device C

Driver C

Kernel stack

Datapath Metadata/Command path
9



@ 2018 Jangwoo Kim

Latency: High software overhead

• Single sendfile: Storage read & NIC send
− Faster devices, more software overhead

Software overhead
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Cost: High host resource demand

• Sendfile under host resource (CPU) contention
− Faster devices, more host resource consumption

Sendfile 
bandwidth 

100%

No contention

CPU Busy Sendfile bandwidth

*Measured from NVMe SSD/10Gb NIC

Sendfile
CPU usage

34%

High contention

Sendfile 
bandwidth 

14%

Sendfile
CPU usage 

6%
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Limitations of existing work

• Single-device optimization
− Do not address inter-device communication

e.g., Moneta (SSD), DCA (NIC), mTCP (NIC), Arrakis (Generic)

• Inter-device communication 
− Not applicable for unsupported devices

e.g., GPUNet (GPU-NIC), GPUDirect RDMA (GPU-Infiniband)

• Integrating devices
− Custom devices and protocols, limited applicability

e.g., QuickSAN (SSD+NIC), BlueDBM (Accelerator–SSD+NIC)

Need for fast, scalable, and generic 
inter-device communication
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Our solution: Device-Centric Server

• Minimize host involvement & data movement

Userspace

Kernel

Hardware

Application

Device A Device B Device C

Driver B

Kernel stack

Driver A

Kernel stack

Driver C

Kernel stack
DCS Driver Device drivers & Kernel stacks

DCS Engine

Device CDevice BDevice A

Datapath Metadata/Command path

Single command → Optimized multi-device invocation

DCS Library Application
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DCS: Benefits

• Selective, D2D transfer
− Faster data delivery, lower total operation latency

• Better host performance/efficiency
− Resource/time spent for device management

now available for other applications

• High applicability
− Relies on existing drivers / kernel supports / interfaces
− Easy to extend and cover more devices
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Device-Centric Server Components

• DCS Engine 
− A custom HW device to selectively connect devices 

• DCS drivers
− Convert commodity devices to work with DCS engines

• DCS library
− OS library to hook with the existing system calls

• DCS applications
− Applications developed or tuned for DCS systems
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DCS: Architecture overview

Userspace

Kernel

Hardware

ApplicationDCS Library
sendfile(), encrypted sendfile()

DCS Driver

Command generator
Kernel communicator

DCS Engine (on NetFPGA NIC)
NVMe SSD

GPU

NetFPGA NIC

Fully compatible with existing systems

Command
Queue

Command
interpreter

Per-device
manager

PCIe Switch

Drivers &
Kernel stack

Existing System
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Communicating with storage

Userspace

Kernel

Hardware

ApplicationDCS Library

DCS Driver

DCS Engine

NVMe SSD

Block addr (in device) / buffer addr (cached) 

VFS cache

Source device

File descriptor

Hook / API call

Data consistency guaranteed

Source device

Target

(Virtual) Filesystem
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Communicating with network interface

Userspace

Kernel

Hardware

ApplicationDCS Library

DCS Driver

DCS Engine

Data buffer

Network stack
Connection information

NetFPGA NIC

Packet generation & Send HW PacketGen

Socket descriptor

Hook / API call

HW-assisted packet generation
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Communicating with accelerator

Userspace

Kernel

Hardware

ApplicationDCS Library

DCS Driver

DCS Engine

Memory

GPU

Memory allocation

GPU user library

GPU kernel driver
Get memory mapping

DMA / NVMe transfer

Source device

Kernel invocation

Process data
(Kernel launch)

Call DCS library

Direct data loading without memcpy
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DCS sytem in a big picture!
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Experimental setup
• Host: Power-efficient system

− Core 2 Duo @ 2.00GHz, 2MB LLC

− 2GB DDR2 DRAM

• Device: Off-the-shelf emerging devices
− Storage: Samsung XS1715 NVMe SSD

− NIC: NetFPGA with Xilinx Virtex 5 (up to 1Gb bandwidth)

− Accelerator: NVIDIA Tesla K20m

− Device interconnect: Cyclone Microsystems PCIe2-2707
(Gen 2 switch, 5 slots, up to 80Gbps)
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DCS prototype implementation
• Our 4-node DCS prototype

− Can support many devices per host

A working prototype of Device-Centric Server (DCS)!
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Reducing device utilization latency

• Single sendfile: Storage read & NIC send
− Host-centric: Per-device layer crossings

− DCS: Batch management in HW layer
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71% BW / CPU 11% busy

100% BW / CPU 29% busy

Host-independent performance
• Sendfile under host resource (CPU) contention

− Host-centric: host-dependent, high management cost

− DCS: host-independent, low management cost

CPU Busy
Sendfile bandwidth

Host-centric
DCS

100% BW / CPU 70% busy

13% BW / CPU 10% busy

No contention High contention

High performance even on weak hosts
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Multi-device invocation
• Encrypted sendfile (SSD → GPU → NIC, 512MB)

