Pre-Select Static Caching and
Neighborhood Ordering for
BFS-like Algorithms on Disk-based Graph Engines

Jiwon Seo in collaboration with
Eunjae Lee, Junghyun Kim, Keunhak Lim, Sam H. Noh

Hanyang Unlver5|ty , UNIST?

IJ r||5 |' Presented in USENIX ATC 2019

LLLLLLLLLLLLLLLLLLLLLLL

Cache Optimizations for Disk-based Graph Engines
for BFS-like Algorithms

Jiwon Seo in collaboration with
Eunjae Lee, Junghyun Kim, Keunhak Lim, Sam H. Noh

Hanyang Unlver5|ty , UNIST?

IJ r||5 |' Presented in USENIX ATC 2019

LLLLLLLLLLLLLLLLLLLLLLL

= Background

* Pregel programming model

e BFS-like algorithms
* Disk-based graph engine
= Motivation

* Ineffectiveness of page cache for BFS-like Algorithms

= Qur Optimizations
* BFS-Aware Static Cache (BASC)
* Neighborhood Ordering (Norder)

= Evaluation
= Conclusion

o 3

Pregel Programming Model

= Vertex-Centric Model

= Bulk-Synchronous Parallel Model
— Graph algorithm as message passing between vertices
— Messages are delivered in bulk

Pregel Programming Model

= Vertex-Centric Model

= Bulk-Synchronous Parallel Model
— Graph algorithm as message passing between vertices
- Messages are delivered in bulk

" Pregel programs has series of iterations (called super-step)

= Vertex-function runs on each (active) vertex
= After an iteration, messages are delivered synchronously

- 5

Pregel Programming Model

= \/ertex-Centric Model
= Bulk-Synchronous Parallel Model

7 Superstep 1 Superstep 2 Superstep 3 |5

P Vol sl et
tep)

ously

5BSP Barrier

BFS-like Algorithms

= Starts from a subset of vertices

= Traverse the graph recursively

= E.g.

Breath-first search (BFS)

Diameter estimation (DIAM)
Betweenness centrality (BC)

Weakly connected component (WCC)
Shortest path (SP)

All-pair shortest path (APSP)

o

11

(D
OZoN”
(7
()<

BFS-like Algorithms

= Starts from a subset of vertices

= Traverse the graph recursively

= E.g.

Breath-first search (BFS)

Diameter estimation (DIAM)
Betweenness centrality (BC)

Weakly connected component (WCC)
Shortest path (SP)

All-pair shortest path (APSP)

o

(D—
(=<

BFS-like Algorithms

= Starts from a subset of vertices

= Traverse the graph recursively

= E.g.

Breath-first search (BFS)

Diameter estimation (DIAM)
Betweenness centrality (BC)

Weakly connected component (WCC)
Shortest path (SP)

All-pair shortest path (APSP)

o

11

(D
OZoON”
(7
(D)<

BFS-like Algorithms

= Starts from a subset of vertices

= Traverse the graph recursively

= E.g.

Breath-first search (BFS)

Diameter estimation (DIAM)
Betweenness centrality (BC)

Weakly connected component (WCC)
Shortest path (SP)

All-pair shortest path (APSP)

o

®

10

Normalized edge-list access

[

=
o

© o o o
N B~ O 0

O
o

BFS-like Algorithms

= Uniform edge-list access

23

217

|
211

In-degree of vertex

|
215

LiveJournal Network

11

BFS-like Algorithms

= Uniform edge-list access

12

BFS-like Algorithms

= Uniform edge-list access

10
¥
7
| 8
20
11

13

13

Disk-based Graph Engine

= Stores edge lists on disk

* Sorted by ID of source vertex

* When vertices are visited,
their edge lists are loaded to page cache

Disk-based graph engine

page cache

DRAM edge

page

EOE 1K

HE
(7]8]09]

14

Disk-based Graph Engine

= Stores edge lists on disk

* Sorted by ID of source vertex

* When vertices are visited,

their edge lists are loaded to page cache

Disk-based graph engine

page cache

15

Disk-based Graph Engine

= Stores edge lists on disk

* Sorted by ID of source vertex

* When vertices are visited,
their edge lists are loaded to page cache

Disk-based graph engine

page cache

16

Disk-based Graph Engine

= Typical execution steps
Vertex computation (w/ received messages)
Edge lists retrieval from disk

Sending message to neighbors

= 2

1~3 is repeated

=» Step 2 is performance bottleneck
especially for BFS-like algorithm

o .

