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= Background

* Pregel programming model

e BFS-like algorithms
* Disk-based graph engine
= Motivation

* Ineffectiveness of page cache for BFS-like Algorithms

= Qur Optimizations
* BFS-Aware Static Cache (BASC)
* Neighborhood Ordering (Norder)

= Evaluation
= Conclusion
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Pregel Programming Model

= Vertex-Centric Model

= Bulk-Synchronous Parallel Model
— Graph algorithm as message passing between vertices
— Messages are delivered in bulk




Pregel Programming Model

= Vertex-Centric Model

= Bulk-Synchronous Parallel Model
— Graph algorithm as message passing between vertices
- Messages are delivered in bulk

" Pregel programs has series of iterations (called super-step)

= Vertex-function runs on each (active) vertex
= After an iteration, messages are delivered synchronously
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Pregel Programming Model

= \/ertex-Centric Model
= Bulk-Synchronous Parallel Model
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BFS-like Algorithms

= Starts from a subset of vertices

= Traverse the graph recursively

= E.g.

Breath-first search (BFS)

Diameter estimation (DIAM)
Betweenness centrality (BC)

Weakly connected component (WCC)
Shortest path (SP)

All-pair shortest path (APSP)
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BFS-like Algorithms

= Starts from a subset of vertices

= Traverse the graph recursively

= E.g.

Breath-first search (BFS)

Diameter estimation (DIAM)
Betweenness centrality (BC)

Weakly connected component (WCC)
Shortest path (SP)

All-pair shortest path (APSP)
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Normalized edge-list access
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BFS-like Algorithms

= Uniform edge-list access
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BFS-like Algorithms

= Uniform edge-list access
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BFS-like Algorithms

= Uniform edge-list access
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Disk-based Graph Engine

= Stores edge lists on disk

* Sorted by ID of source vertex

* When vertices are visited,
their edge lists are loaded to page cache

Disk-based graph engine

page cache
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Disk-based Graph Engine

= Stores edge lists on disk

* Sorted by ID of source vertex

* When vertices are visited,

their edge lists are loaded to page cache

Disk-based graph engine

page cache

15



Disk-based Graph Engine

= Stores edge lists on disk

* Sorted by ID of source vertex

* When vertices are visited,
their edge lists are loaded to page cache

Disk-based graph engine

page cache
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Disk-based Graph Engine

= Typical execution steps
Vertex computation (w/ received messages)
Edge lists retrieval from disk

Sending message to neighbors

= 2

1~3 is repeated

=» Step 2 is performance bottleneck
especially for BFS-like algorithm
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Ineffectiveness of Page Cache for BFS-like Algorit

We investigated:

1. How page cache size affects hit ratio

2. How page cache size affects execution time
3. Memory utilization of page cache
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Ineffectiveness of Page Cache for BFS-like Algor

1. How page cache size affects hit ratio

Hit Ratio
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Ineffectiveness of Page Cache for BFS-like Algor

2. How page cache size affects execution time
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Ineffectiveness of Page Cache for BFS-like Algorit

3. Memory utilization of page cache

e Page cache shows poor memory utilization

page cache
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Ineffectiveness of Page Cache for BFS-like Algorit

3. Memory utilization of page cache

e Page cache shows poor memory utilization

Used edges
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Ineffectiveness of Page Cache for BFS-like Algorit

3. Memory utilization of page cache

e Page cache shows poor memory utilization

Used edges
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Loaded edges 9
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Ineffectiveness of Page Cache for BFS-like Algorit

3. Memory utilization of page cache

e Page cache shows poor memory utilization

Used edges 2

Loaded edges 9
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Our Optimization

1. BFS-Aware Static Cache (BASC)

e Statically stores selected edge lists

2. Neighborhood Ordering (Norder)

* Re-assigning vertex IDs to improve the locality of access
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= Keep separate cache for selected edge lists

BASC: BFS-Aware Static Cache

" Pre-loaded: edge lists pre-selected through pre-analysis
= Static: contents of cache do not change
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= Keep separate cache for selected edge lists

BASC: BFS-Aware Static Cache

" Pre-loaded: edge lists pre-selected through pre-analysis
= Static: contents of cache do not change
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BASC: BFS-Aware Static Cache
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BASC: BFS-Aware Static Cache

= Keep separate cache for selected edge lists
= Pre-loaded: edge lists pre-selected through

LU SRR |\ ich vertices to store in BASC?

