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File system becomes a bottleneck on manycore systems

Exim mail server on RAMDISK
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Even in slower storage medium file system becomes a
bottleneck

Exim email server at 80 cores
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FxMark: File systems are not scalable in manycore systems

Create files on a shared directory

Locks are critical in performance and scalabilit
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Future hardware further exacerbates the problem

Intel to Offer Socketed 56-core Cooper Lake
N t |> Xeon Scalable in new Socket Compatible with Ice
( inte s Lake

by Dr. Ian Cutress on August 6, 2019 8:01 AM EST

AMD’s New 280W 64-Core Rome CPU: The EPYC

AMDCT iz

by Dr. Ian Cutress on September 18, 2019 9:15 AM EST



Why this happens?
: Memory access is NOT scalable

1. Read operations are
scalable

Read Scalability

(on 4 processors x 4 cores AMD machine)
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Why this happens?
: Memory access is NOT scalable

1. Read operations are
scalable

Read Scalability

(on 4 processors x 4 cores AMD machine)
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2. Write operations are
NOT scalable

White Scalability

(on 4 processors x4 cores AWD machine)
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Why this happens?
: Memory access is NOT scalable

1. Read operations are 2. Write operations are
scalable NOT scalable

Read Scalability White Scalability
(on 4 processors x 4 cores AMD machine) (on 4 processors x4 cores AWD machine)
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-~ 5 o

Shared data protected by the lock

BRead privite >Reed shar ed Wi private @V ite shered

3. Write operations
interfere read operations

25k

B
20k
15k

10k

Cycles to read

::\.‘jﬂ 1020 30 40 - 50 60 70 80

1 writer + N readers



Why this happens?
: Cache coherence is not scalable

® (Cache coherent traffic dominates!!!

® \Writing a cache line in a popular MESI protocol:

— Writer’s cache: Shared = Exclusive

— All readers’ cache line: Shared = Invalidate

Should minimize contended
cache lines and core-to-core
communication traffic

Socket-1

Memory

Socket-2
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Lock’s research efforts and their use

Lock's research efforts

....................................................................

....................................................................

Linux kernel lock
adoption / modification

Adopting new locks is necessary but it is not easy

MCS lock (1991)

HBO lock (2003)

------------------------------------------------------------------
--------------------------------------------------------------------

Flat combining NUMA lock (2011)

. Remote Corelocking 2012)

--------------------------------------------------------------------

--------------------------------------------------------------------

.....

. SpINIocK — ticket (£.0)

. 2011
Mutex — TTAS + block (2.6)

wRwsem > TTAS #block
" Spinlock - ticket 2014
© Mutex — TTAS + spin + block (3.16)

~ Rwsem = TTAS * spin * block (3.16) .
" Spinlock - gspinlock (4.4) 2016

Mutex — TTAS + spin + block
. Rwsem — TTAS + spin + block



Two dimensions of lock design/goals

1) High throughput
@® In high thread count

® |n single thread

® In oversubscription

2) Minimal lock size

® Memory footprint

Minimize lock contentions
No penalty when not contended

Avoid bookkeeping overheads

Scales to millions of locks
(e.g., file inode)
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Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

Operations / second
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® Performance crashes after 1 socket.

Due to non-uniform memory access (NUMA).
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Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

0.40M

o ® Performance crashes after 1 socket.
S zzz: [\ Due to non-uniform memory access (NUMA).
(V] ' |
o 0.25M = v
S 020M Accessing local socket memory is faster than
T 0asM the remote socket memory.
L o1om
O oosm v ® NUMA also affects oversubscription.
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Existing research efforts

® Making locks NUMA-aware:

O  Two level locks: per-socket and global Y Global lock
O Generally hierarchical " n s Socket lock

T ) &
O Require extra memory allocation

Socket-1 Socket-2

O Do not care about single thread throughput
® Example: CST!

