ShflLocks: Scalable and Practical
Locking for Manycore Systems

Changwoo Min
COSMOSS Lab / ECE / Virginia Tech
https://cosmoss-vt.github.io/

7

https://cosmoss-vt.github.io/

File system becomes a bottleneck on manycore systems

Exim mail server on RAMDISK

| | | | | | |
14Kk DErfS m—— F2FS = isii=:
eXt4 IER SN XFS)i
12k _
lllllll%...

(@) “““X l..,>(.....|l)(|......>
0 10k |- R _
B 1. Saturated
S 8k |- x*]
a
O 6k |- o -
e o

4k |- X i

3. Never scales

Even in slower storage medium file system becomes a
bottleneck

Exim email server at 80 cores

s RAMDISK mmmm

SSD -
HDD -

12k

10k

8k

6k

messages/sec

4k

2k

Ok

btrfs extd F2FS XFS

FxMark: File systems are not scalable in manycore systems

Create files on a shared directory

Locks are critical in performance and scalabilit

MwCM MWRM DRBL:O_DIRECT DRBM:O_DIRECT
045 05 035 —
04 045 03
035 e
o3 035) .) 025 4
&0z = & k3 8 o2 By
2 025 2 3 5
o 02 e S Soish B
= 015 o s s s
g 015 o1 L 4
01 01
h .
00 P - Pos 7 . 005 &
o B 1 o 2 o e 0 ¥ o L ol vy
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
#core core #core #core #core
DWOL:O_DIRECT DWOM:0_DIRECT RocksDB DBENCH Legend

18 —

:] btrfs ——
[g . 2 extd -
g H b extaN] -k
¥ g f F2FS --3--
g b tmpfs —a—
5 Y XFS -

nrex

o o
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
#core #ore #ore

Future hardware further exacerbates the problem

Intel to Offer Socketed 56-core Cooper Lake
N t |> Xeon Scalable in new Socket Compatible with Ice
(inte s Lake

by Dr. Ian Cutress on August 6, 2019 8:01 AM EST

AMD’s New 280W 64-Core Rome CPU: The EPYC

AMDCT iz

by Dr. Ian Cutress on September 18, 2019 9:15 AM EST

Why this happens?
: Memory access is NOT scalable

1. Read operations are
scalable

Read Scalability

(on 4 processors x 4 cores AMD machine)
mmmmmmmm

p—— Read private
Read shared

nnnnnnnn

TTTTTTTTT

Why this happens?
: Memory access is NOT scalable

1. Read operations are
scalable

Read Scalability

(on 4 processors x 4 cores AMD machine)
25000000000

(o)
S

20000000000

Read private

Read shared

15000000000

Throughput, opfsec

10000000000

5000000000
(o0
\ 7

o

TTTTTTTTT

W Read privele ®Resd shared

Throughput, opisec

2. Write operations are
NOT scalable

White Scalability

(on 4 processors x4 cores AWD machine)
uuuuuuuu

(o0
A
5000000000
4000000000 Write private
uuuuuuuu
2000000000
Write shared
1000000000
) +
; & <
; i 3 18
Thread Count

Wfite private wite shered

Why this happens?
: Memory access is NOT scalable

1. Read operations are 2. Write operations are
scalable NOT scalable

Read Scalability White Scalability
(on 4 processors x 4 cores AMD machine) (on 4 processors x4 cores AWD machine)

Shared lock variable (flag)

-~ 5 o

Shared data protected by the lock

BRead privite >Reed shar ed Wi private @V ite shered

3. Write operations
interfere read operations

25k

B
20k
15k

10k

Cycles to read

::\.‘jﬂ 1020 30 40 - 50 60 70 80

1 writer + N readers

Why this happens?
: Cache coherence is not scalable

® (Cache coherent traffic dominates!!!

® \Writing a cache line in a popular MESI protocol:

— Writer’s cache: Shared = Exclusive

— All readers’ cache line: Shared = Invalidate

Should minimize contended
cache lines and core-to-core
communication traffic

Socket-1

Memory

Socket-2

LLC (\

Memory

> LLC

Lock’s research efforts and their use

Lock's research efforts

..

..

Linux kernel lock
adoption / modification

Adopting new locks is necessary but it is not easy

MCS lock (1991)

HBO lock (2003)

--
--

Flat combining NUMA lock (2011)

. Remote Corelocking 2012)

--

--

.....

