
ShflLocks: Scalable and Practical
Locking for Manycore Systems

Changwoo Min
COSMOSS Lab / ECE / Virginia Tech

https://cosmoss-vt.github.io/

https://cosmoss-vt.github.io/

File system becomes a bottleneck on manycore systems

2

0k

2k

4k

6k

8k

10k

12k

14k

0 10 20 30 40 50 60 70 80

m
es

sa
ge

s/
se

c

#core

Exim mail server on RAMDISK

btrfs
ext4

F2FS
XFS

3. Never scales

Embarrassingly parallel
application!

1. Saturated

2. Collapsed

Even in slower storage medium file system becomes a
bottleneck

0k

2k

4k

6k

8k

10k

12k

btrfs ext4 F2FS XFS

m
es

sa
ge

s/
se

c
Exim email server at 80 cores

RAMDISK
SSD

HDD

FxMark: File systems are not scalable in manycore systems

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

DRBL

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec
#core

DRBM

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

DRBH

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

DWOL

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

DWOM

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

DWAL

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

DWTL

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

DWSL

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

MRPL

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec
#core

MRPM

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

MRPH

0
50

100
150
200
250
300
350

400
450
500

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

MRDL

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

MRDM

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

MWCL

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

MWCM

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

0.45
0.5

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

MWUL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

MWUM

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80
M

 o
ps

/s
ec

#core

MWRL

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

MWRM

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

0.45
0.5

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

DRBL:O_DIRECT

0
0.05

0.1
0.15

0.2

0.25
0.3

0.35
0.4

0.45
0.5

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

DRBM:O_DIRECT

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

DWOL:O_DIRECT

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60 70 80

M
 o

ps
/s

ec

#core

DWOM:O_DIRECT

0k
10k
20k
30k
40k
50k
60k
70k
80k
90k

100k

0 10 20 30 40 50 60 70 80

m
es

sa
ge

s/
se

c

#core

Exim

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80

op
s/

se
c

#core

RocksDB

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80
G

B/
se

c
#core

DBENCH Legend

btrfs
ext4

ext4NJ
F2FS

tmpfs
XFS

Create files on a shared directory

Locks are critical in performance and scalability

Future hardware further exacerbates the problem

5

0k

2k

4k

6k

8k

10k

12k

14k

0 10 20 30 40 50 60 70 80

m
es

sa
ge

s/
se

c

#core

Exim mail server on RAMDISK

btrfs
ext4

F2FS
XFS

3. Never scales

Embarrassingly parallel
application!

1. Saturated

2. Collapsed

Why this happens?
: Memory access is NOT scalable

1. Read operations are
scalable

Read private

Read shared

Why this happens?
: Memory access is NOT scalable

1. Read operations are
scalable

Read private

Read shared Write private

Write shared

2. Write operations are
NOT scalable

Why this happens?
: Memory access is NOT scalable

1. Read operations are
scalable

Read private

Read shared Write private

Write shared

2. Write operations are
NOT scalable

3. Write operations
interfere read operations

Shared lock variable (flag)

Shared data protected by the lock

Why this happens?
: Cache coherence is not scalable

● Cache coherent traffic dominates!!!
● Writing a cache line in a popular MESI protocol:

– Writer’s cache: Shared → Exclusive

– All readers’ cache line: Shared → Invalidate

Should minimize contended
cache lines and core-to-core

communication traffic

LLC

Memory

LLC

Memory

Socket-1 Socket-2

Linux kernel lock
adoption / modificationDekker's algorithm (1962)

Semaphore (1965)
Lamport's bakery algorithm (1974)

Backoff lock (1989)
Ticket lock (1991)
MCS lock (1991)

Hierarchical lock – HCLH (2006)
Flat combining NUMA lock (2011)

Remote Core locking (2012)
Cohort lock (2012)

RW cohort lock (2013)
Malthusian lock (2014)

HMCS lock (2015)
AHMCS lock(2016)

HBO lock (2003)

NUMA-
aware
locks

Spinlock TTAS→
Semaphore TTAS + block→
Rwsem TTAS + block→

Spinlock ticket→
Mutex TTAS + spin + block (3.16)→
Rwsem TTAS + spin + block (3.16)→