1. Scalable NUMA-aware Blocking Synchronization Primitives. ATC 2017. 14



Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

0.40M
0.35M Y
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L o30Mm .
< e \‘\‘\.\.\‘\MO Beyond one socket (high thread count).
S oxom In oversubscribed case (384 threads).
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é_ 0.10M ® Poor single thread throughput.
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Locks performance: Memory footprint

(e.g., each thread creates a file, a serial operation, in a shared directory)

o
E’ 150 MB S .
< A ® (CST has large memory footprint.
S iooms Allocate socket structure and global lock.
>
% Worst case: ~1 GB footprint out of 32 GB
£ SomB application’s memory.
©°
192
# threads

B Stock CST
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Locks performance: Memory footprint

(e.g., each thread creates a file, a serial operation, in a shared directory)

+ 1000 MB o
g ® ® (CST has large memory footprint.
8 Tome Allocate socket structure and global lock.
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g soome Worst case: ~1 GB footprint out of 32 GB
£ P
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5 00
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B Stock CST I Hierarchical lock
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Locks performance: Memory footprint

(e.g., each thread creates a file, a serial operation, in a shared directory)
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Two goals in our new lock

[1) NUMA-aware lock with no memory overhead }

[2) High throughput in both low/high thread count }
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Key idea: Sort waiters on the fly

Observations:

[Hierarchical locks avoid NUMA by passing the lock within a socket }

[Queue-based locks already maintain a set of waiters }

20



Shuffling: Design methodology

Representing a waiting queue

Socket id (e.g, socket 0)

1 |

t1

shuffler: { waiter’s qnode:

—— Socket ID

1]

—— tail
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Shuffling: Design methodology

Another waiter is in a different socket

HH

\ 4

s=cq!

t1

t2

shuffler: { waiter’s qnode:

—— Socket ID

1]

—— tail
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Shuffling: Design methodology

More waiters join

\ 4

t1

t2

A 4

t3 t4

shuffler: { waiter’s qnode:

—— Socket ID

1]

—— tail
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Shuffling: Design methodology

Shuffler (t1) sorts based on socket ID
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shuffler: { waiter’s qnode:

—— Socket ID

1]

—— tail
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Shuffling: Design methodology

{ A waiter (shuffler ®) reorders the queue of waiters
-
R PR -
t1 t2 t3 t4

® A waiter, otherwise spinning (i.e,. wasting), amortises the cost of lock ops
1) By reordering (e.g., lock orders)

2) By modifying waiters’ states (e.g., waking-up/sleeping)

—> Shuffler computes NUMA-ness on the fly without using memory unlike others



Shuffling is generic!




SHFLLOCKS

Minimal footprint locks
that handle any thread contention
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SHFLLOCKS

([ TAS(4B) )
(test-and-set lock)

\ (waiters list) J

& lock():

rh unlock():

Queue tail (8B) |

® Decouples the lock holder and waiters

O Lock holder holds the TAS lock
O  Waiters join the queue

e

Try acquiring the TAS lock first; join the queue on failure

-

e

Unlock the TAS lock (reset the TAS word to 0)

28



SHFLLOCKS

([ TAS(4B) )
(test-and-set lock)

Queue tail (8B)

\ (waiters list) J

Vs

-

TAS maintains single thread performance

Ve

(&

® \Waiters use shuffling to improve application throughput
O NUMA-awareness, efficient wake up strategy

O Utilizing |dle/CPU wasting waiters
® Maintain long-term fairness:

O  Bound the number of shuffling rounds

* Shuffling is off the critical path most of the time

29




NUMA-aware SHFLLOCK in action

; [

t0 (socket 1): lock()

o
I \‘

& unlocked
& locked

—— Socket ID
Y

shuffler: { waiter’s qnode:

&1}

—— tail
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NUMA-aware SHFLLOCK in action

[ Multiple threads join the queue }
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& locked

t4

shuffler: { waiter’s qnode:

—— Socket ID

1]

—— tail
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NUMA-aware SHFLLOCK in action

[ Shuffling in progress }

t1 starts the shuffling process

A 4
\ 4

0 & [?\H_P} [ Hge HH —Hz{\\

t1 t2 t3 t4

—— Socket ID

Y
‘B unlocked shuffler: 8 waiter's gnode: —H;H

& locked L tail
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NUMA-aware SHFLLOCK in action

[ Shuffling in progress }

t3 now becomes the shuffler

\ 4

S
-
\»