Ineffectiveness of Page Cache for BFS-like Algorit

We investigated:

1. How page cache size affects hit ratio

2. How page cache size affects execution time
3. Memory utilization of page cache

18

Ineffectiveness of Page Cache for BFS-like Algor

1. How page cache size affects hit ratio

Hit Ratio

50%
40%

30%
20%
10%

0%

-4-BFS =~DIAM BC =SP -—APSP -®-WCC
— = —=n
~— e —
S Se—— 6 M
A A A— = —© L
A = =]
+ i i | | |
5% 10% 15% 20% 25% 30%

Page Cache Size
(As the percentage of graph size)

*Livelournal on FlashGraph
19

Ineffectiveness of Page Cache for BFS-like Algor

2. How page cache size affects execution time

4A-BFS —~DIAM BC SP ——APSP -®WCC
I_ a—2%
€08 T B
5 06 T
(]
X
W o4 +
o
(]
N 02 +
(4v}
g 0.0
Z 5% 10% 15% 20% 25% 30%

Page Cache Size
(As the percentage of graph size)

*Livelournal on FlashGraph
20

[

Ineffectiveness of Page Cache for BFS-like Algorit

3. Memory utilization of page cache

e Page cache shows poor memory utilization

page cache

:
ana | oo
/@>§ ana | oao

CLONME VIS =

a 1910 110]
@

page C

- ,

Ineffectiveness of Page Cache for BFS-like Algorit

3. Memory utilization of page cache

e Page cache shows poor memory utilization

Used edges

6
Loaded edges 9

\aage cache

:
ana | oo
/@>§ ana | oao

CLONME VIS =

a 1910 110]
@

page C

- ,

Ineffectiveness of Page Cache for BFS-like Algorit

3. Memory utilization of page cache

e Page cache shows poor memory utilization

Used edges

6
Loaded edges 9

\aage cache

/ (111 W Hafa]4]
(1 11|20 Hs5]6]7]
HHE § BEE Used edges

e \ DRAM pag@ A B% Loaded edges
@ o000 ﬁ
a SSD n2n | oam
(5|6 7] (1010l 10l °°°
@ (8]8]9]

page A page B page C

-

1

9

23

Ineffectiveness of Page Cache for BFS-like Algorit

3. Memory utilization of page cache

e Page cache shows poor memory utilization

Used edges 2

Loaded edges 9
page cache

(919]10]

(516]7]

Used edges 1

Loaded edges 9

DRAM

SSD
e ... oo -
@ 21213

24

Our Optimization

1. BFS-Aware Static Cache (BASC)

e Statically stores selected edge lists

2. Neighborhood Ordering (Norder)

* Re-assigning vertex IDs to improve the locality of access

25

= Keep separate cache for selected edge lists

BASC: BFS-Aware Static Cache

" Pre-loaded: edge lists pre-selected through pre-analysis
= Static: contents of cache do not change

JOS

-

page cache

DRAM

eoe Ll B LI 170 LI | W °°°
EEENER BN FFEEY

page A page B page C

26

= Keep separate cache for selected edge lists

BASC: BFS-Aware Static Cache

" Pre-loaded: edge lists pre-selected through pre-analysis
= Static: contents of cache do not change

JOS

-

page cache BAsC

DRAM

eoe Ll B LI 170 LI | W °°°
EEENER BN FFEEY

page A page B page C

27

= Keep separate cache for selected edge lists

BASC: BFS-Aware Static Cache

" Pre-loaded: edge lists pre-selected through pre-analysis
= Static: contents of cache do not change

JOS

-

page cache BAsC

DRAM
[\ \ L

eoe 1]l W L L 170 L\-1 |
EEENER BN FFEEY

page A page B page C

28

BASC: BFS-Aware Static Cache

©
o

©
o

©
A
I

O
N)
T
o
a

Normalized edge-list acces

O
o
T

213 217 25.1 25.5
In-degree of vertex

[

29

BASC: BFS-Aware Static Cache

= Keep separate cache for selected edge lists
= Pre-loaded: edge lists pre-selected through

LU SRR |\ ich vertices to store in BASC?

Consider memory utilization
instead of frequency

page cache BAsC

: 7
\ DRAM

@ o060
e o000
@ page A page B page C

- .