Spinlock ticket (2.6)→
Mutex TTAS + block (2.6)→
Rwsem TTAS + block→

Spinlock qspinlock (4.4)→
Mutex TTAS + spin + block→
Rwsem TTAS + spin + block→

Lock's research efforts

1990s

2011

2014

2016

Lock’s research efforts and their use

Adopting new locks is necessary but it is not easy

Two dimensions of lock design/goals

11

In high thread count

In single thread

In oversubscription

Minimize lock contentions

No penalty when not contended

Avoid bookkeeping overheads

1) High throughput

Memory footprint Scales to millions of locks
(e.g., file inode)

2) Minimal lock size

Locks performance: Throughput

12

O
pe

ra
tio

ns
 /

se
co

nd

threads

1 socket > 1 socket

Stock

Oversubscribed
● Performance crashes after 1 socket.

 Due to non-uniform memory access (NUMA).

 Accessing local socket memory is faster than
 the remote socket memory.

(e.g., each thread creates a file, a serial operation, in a shared directory)

LLC

Memory

LLC

Memory

Socket-1 Socket-2

Locks performance: Throughput

13

O
pe

ra
tio

ns
 /

se
co

nd

threads

1 socket > 1 socket

Stock

Oversubscribed
● Performance crashes after 1 socket.

 Due to non-uniform memory access (NUMA).

 Accessing local socket memory is faster than
 the remote socket memory.

● NUMA also affects oversubscription.

(e.g., each thread creates a file, a serial operation, in a shared directory)

Prevent throughput crash after one socket

Existing research efforts

● Making locks NUMA-aware:
○ Two level locks: per-socket and global

○ Generally hierarchical

● Problems:
○ Require extra memory allocation

○ Do not care about single thread throughput

● Example: CST1

14

Socket-2Socket-1

Global lock

Socket lock

1. Scalable NUMA-aware Blocking Synchronization Primitives. ATC 2017.

Locks performance: Throughput

15

O
pe

ra
tio

ns
 /

se
co

nd

threads

● Maintains throughput:

Stock CST

Oversubscribed> 1 socket1 socket

Beyond one socket (high thread count).
In oversubscribed case (384 threads).

● Poor single thread throughput.
Multiple atomic instructions.

(e.g., each thread creates a file, a serial operation, in a shared directory)

Setup: 8-socket 192-core machine
Single thread matters in non-contended cases

Locks performance: Memory footprint

16

● CST has large memory footprint.

Lo
ck

s’
m

em
or

y
fo

ot
pr

in
t 14

0

threads

18

(e.g., each thread creates a file, a serial operation, in a shared directory)

Allocate socket structure and global lock.

Worst case: ~1 GB footprint out of 32 GB
application’s memory.

Stock CST

Locks performance: Memory footprint

17

● CST has large memory footprint.

Stock CST

Lo
ck

s’
m

em
or

y
fo

ot
pr

in
t

14
0

threads

18

(e.g., each thread creates a file, a serial operation, in a shared directory)

Allocate socket structure and global lock.

Worst case: ~1 GB footprint out of 32 GB
application’s memory.

82
0

Hierarchical lock

Locks performance: Memory footprint

18

● CST has large memory footprint.

Stock CST

Lo
ck

s’
m

em
or

y
fo

ot
pr

in
t

14
0

threads

18

(e.g., each thread creates a file, a serial operation, in a shared directory)

Allocate socket structure and global lock.

Worst case: ~1 GB footprint out of 32 GB
application’s memory.

82
0

Hierarchical lockLock’s memory footprint affect its adoption

19

Two goals in our new lock

1) NUMA-aware lock with no memory overhead

2) High throughput in both low/high thread count

Key idea: Sort waiters on the fly

20

Observations:

Hierarchical locks avoid NUMA by passing the lock within a socket

Queue-based locks already maintain a set of waiters

Shuffling: Design methodology

21

t1

Representing a waiting queue

Socket id (e.g, socket 0)

shuffler:

Socket ID

tail

waiter’s qnode:

Shuffling: Design methodology

22

Another waiter is in a different socket

shuffler:

