Ceph & RocksDB

변일수(Cloud Storage팀)

© LINE

Ceph Basics

Placement Group

CRUSH

Recovery

https://www.scan.co.uk/products/4tb-toshiba-mg04aca400e-enterprise-hard-drive-35-hdd-sata-iii-6gb-s-7200rpm-128mb-cache-oem

ObjectStore

https://ceph.com/community/new-luminous-bluestore/

OSD Transaction

BlueStore Transaction

• To maintain ordering within each PG, ordering within each shard should be guaranteed.

RocksDB Group Commit

- Metadata is stored in RocksDB.
- After storing metadata atomically, data is available to users.

Thread Scalibility

Shard Scalability

RadosGW

RadosGW

• RadosGW is an application of RADOS

RadosGW Transaction

• All atomic operations depen on RocksDB

BlueStore Transaction

• To maintain ordering within each PG, ordering within each shard should be guaranteed.

Performance Issue

Tail Latency

Performance Metrics

RocksDB Compaction Overhead

• "<u>SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value</u> <u>Stores</u>" (ATC'19)

Conclusions

- Ceph highly depends on RocksDB
 - Strong consistency of Ceph is implemented using RocksDB transactions
- The performance of ceph also depends on RocksDB
 - Especially for Small IO
- But RocksDB has some performance Issues
 - Flushing WAL
 - Compaction
- ilsoobyun@linecorp.com

THANK YOU