. SpINIocK — ticket (£.0)

. 2011
Mutex — TTAS + block (2.6)

wRwsem > TTAS #block
" Spinlock - ticket 2014
© Mutex — TTAS + spin + block (3.16)

~ Rwsem = TTAS * spin * block (3.16) .
" Spinlock - gspinlock (4.4) 2016

Mutex — TTAS + spin + block
. Rwsem — TTAS + spin + block

Two dimensions of lock design/goals

1) High throughput
@® In high thread count

® |n single thread

® In oversubscription

2) Minimal lock size

® Memory footprint

Minimize lock contentions
No penalty when not contended

Avoid bookkeeping overheads

Scales to millions of locks
(e.g., file inode)

11

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

Operations / second

0.40M
0.35M
0.30M
0.25M
0.20M
0.15M
0.10M

0.05M
Yk gk 3R 42 o0 ,Q,Q Xb‘b‘ '&Gb Xg"L

threads

—— Stock

® Performance crashes after 1 socket.

Due to non-uniform memory access (NUMA).

|
v

Accessing local socket memory is faster than
the remote socket memory.

Socket-1 Socket-2
Memory Memory
< >> LLC

N Ao S S — A — i 12

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

0.40M

o ® Performance crashes after 1 socket.
S zzz: [\ Due to non-uniform memory access (NUMA).
(V] ' |
o 0.25M = v
S 020M Accessing local socket memory is faster than
T 0asM the remote socket memory.
L o1om
O oosm v ® NUMA also affects oversubscription.

Yk gk 3R 42 o0 ,\}0 '\b‘b‘ '\Gb A9 oM

threads

Cra

Existing research efforts

® Making locks NUMA-aware:

O Two level locks: per-socket and global Y Global lock
O Generally hierarchical " n s Socket lock

T) &
O Require extra memory allocation

Socket-1 Socket-2

O Do not care about single thread throughput
® Example: CST!

1. Scalable NUMA-aware Blocking Synchronization Primitives. ATC 2017. 14

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

0.40M
0.35M Y

©
[
S Maintains throughput:
L o30Mm .
< e \‘\‘\.\.\‘\MO Beyond one socket (high thread count).
S oxom In oversubscribed case (384 threads).
5 0.15M
é_ 0.10M ® Poor single thread throughput.
oo 2 4 24 48 72 96 120 144 168 192 384 MUIUple atomic instructions.

threads

Locks performance: Memory footprint

(e.g., each thread creates a file, a serial operation, in a shared directory)

o
E’ 150 MB S .
< A ® (CST has large memory footprint.
S iooms Allocate socket structure and global lock.
>
% Worst case: ~1 GB footprint out of 32 GB
£ SomB application’s memory.
©°
192
threads

B Stock CST

16

Locks performance: Memory footprint

(e.g., each thread creates a file, a serial operation, in a shared directory)

+ 1000 MB o
g ® ® (CST has large memory footprint.
8 Tome Allocate socket structure and global lock.
>
g soome Worst case: ~1 GB footprint out of 32 GB
£ P
E - 2 application’s memory.
5 00
o) =
- 0MB :
192
threads

B Stock CST I Hierarchical lock

17

Locks performance: Memory footprint

(e.g., each thread creates a file, a serial operation, in a shared directory)

+ 1000 MB o

g % ® (ST has large memory footprint.

8 Teome Allocate socket structure and global lock.
>

% SO0 MB Worst case: ~1 GB footprint out of 32 GB
E - § application’s memory.

S

(@)

0MB

Two goals in our new lock

[1) NUMA-aware lock with no memory overhead }

[2) High throughput in both low/high thread count }

19

Key idea: Sort waiters on the fly

Observations:

[Hierarchical locks avoid NUMA by passing the lock within a socket }

[Queue-based locks already maintain a set of waiters }

20

Shuffling: Design methodology

Representing a waiting queue

Socket id (e.g, socket 0)

1 |

t1

shuffler: { waiter’s qnode:

—— Socket ID

1]

—— tail

21

Shuffling: Design methodology

Another waiter is in a different socket

HH

\ 4

s=cq!

t1

t2

shuffler: { waiter’s qnode:

—— Socket ID

1]

—— tail

22

Shuffling: Design methodology

More waiters join

\ 4

t1

t2

A 4

t3 t4

shuffler: { waiter’s qnode:

—— Socket ID

1]

—— tail

23

Shuffling: Design methodology

Shuffler (t1) sorts based on socket ID

~

bl

-
>

G

t1

t2

.
L

t3 t4

shuffler: { waiter’s qnode:

—— Socket ID

1]

—— tail

24

Shuffling: Design methodology

{ A waiter (shuffler ®) reorders the queue of waiters
-
R PR -
t1 t2 t3 t4

® A waiter, otherwise spinning (i.e,. wasting), amortises the cost of lock ops
1) By reordering (e.g., lock orders)

2) By modifying waiters’ states (e.g., waking-up/sleeping)

—> Shuffler computes NUMA-ness on the fly without using memory unlike others

Shuffling is generic!