Socket ID

tail

waiter’s qnode:

t1 t2

Shuffling: Design methodology

23

More waiters join

shuffler:

Socket ID

tail

waiter’s qnode:

t1 t2 t3 t4

Shuffling: Design methodology

24

Shuffler (t1) sorts based on socket ID

shuffler:

Socket ID

tail

waiter’s qnode:

t1 t2 t3 t4

Shuffling: Design methodology

25

A waiter (shuffler) reorders the queue of waiters

● A waiter, otherwise spinning (i.e,. wasting), amortises the cost of lock ops

1) By reordering (e.g., lock orders)

2) By modifying waiters’ states (e.g., waking-up/sleeping)

→ Shuffler computes NUMA-ness on the fly without using memory unlike others

t1 t2 t3 t4

26

A shuffler can modify the queue or a waiter’s state
with a defined function/policy!

Shuffling is generic!

Blocking lock: wake up a nearby sleeping waiter

RWlock: Group writers together

Incorporate shuffling in lock design

SHFLLOCKS

27

Minimal footprint locks
that handle any thread contention

SHFLLOCKS

28

TAS (4B)
(test-and-set lock)

Queue tail (8B)
(waiters list)

● Decouples the lock holder and waiters
○ Lock holder holds the TAS lock
○ Waiters join the queue

Unlock the TAS lock (reset the TAS word to 0)unlock():

Try acquiring the TAS lock first; join the queue on failurelock():

SHFLLOCKS

29

TAS (4B)
(test-and-set lock)

Queue tail (8B)
(waiters list)

TAS maintains single thread performance

● Waiters use shuffling to improve application throughput
○ NUMA-awareness, efficient wake up strategy

○ Utilizing Idle/CPU wasting waiters
● Maintain long-term fairness:

○ Bound the number of shuffling rounds

★ Shuffling is off the critical path most of the time

NUMA-aware SHFLLOCK in action

30

t0 (socket 1): lock()

unlocked
locked

t0

t0

shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action

31

Multiple threads join the queue

unlocked
locked

t0

t1 t2 t3 t4

shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action

32

Shuffling in progress

unlocked
locked

t0

t1 t2 t3 t4

t1 starts the shuffling process

shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action

33

Shuffling in progress

unlocked
locked

t0

t1 t3 t2 t4

t3 now becomes the shuffler

shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action

34

t0: unlock()

unlocked
locked

t0

t1 t3 t2 t4

t1 acquires the lock via CAS

shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action

35

t0: unlock()

unlocked
locked

t1

t1 t3 t2 t4

t1 notifies t3 as a new queue head

shuffler:

Socket ID

tail

waiter’s qnode:

NUMA-aware SHFLLOCK in action

36

t0: unlock()

unlocked
locked

t1

t1 t3 t2 t4

t1

t3 t2 t4

shuffler:

Socket ID

tail

waiter’s qnode:

Other SHFLLOCKS: Blocking SHFLLOCK

37

● NUMA-aware blocking lock.

● Wake up shuffled waiters based on the socket ID.

○ Avoids the wakeup latency from the critical path.

● Lock is always passed to a spinning waiter.

○ Lock stealing: avoid lock-waiter preemption problem.

○ Shuffled waiters are already spinning.

● Guarantees forward progress of the system.

Blocking SHFLLOCK in action

38

unlocked
locked

shuffler

t0

t1 t3 t2 t4

Z ZZ Z

Z Z scheduled
out

t0

t1 t3 t2 t4

Z ZZ ZZ Z

t1 wakes up t3 after moving it.

Implementation

● Kernel space:
○ Replaced all mutex and rwsem

○ Modified slowpath of the qspinlock

● User space:

○ Added to the Litl library
● Please see our paper:

○ Readers-writer lock: Centralized rw-indicator + SHFLLOCK

39

Evaluation

● SHFLLOCK performance:
○ Does shuffling maintains application’s throughput?
○ What is the overall memory footprint?