.53 SE= S = =0l

t1 t3 t2 t4

—— Socket ID

Y
‘i@ unlocked shuffler: 8 waiter's gnode: —H;H

& locked L tail

33



NUMA-aware SHFLLOCK in action

t1 acquires the lock via CAS

-y,

t0: unlock()
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\ 4

==0
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t4

shuffler: { waiter’s qnode:

—— Socket ID

1]

—— tail
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NUMA-aware SHFLLOCK in action

t1

t1 notifies t3 as a new queue head
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t0: unlock()
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—— Socket ID

1]

—— tail
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NUMA-aware SHFLLOCK in action

t1

t1

\4
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Z=cq!

t4

unlocked
locked

\ 4

Tl

t4

shuffler: { waiter’s qnode:

t0: unlock()

—— Socket ID

1]

—— tail
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Other SHFLLOCKS: Blocking SHFLLOCK

® NUMA-aware blocking lock.
® \Wake up shuffled waiters based on the socket ID.
O Avoids the wakeup latency from the critical path.

® |ockis always passed to a spinning waiter.

O Lock stealing: avoid lock-waiter preemption problem.

O Shuffled waiters are already spinning.

® Guarantees forward progress of the system.
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Blocking SHFLLOCK in action

t1 wakes up t3 after moving it.
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Implementation

® Kernel space:

O Replaced all mutex and rwsem

O  Modified slowpath of the gspinlock
® User space:

O Added to the Litl library
® Please see our paper:
O Readers-writer lock: Centralized rw-indicator + SHFLLOCK
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Evaluation

® SHFLLOCK performance:
O  Does shuffling maintains application’s throughput?
O  What is the overall memory footprint?

Setup: Eight socket 192-core/8-socket machine
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Operations / second

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

1 socket
0.40M

0.35M
0.30M
0.25M
0.20M
0.15M

0.10M

0.05M

—
\

b

1 2 4 24 48 72 96 120 144 168 192 384

# threads

csT NN s | ock

® SHFLLOCKS maintain performance:
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Operations / second

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

0.40M
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Operations / second

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)
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® SHFLLOCKS maintain performance:

® Beyond one socket
O NUMA-aware shuffling
® Core oversubscription
O NUMA-aware + wakeup shuffling
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Operations / second

Locks performance: Throughput

(e.g., each thread creates a file, a serial operation, in a shared directory)

Z::E \\_A , ® SHFLLOCKS maintain performance:

030m \‘\‘\‘\‘\‘\4 ® Beyond one socket

Zzzx — O NUMA-aware shuffling

0.15M ® Core oversubscription

Z;‘x O NUMA-aware + wakeup shuffling
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® Single thread
O TAS acquire and release
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Locks performance: Memory footprint

(e.g., each thread creates a file, a serial operation, in a shared directory)
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® SHFLLOCKS has least memory footprint

Reason: No extra auxiliary data structure

> Stock: parking list structure + extra lock
> (CST: per-socket structure
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Case study: Exim mail server

It is fork intensive and stresses memory subsystem, file system and scheduler

160K
140K
120K
100K
80K
60K

Messages / second

40K
20K
0K

Memory footprint
‘ 25GB

20GB
15GB

10GB

\ 5GB

J ‘—OGB

Throughput
1 2 4 24 48 72 96 120 144 168 192
# threads
[
~ Stock CST

192
# threads

e —
o SHFLLOCK

Lock’s memory

Improves throughput by
up to 1.5x

Decreases memory
footprint up to 93%
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Discussion

@® Another way to enforce these policies dynamically:

O Lock holder splits the queue to provide:

* E.g.,, NUMA-awareness: Compact NUMA-aware lock (CNA).

* E.g., blocking lock: Malthusian lock.

® Shuffling can support other policies:
O  Non-inclusive cache (Skylake architecture).
O  Multi-level NUMA hierarchy (SGI machines).
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Conclusion

® Locks are critical for file system and application performance

® Current lock designs:
O Do not maintain best throughput with varying threads

O Have high memory footprint

® Shuffling: Dynamically enforce policies

O  NUMA, blocking, etc

® SHFLLOCKS: Shuffling-based family of lock algorithms

O  NUMA-aware minimal memory footprint locks
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