SSD

Vertex Pre-Selection Problem

= Find vertices to maximize memory utilization
= minimize utilization penalty

Find v € C such that

Prob(u — vis traversed)
Utilization(Page(v), neighbors(u))

minimize F(C) =

all edges(u,v)
VEC

subject to Z deg(v) < M,Z deg(v) > M — €

vec vec

e .

Vertex Pre-Selection Problem

= Find vertices to maximize memory utilization
= minimize utilization penalty

Find v € C such that

Prob(u — vis traversed)
Utilization(Page(v), neighbors(u))

minimize F(C) =

all edges(u,v)
VEC

Assumption 1 The neighbor vertices of each vertex are
accessed simultaneously. Thus, their edge lists are
retrieved at the same time.

Assumption 2 The number of edge list requests for
each vertex is equivalent among all the vertices.

Assumption 3 Each edge (u,v) probabilistically issues

Due to Assumption 2, the probability of issuing the
! request is inversely proportional to v’s in-degree.

a request to access the edge list of target vertex v.

32

Vertex Pre-Selection Problem

= Find vertices to maximize memory utilization
= minimize utilization penalty

(L
Find v € C such that @ 9
@
i)

Prob(u — vis traversed)

minimize F(C) = i .
il et uy UtiliZation(Page(v), neighbors(w))

vE&C

Assumption 1 The neighbor vertices of each vertex are
accessed simultaneously. Thus, their edge lists are
retrieved at the same time.

Assumption 2 The number of edge list requests for
each vertex is equivalent among all the vertices.

Assumption 3 Each edge (u,v) probabilistically issues
a request to access the edge list of target vertex v.

Due to Assumption 2, the probability of issuing the
; request is inversely proportional to v’s in-degree.

33

Vertex Pre-Selection Problem

= Find vertices to maximize memory utilization

= minimize utilization penalty

Find v € C such that

Prob(u — vis traversed)
Utilization(Page(v), neighbors(u))

minimize F(C) =

all edges(u,v)
vec
-3 3 [
uev (u,v)€E T(U)di(v) Z(u,n)EE d,(n)
VEC neprP(v)

nec

subject to Z deg(v) < M, z deg(v) > M — € di(v) : in-degree of v

vEC veC do(Vv): out-degree of v

r(v): The number of vertices stored in the page(v)

P(v) : Set of vertices stored in page(v)

34

Vertex Pre-Selection Problem

= Find vertices to maximize memory utilization

= minimize utilization penalty

Find v € C such that

Prob(u — vis traversed)
Utilization(Page(v), neighbors(u))

minimize F(C) =

all edges(u,v)
vec
-3 3 [
uev (u,v)€E T(U)di(v) Z(u,n)EE d,(n)
VEC neprP(v)

nec

subject to Z deg(v) < M, z deg(v) > M — € di(v) : in-degree of v

vEC veC do(Vv): out-degree of v

r(v): The number of vertices stored in the page(v)

P(v) : Set of vertices stored in page(v)
! =» NP-hard

35

GVS: Greedy Vertex Selection

Prob(u — vis traversed)

minimize F(C) =

all edges(u,v)
vEC

Utilization(Page(v), neighbors(u))

Ascribe the inner term (Prob (...)/Util (...)) to target vertex v
Sort vertices by their penalty(v)/cost(v)
Greedily select top vertices that amount to 1/K of BASC

e =

Repeat Ktimes

* Refer to our paper for the full description of GVS

o .

Our Optimization

1. BFS-Aware Static Cache (BASC)

e Statically stores selected edge lists

2. Neighborhood Ordering (Norder)

* Re-assigning vertex IDs to improve the locality of access

. .

Graph Ordering

= Preprocessing to re-assign vertex IDs to reduce I/O cost

1 1
OO : : (1x~@
1) 7 3 (4)
mmn mmm Graph Ordering
STLl CL ol CL 1 Optimization
=TT CT T CLL

page A page B page C page A

3 pages 1 page

- 38

1/0 Cost Model for BFS-like algorithms

= Heuristically devised the following 1/O cost model

Cost = Zdeg o (nbr(v))

veV

= Reasonably good at estimating the performance

o .