Consider memory utilization
instead of frequency
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Vertex Pre-Selection Problem

= Find vertices to maximize memory utilization
= minimize utilization penalty

Find v € C such that

Prob(u — vis traversed)
Utilization(Page(v), neighbors(u))

minimize F(C) =

all edges(u,v)
VEC

subject to Z deg(v) < M,Z deg(v) > M — €

vec vec

e .




Vertex Pre-Selection Problem

= Find vertices to maximize memory utilization
= minimize utilization penalty

Find v € C such that

Prob(u — vis traversed)
Utilization(Page(v), neighbors(u))

minimize F(C) =

all edges(u,v)
VEC

Assumption 1 The neighbor vertices of each vertex are
accessed simultaneously. Thus, their edge lists are
retrieved at the same time.

Assumption 2 The number of edge list requests for
each vertex is equivalent among all the vertices.

Assumption 3 Each edge (u,v) probabilistically issues

Due to Assumption 2, the probability of issuing the
! request is inversely proportional to v’s in-degree.

a request to access the edge list of target vertex v.
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Vertex Pre-Selection Problem

= Find vertices to maximize memory utilization
= minimize utilization penalty

(L
Find v € C such that @ 9
@
i)

Prob(u — vis traversed)

minimize F(C) = i .
il et uy UtiliZation(Page(v), neighbors(w))

vE&C

Assumption 1 The neighbor vertices of each vertex are
accessed simultaneously. Thus, their edge lists are
retrieved at the same time.

Assumption 2 The number of edge list requests for
each vertex is equivalent among all the vertices.

Assumption 3 Each edge (u,v) probabilistically issues
a request to access the edge list of target vertex v.

Due to Assumption 2, the probability of issuing the
; request is inversely proportional to v’s in-degree.
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Vertex Pre-Selection Problem

= Find vertices to maximize memory utilization

= minimize utilization penalty

Find v € C such that

Prob(u — vis traversed)
Utilization(Page(v), neighbors(u))

minimize F(C) =

all edges(u,v)
vec
-3 3 [
uev (u,v)€E T(U)di(v) Z(u,n)EE d,(n)
VEC neprP(v)

nec

subject to Z deg(v) < M, z deg(v) > M — € di(v) : in-degree of v

vEC veC do(Vv): out-degree of v

r(v): The number of vertices stored in the page(v)

P(v) : Set of vertices stored in page(v)
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Vertex Pre-Selection Problem

= Find vertices to maximize memory utilization

= minimize utilization penalty

Find v € C such that

Prob(u — vis traversed)
Utilization(Page(v), neighbors(u))

minimize F(C) =

all edges(u,v)
vec
-3 3 [
uev (u,v)€E T(U)di(v) Z(u,n)EE d,(n)
VEC neprP(v)

nec

subject to Z deg(v) < M, z deg(v) > M — € di(v) : in-degree of v

vEC veC do(Vv): out-degree of v

r(v): The number of vertices stored in the page(v)

P(v) : Set of vertices stored in page(v)
! =» NP-hard
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GVS: Greedy Vertex Selection

Prob(u — vis traversed)

minimize F(C) =

all edges(u,v)
vEC

Utilization(Page(v), neighbors(u))

Ascribe the inner term (Prob (...)/Util (...)) to target vertex v
Sort vertices by their penalty(v)/cost(v)
Greedily select top vertices that amount to 1/K of BASC

e =

Repeat Ktimes

* Refer to our paper for the full description of GVS
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Our Optimization