Setup: Eight socket 192-core/8-socket machine

40

Locks performance: Throughput

41

(e.g., each thread creates a file, a serial operation, in a shared directory)

O
pe

ra
tio

ns
 /

se
co

nd

threads

Stock CST

Oversubscribed> 1 socket1 socket

SHFLLOCK

● SHFLLOCKS maintain performance:

Locks performance: Throughput

42

(e.g., each thread creates a file, a serial operation, in a shared directory)

O
pe

ra
tio

ns
 /

se
co

nd

threads

Stock CST

Oversubscribed> 1 socket1 socket

SHFLLOCK

● SHFLLOCKS maintain performance:

● Beyond one socket
○ NUMA-aware shuffling

Locks performance: Throughput

43

(e.g., each thread creates a file, a serial operation, in a shared directory)

O
pe

ra
tio

ns
 /

se
co

nd

threads

Stock CST

Oversubscribed> 1 socket1 socket

SHFLLOCK

● SHFLLOCKS maintain performance:

● Beyond one socket
○ NUMA-aware shuffling

● Core oversubscription
○ NUMA-aware + wakeup shuffling

Locks performance: Throughput

44

(e.g., each thread creates a file, a serial operation, in a shared directory)

O
pe

ra
tio

ns
 /

se
co

nd

threads

Stock CST

Oversubscribed> 1 socket1 socket

SHFLLOCK

● SHFLLOCKS maintain performance:

● Beyond one socket
○ NUMA-aware shuffling

● Core oversubscription
○ NUMA-aware + wakeup shuffling

● Single thread
○ TAS acquire and release

Locks performance: Memory footprint

45

(e.g., each thread creates a file, a serial operation, in a shared directory)

Stock CST

14
0

threads

SHFLLOCK

 1
1

18

● SHFLLOCKS has least memory footprint

Reason: No extra auxiliary data structure

➢ Stock: parking list structure + extra lock
➢ CST: per-socket structure

Lo
ck

s’
m

em
or

y
fo

ot
pr

in
t

Case study: Exim mail server

46

Stock SHFLLOCK

It is fork intensive and stresses memory subsystem, file system and scheduler

Improves throughput by
up to 1.5x

Decreases memory
footprint up to 93%Lo

ck
’s

m
em

or
y

M
es

sa
ge

s
/ s

ec
on

d

threads # threads

CST

Throughput Memory footprint

Discussion

● Another way to enforce these policies dynamically:

○ Lock holder splits the queue to provide:

● E.g., NUMA-awareness: Compact NUMA-aware lock (CNA).

● E.g., blocking lock: Malthusian lock.

● Shuffling can support other policies:
○ Non-inclusive cache (Skylake architecture).
○ Multi-level NUMA hierarchy (SGI machines).

47

Conclusion

● Locks are critical for file system and application performance

● Current lock designs:

○ Do not maintain best throughput with varying threads

○ Have high memory footprint

● Shuffling: Dynamically enforce policies

○ NUMA, blocking, etc

● SHFLLOCKS: Shuffling-based family of lock algorithms

○ NUMA-aware minimal memory footprint locks

48

	Slide 1
	Locks are critical for application performance
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Two dimensions of lock design/goals
	Locks performance: Throughput
	Locks performance: Throughput
	Existing research efforts
	Locks performance: Throughput
	Locks performance: Memory footprint
	Locks performance: Memory footprint
	Locks performance: Memory footprint
	Two goals in our new lock
	Key idea: Sort waiters on the fly
	Shuffling: Design methodology
	Shuffling: Design methodology
	Shuffling: Design methodology
	Shuffling: Design methodology
	Shuffling: Design methodology
	Shuffling is generic!
	Minimal footprint locks that handle any thread contention
	SHFLLOCKS
	SHFLLOCKS
	NUMA-aware SHFLLOCK in action
	NUMA-aware SHFLLOCK in action
	NUMA-aware SHFLLOCK in action
	NUMA-aware SHFLLOCK in action
	NUMA-aware SHFLLOCK in action
	NUMA-aware SHFLLOCK in action
	NUMA-aware SHFLLOCK in action
	Other SHFLLOCKS: Blocking SHFLLOCK
	Blocking SHFLLOCK in action
	Implementation
	Evaluation
	Locks performance: Throughput
	Locks performance: Throughput
	Locks performance: Throughput
	Locks performance: Throughput
	Locks performance: Memory footprint
	Case study: Exim mail server
	Discussion
	Conclusion