= Regression of Execution time on Cost model

1/0 Cost Model for BFS-like algorithms

8 1 = ABFS - YT (r2=0.88) . ADIAM - YT (r2=0.82) . ¥+ 5_*
S | MRSk Rl i~ X *X DIAM - LJ (r2=0.62) 2 g ke ™LA
0 0, 09, M X.Xx + R ®
3 0.6 L e :-"--,:'.s"“ PR m
X Qe A

-§ 04 + S - » ’fx A =
= A -
E— 1 ot'.,..*
g L X s g~ ¥ *BC - YT (r2=0.91)
= 0.2 | oo Bt
e Y X m A +BC - FL (r2=0.63)
< + T X # @

. 3 ®BC - LJ (r2=0.58)

0 05 1 0 1

Normalized Cost

.

Normalized Cost

Norder: Neighborhood Ordering

consecutive
P L]

0
@ e Norder
@)

= Assign consecutive IDs to neighbor vertices

Norder Algorithm
1. Sort vertices by their degrees
2. Run bounded BFS from highest-degree vertex and assign IDs

3. Repeat 2 for non-ID-assigned vertices

- g

Evaluation Settings

= Qur optimizations implemented in
* FlashGraph [Da et. al, FAST15]
* Graphene [Liu et. al, ATC17]

= H/W spec.
* Intel Xeon E5-2683 v4 (10GB DRAM)
* Intel 400GB SATA 3.0 SSD

= Graph engine configuration
» 8 processing threads + 1 /0O thread
* Page size: 8 KB by default

e Cache size: 25% of input graph by default
— Baseline: page cache only
— BASC: 5% to page cache, 20% to BASC

42

Evaluation Settings

= Graph algorithm

BFS: Bread-first search

DIAM: Diameter estimation

BC: Betweenness centrality

SP: Shortest path

APSP: All pair shortest path

WCC: Weakly connected components

= PData set

Youtube 3.2 million 9.4 million

Flickr 2.3 million 33 million

Livejournal 4.8 million 68 million
Wikipedia 18 million 172 million

! Twitter 53 million 1.9 billion

43

Evaluation of BASC

* Avg. 1.22x, Max. 1.48x speed-up compared to page cache
e Avg. 1.27x, Max. 1.52x speed-up compared to BASC-Random

' O page cache EBASC-Random O BASC-GVS

1.2

£

|_

S

= 0.8

(&)

Q

>

L

© 04

o)

N

©

E]

)

Z 4y|BFS DIAM BC SP APSP WCC|BFS DIAM BC SP APSP WCC|BFS DIAM BC SP APSP WCC
- Livejournal Wikipedia Twitter

.

44

Evaluation of BASC

* Avg. 1.22x, Max. 1.48x speed-up compared to page cache
e Avg. 1.27x, Max. 1.52x speed-up compared to BASC-Random

' O page cache EBASC-Random O BASC-GVS

1.2

£ 1.48x

|_

S

= 0.8

(&)

o)

p

Ll

© 04

@

N

©

E . | -

o

Z 43|BFS DIAM BC SP APSP WCC|BFS DIAM BC SP APSP WCC| BFS DIAM BC SP APSP WCC
- Livejournal Wikipedia Twitter

.

45

Evaluation of BASC

* Avg. 1.22x, Max. 1.48x speed-up compared to page cache
e Avg. 1.27x, Max. 1.52x speed-up compared to BASC-Random

@ page cache @ BASC-Random OBASC-GVS

> @

o 1

£

I—

S

= 0.8

O

o i

x

LUl

© 04

(O]

N

= i

L |

O

Z _.|BFS DIAM BC SP APSP WCC|BFS DIAM BC SP APSP WCC|BFS DIAM BC SP APSP WCC
(X)
@ Livejournal Wikipedia Twitter

46

Evaluation of Norder

* Avg. 1.31x, Max. 1.71x speed-up compared to Gorder
e Avg. 1.92x, Max. 2.60x speed-up compared to Random

B Gorder E Random O Norder

fo))
] |
I

N
] |
I

N
|]
I

BFS DIAM BC SP APSP WCC|BFS DIAM BC SP APSP WCC
Wikipedia Twitter

Normalized Execution Time
o0

- O
-) I
1

BFS DIAM BC SP APSP WCC

(

LivedJournal

. .