SHFLLOCKS

Minimal footprint locks
that handle any thread contention

27

SHFLLOCKS

([TAS(4B))
(test-and-set lock)

\ (waiters list) J

& lock():

rh unlock():

Queue tail (8B) |

® Decouples the lock holder and waiters

O Lock holder holds the TAS lock
O Waiters join the queue

e

Try acquiring the TAS lock first; join the queue on failure

-

e

Unlock the TAS lock (reset the TAS word to 0)

28

SHFLLOCKS

([TAS(4B))
(test-and-set lock)

Queue tail (8B)

\ (waiters list) J

Vs

-

TAS maintains single thread performance

Ve

(&

® \Waiters use shuffling to improve application throughput
O NUMA-awareness, efficient wake up strategy

O Utilizing |dle/CPU wasting waiters
® Maintain long-term fairness:

O Bound the number of shuffling rounds

* Shuffling is off the critical path most of the time

29

NUMA-aware SHFLLOCK in action

; [

t0 (socket 1): lock()

o
I \‘

& unlocked
& locked

—— Socket ID
Y

shuffler: { waiter’s qnode:

&1}

—— tail

30

NUMA-aware SHFLLOCK in action

[Multiple threads join the queue }

\4

Hd

A 4

o

t1

t2

\ 4

HH

2=cjl

t3

T unlocked
& locked

t4

shuffler: { waiter’s qnode:

—— Socket ID

1]

—— tail

31

NUMA-aware SHFLLOCK in action

[Shuffling in progress }

t1 starts the shuffling process

A 4
\ 4

0 & [?\H_P} [Hge HH —Hz{\\

t1 t2 t3 t4

—— Socket ID

Y
‘B unlocked shuffler: 8 waiter's gnode: —H;H

& locked L tail

32

NUMA-aware SHFLLOCK in action

[Shuffling in progress }

t3 now becomes the shuffler

\ 4

S
-
\»

.53 SE= S = =0l

t1 t3 t2 t4

—— Socket ID

Y
‘i@ unlocked shuffler: 8 waiter's gnode: —H;H

& locked L tail

33

NUMA-aware SHFLLOCK in action

t1 acquires the lock via CAS

-y,

t0: unlock()

\4

\ 4

==0

B
t1

t3

t2

& unlocked
& locked

2=cjl

t4

shuffler: { waiter’s qnode:

—— Socket ID

1]

—— tail

34

NUMA-aware SHFLLOCK in action

t1

t1 notifies t3 as a new queue head

’—

~

S\

t0: unlock()

[
»

\ 4

e

1223 SIEE2

t2

& unlocked
& locked

2=cjl

t4

shuffler: { waiter’s qnode:

—— Socket ID

1]

—— tail

35

NUMA-aware SHFLLOCK in action

t1

t1

\4

=

t3

t2

> e

v

Z=cq!

t4

unlocked
locked

\ 4

Tl

t4

shuffler: { waiter’s qnode:

t0: unlock()

—— Socket ID

1]

—— tail

36

Other SHFLLOCKS: Blocking SHFLLOCK

® NUMA-aware blocking lock.
® \Wake up shuffled waiters based on the socket ID.
O Avoids the wakeup latency from the critical path.

® |ockis always passed to a spinning waiter.

O Lock stealing: avoid lock-waiter preemption problem.

O Shuffled waiters are already spinning.

® Guarantees forward progress of the system.

37

Blocking SHFLLOCK in action

t1 wakes up t3 after moving it.

=" Gal

t1 t3 t2 t4

S
- o)
oL
IN
=
o

ZZ ZZ
08| | [EEE-CEE] L
° t1 t3 t2 t4

& unlocked

7 scheduled ¥ shuffler 8 locked

out

38

Implementation

® Kernel space:

O Replaced all mutex and rwsem

O Modified slowpath of the gspinlock
® User space:

O Added to the Litl library
® Please see our paper:
O Readers-writer lock: Centralized rw-indicator + SHFLLOCK

39

Evaluation

® SHFLLOCK performance:
O Does shuffling maintains application’s throughput?
O What is the overall memory footprint?