− DCS provides much efficient data movement to GPU 

− Current bottleneck is NIC (1Gbps)

Normalized processing time

68

62

6

Host-centric

DCS

32 6

6 6
Network send (1Gb)

14% reduction13

12

Network send (10Gb)

38% reduction

GPU data loading GPU processing Network send NVIDIA driver
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Real-world workload: Hadoop-grep
• Hadoop-grep (10GB)

− Faster input delivery & smaller host resource consumption 
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Scalability: More devices per host  
• Doubling # of devices in a single host

CPU Utilization 60%
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1st prototype in 2015

• A new server architecture: DCS!
− Device latency reduction: ~25%

− Host resource savings: ~61%

− Hadoop speed improvement: ~40%

[MICRO 2015]
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Wait. We can do even better!
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Limitations of Existing D2D Comm.

• P2P communication
− Direct data transfers through PCI Express  D2D comm.

− Slow, high-overhead control path becomess a killer
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Limitations of Existing D2D Comm.

• Integrated devices
− Integrating heterogeneous devices  D2D comm.

− Fast data & control transfers

− Fixed and inflexible aggregate implementation
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Limited Performance Potential

while (true) {
rc_recv = recv(fd_sock, buffer, recv_size, 0); 
if (rc_recv <= 0) break;
processing(&md_ctx, buffer, recv_size);
rc_write = write(fd_file, buffer, recv_size);
…

}

• “Intermediate” processing between device ops
− Prevent applications from using direct D2D comm.

− Cause host-side resource contention (CPU and memory) 

Dev
A

Dev
B

CPU
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DCS-v2: Key Ideas & Benefits

DCS

HDC

void ssd_to_nic()
{

get_from_ssd(&data);
process_in_HDC(&data);
write_to_nic(&data);

}

Dev
A

Dev
B

CPU

Optimized dev. control

 Faster & scalable 
communication

Generic dev. interfaces

 Higher flexibility

Near-device processing

 Higher applicability

New
Dev

CPU
Dev

A

Dev
C

Dev
B

DCS

Device
controlle

r
Data path

Control path

CPU
Dev

A

Dev
C

Dev
B

DCS

33



@ 2018 Jangwoo Kim

DCS-v2: (1) standard device interfaces

• Standard interfaces in DCS Engine
−Based on “scoreboard” with independent queues

 Keep track of (src, dst, commands, status)

Standard interface provided by FPGA
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DCS-v2: (2) HW-based fast D2D “control”

• Device ctrl functions in DCS Engine
− Bypass OS as much as possible

 Handle kernel-dependent functions (e.g., recvfile)

Both data and control managed by FPGA
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DCS-v2: (3) Near-Device Processing (NDP)

• Intermediate processing (MD5_Update) between device Ops

• CPU- and memory-intensive routines in existing applications

− Prevent applications from using direct D2D communications

− Cause host-side resource contention (CPU and memory) 

MD5_Init(&md_ctx);
while (true) {

rc_recv = recv(fd_sock, buffer, recv_size, 0); 
if (rc_recv <= 0) break;
MD5_Update(&md_ctx, buffer, recv_size);
rc_write = write(fd_file, buffer, recv_size);
if (recv_size != rc_write) {

break;
}   

}
MD5_Final(md_res, &md_ctx);

Intermediate computation by FPGA
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A new DCS system in a big picture!
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DCS-v2: a working prototype now

• Off-the-shelf emerging devices
− Storage: Intel 750 Series SSD 400GB

− NIC: Broadcom Corporation NetXtreme II BCM57711(10Gb)

− Accelerator: NVIDIA Tesla K20m

− PCIe switch: Cyclone Microsystems PCIe2-2707 (Gen2)

− FPGA: Xilinx Virtex 7 VC 707 board
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DCS2 Driver

DCS2 Library

[ISCA’18]
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Performance: Low D2D Latency

• encrypted_sendfile(): SSD  hash  NIC 
− SW opt (+P2P): frequent boundary crossings, complex software

− DCS-ctrl: less crossings, hardware-based device control

without processing with processing (AES256)

Significant performance boost!
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Utilization: CPU become silent

• Swift & HDFS workloads
− Offload device control & data transfers to hardware

Swift HDFS

Significant host CPU saving!
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Scalability: support many devices

• Swift & HDFS workloads
− More CPU-efficient  support more high-performance devices

Swift HDFS

Significant scalability boost!
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What we are doing now!

• New applications require new systems!
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Question?

Thank You!

Jangwoo Kim
e-mail: jangwoo@snu.ac.kr
https://hpcs.snu.ac.kr/~jangwoo
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