Normalized Execution Time
A o b o

- O

&

Avg. 1.31x, Max. 1.71x speed-up compared to Gorder
Avg. 1.92x, Max. 2.60x speed-up compared to Random

Evaluation of Norder

BFS DIAM BC SP APSP WCC

B Gorder E Random O Norder

— .
. -

BC SP APSP WCC

BFS DIAM BC SP APSP WCC| BFS DIAM

Wikipedia

LivedJournal

e Avg. 1.54x, Max. 2.06x speed-up compared to page cache + Gorder
* Avg. 1.17x, Max. 1.36x speed-up compared to page cache + Norder

Evaluation of BASC + Norder

* Avg. 1.18x, Max. 1.49x speed-up compared to BASC + Gorder

Opage cache + Gorder Epage cache + Norder

OBASC + Gorder

OBASC + Norder

1.2

£

=

S

£0.8 A LN ~ N

O H n

3 | | i B B L

X _ o B o

L

0.4 A

)

N

‘®©

S

5 07 -

P BFS DAIM BC SP APSP WCC|BFS DAIM BC SP APSP WCC|BFS DAIM BC SP APSP WCC
X
@ Livedournal Wikipedia Twitter

-

49

Evaluation of BASC + Norder

e Avg. 1.54x, Max. 2.06x speed-up compared to page cache + Gorder
* Avg. 1.17x, Max. 1.36x speed-up compared to page cache + Norder
* Avg. 1.18x, Max. 1.49x speed-up compared to BASC + Gorder

Hpage cache + Gorder Epage cache + Norder OBASC + Gorder O BASC + Norder

CIEJ1.2 2.06

= UOX

=

S

£0.8 A LN ~ N

O _ B o

o - — | B B L

X _ o B o

L

0.4 A

)

N

‘®©

S

5 07 -

P BFS DAIM BC SP APSP WCC|BFS DAIM BC SP APSP WCC|BFS DAIM BC SP APSP WCC
X
@ Livedournal Wikipedia Twitter

-

50

Normalized Execution Time

o

O page cache

Efficiency of BASC w/ Graphene’s small 1/0 reques

B BASC

()

0.8 -
0.6 -
0.4 -
0.2 -

0

8KB e

2 7
(o)
» 512B

)
£

m m
¥ o
q)Lf)

DIAM
(4.26)

Livedournal

28]
\'d
e0)

a8
Al
Lo

DIAM
(37.3)

Twitter

K
512B

APSP
(56)

512B [y

BFS
(35.3)

Twitter

51

Preprocessing Overhead of Norder and GVS

= Preprocessing time of Norder (in seconds)

| YT | FL_ | U | WK | TW
Gorder 12.5 39.6 45.6 169.3 11687.1
Norder 2.0 2.7 7.2 16.9 243.5

52

Preprocessing Overhead of Norder and GVS

= Preprocessing time of Norder (in seconds)

| YT | FL_ | U | WK | TW
Gorder 12.5 39.6 45.6 169.3 11687.1
Norder 2.0 2.7 7.2 16.9 243.5

" Preprocessing time of GVS (in seconds)

-____m

19.8
10 5.9 7.6 11.3 29.2 321
100 16.7 24.7 26.3 76.4 1581
1000 94.8 103 146 449 5612

o .

60 A

AN
o

Norm%Iized GVS Time
o

@ o

-&-Livejournal

Wikipedia

GVS Execution Time w/ increasing K

Twitter

T 7
V4
/
, “/
:,'IIS& | | | | |
0 2000 400 600 800 1000

lteration Number (K) of GVS

.

Effectiveness of GVS w/ increasing K

-A-Livejournal Wikipedia Twitter

-
<)

- -/
GE)GO T 230% 4
= VK o
n o S
=40 + - 520%
(5 -=" & e t—p—k
@ -~ ©
N P o
©20 T 5 $10% T
7/

E 1, &
> 40 3

o= ® 0% Attt

o 200 400 600 800 1000 o ‘ 1 10 20 50 100 200 500 1000

lteration Number (K) of GVS lteration Number (K) of GVS

When K=100, LJ=26.3 sec WK=76.4 sec, TW=26.4 min

! More evaluation results in the paper
55

Conclusion

BFS-like algorithms on disk-based graph engine
* Uniform edge-list request
e Page cache not effective

BASC with GVS

= Norder

Evaluation
* Implementation on two graph engines
* Experiments with six BFS-like algorithms
five real-world graphs
* 54% faster than existing schemes (up to 2.06 times faster)

- ,

Q&A

= seojiwon@gmail.com

* Thank you

57