Setup: Eight socket 192-core/8-socket machine

40

Operations / second

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

1 socket
0.40M

0.35M
0.30M
0.25M
0.20M
0.15M

0.10M

0.05M

—
\

b

1 2 4 24 48 72 96 120 144 168 192 384

threads

csT NN s | ock

® SHFLLOCKS maintain performance:

41

Operations / second

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

0.40M

0.35M

0.30M

0.25M

0.20M

0.15M

0.10M

0.05M

1

—

—r ® SHFLLOCKS maintain performance:

G

\\\‘\;\‘\ ® Beyond one socket
—* O NUMA-aware shuffling

2 4 24 48 72 96 120 144 168 192 384

threads

csT NN s | ock

42

Operations / second

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

—
\

1 socket
0.40M

0.35M
0.30M
0.25M
0.20M
0.15M

0.10M

0.05M

1 2 4 24 48 72 96 120 144 168 19238

threads

csT NN s | ock

® SHFLLOCKS maintain performance:

® Beyond one socket
O NUMA-aware shuffling
® Core oversubscription
O NUMA-aware + wakeup shuffling

43

Operations / second

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

Z::E _A , ® SHFLLOCKS maintain performance:

030m \‘\‘\‘\‘\‘\4 ® Beyond one socket

Zzzx — O NUMA-aware shuffling

0.15M ® Core oversubscription

Z;‘x O NUMA-aware + wakeup shuffling

2 4 24 48 72 96 120 144 168 192 384

threads
_. Stock CST E SHFLLOCK

® Single thread
O TAS acquire and release

44

Locks performance: Memory footprint

(e.g., each thread creates a file, a serial operation, in a shared directory)

=
., 150MB 3
£
|-
s \
+J
(@]
S 100MB
)
(@)
£
(]
E 50MB %
" 00
= -
o
= m

0MB —.
192
threads
]
o— oLock CST E SHFLLOCK

® SHFLLOCKS has least memory footprint

Reason: No extra auxiliary data structure

> Stock: parking list structure + extra lock
> (CST: per-socket structure

45

Case study: Exim mail server

It is fork intensive and stresses memory subsystem, file system and scheduler

160K
140K
120K
100K
80K
60K

Messages / second

40K
20K
0K

Memory footprint
‘ 25GB

20GB
15GB

10GB

\ 5GB

J ‘—OGB

Throughput
1 2 4 24 48 72 96 120 144 168 192
threads
[
~ Stock CST

192
threads

e —
o SHFLLOCK

Lock’s memory

Improves throughput by
up to 1.5x

Decreases memory
footprint up to 93%

46

Discussion

@® Another way to enforce these policies dynamically:

O Lock holder splits the queue to provide:

* E.g.,, NUMA-awareness: Compact NUMA-aware lock (CNA).

* E.g., blocking lock: Malthusian lock.

® Shuffling can support other policies:
O Non-inclusive cache (Skylake architecture).
O Multi-level NUMA hierarchy (SGI machines).

47

Conclusion

® Locks are critical for file system and application performance

® Current lock designs:
O Do not maintain best throughput with varying threads

O Have high memory footprint

® Shuffling: Dynamically enforce policies

O NUMA, blocking, etc

® SHFLLOCKS: Shuffling-based family of lock algorithms

O NUMA-aware minimal memory footprint locks

48

	Slide 1
	Locks are critical for application performance
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Two dimensions of lock design/goals
	Locks performance: Throughput
	Locks performance: Throughput
	Existing research efforts
	Locks performance: Throughput
	Locks performance: Memory footprint
	Locks performance: Memory footprint
	Locks performance: Memory footprint
	Two goals in our new lock
	Key idea: Sort waiters on the fly
	Shuffling: Design methodology
	Shuffling: Design methodology
	Shuffling: Design methodology
	Shuffling: Design methodology
	Shuffling: Design methodology
	Shuffling is generic!
	Minimal footprint locks that handle any thread contention
	SHFLLOCKS
	SHFLLOCKS
	NUMA-aware SHFLLOCK in action
	NUMA-aware SHFLLOCK in action
	NUMA-aware SHFLLOCK in action
	NUMA-aware SHFLLOCK in action
	NUMA-aware SHFLLOCK in action
	NUMA-aware SHFLLOCK in action
	NUMA-aware SHFLLOCK in action
	Other SHFLLOCKS: Blocking SHFLLOCK
	Blocking SHFLLOCK in action
	Implementation
	Evaluation
	Locks performance: Throughput
	Locks performance: Throughput
	Locks performance: Throughput
	Locks performance: Throughput
	Locks performance: Memory footprint
	Case study: Exim mail server
	Discussion
	Conclusion