1. BFS-Aware Static Cache (BASC)

e Statically stores selected edge lists

2. Neighborhood Ordering (Norder)

* Re-assigning vertex IDs to improve the locality of access
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Graph Ordering

= Preprocessing to re-assign vertex IDs to reduce I/O cost
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1/0 Cost Model for BFS-like algorithms

= Heuristically devised the following 1/O cost model

Cost = Zdeg o (nbr(v))

veV

= Reasonably good at estimating the performance
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= Regression of Execution time on Cost model

1/0 Cost Model for BFS-like algorithms

8 1 = ABFS - YT (r2=0.88) . ADIAM - YT (r2=0.82) . ¥+ 5_*
S | MRSk Rl i~ X *X DIAM - LJ (r2=0.62) 2 g ke ™LA
0 0, 09, M X.Xx + R ®
3 0.6 L e :-"--,:'.s"“ PR m
X Qe A

-§ 04 + S - » ’fx A =
= A -
E— 1 ot ......'.,..*
g L X s g~ ¥ *BC - YT (r2=0.91)
= 0.2 | oo Bt
e Y X m A +BC - FL (r2=0.63)
< + T X # @

. 3 ®BC - LJ (r2=0.58)

0 05 1 0 1

Normalized Cost

.

Normalized Cost



Norder: Neighborhood Ordering

consecutive
P L]

0
@ e Norder
@)

= Assign consecutive IDs to neighbor vertices

Norder Algorithm
1. Sort vertices by their degrees
2. Run bounded BFS from highest-degree vertex and assign IDs

3. Repeat 2 for non-ID-assigned vertices
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Evaluation Settings

= Qur optimizations implemented in
* FlashGraph [Da et. al, FAST15]
* Graphene [Liu et. al, ATC17]

= H/W spec.
* Intel Xeon E5-2683 v4 (10GB DRAM)
* Intel 400GB SATA 3.0 SSD

= Graph engine configuration
» 8 processing threads + 1 /0O thread
* Page size: 8 KB by default

e Cache size: 25% of input graph by default
— Baseline: page cache only
— BASC: 5% to page cache, 20% to BASC
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Evaluation Settings

= Graph algorithm

BFS: Bread-first search

DIAM: Diameter estimation

BC: Betweenness centrality

SP: Shortest path

APSP: All pair shortest path

WCC: Weakly connected components

= PData set

Youtube 3.2 million 9.4 million

Flickr 2.3 million 33 million

Livejournal 4.8 million 68 million
Wikipedia 18 million 172 million

! Twitter 53 million 1.9 billion
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Evaluation of BASC

* Avg. 1.22x, Max. 1.48x speed-up compared to page cache
e Avg. 1.27x, Max. 1.52x speed-up compared to BASC-Random
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Evaluation of BASC

* Avg. 1.22x, Max. 1.48x speed-up compared to page cache
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Evaluation of BASC

* Avg. 1.22x, Max. 1.48x speed-up compared to page cache
e Avg. 1.27x, Max. 1.52x speed-up compared to BASC-Random
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Evaluation of Norder

* Avg. 1.31x, Max. 1.71x speed-up compared to Gorder
e Avg. 1.92x, Max. 2.60x speed-up compared to Random
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Normalized Execution Time
A o b o
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&

Avg. 1.31x, Max. 1.71x speed-up compared to Gorder
Avg. 1.92x, Max. 2.60x speed-up compared to Random

Evaluation of Norder

BFS DIAM BC SP APSP WCC
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e Avg. 1.54x, Max. 2.06x speed-up compared to page cache + Gorder
* Avg. 1.17x, Max. 1.36x speed-up compared to page cache + Norder

Evaluation of BASC + Norder

* Avg. 1.18x, Max. 1.49x speed-up compared to BASC + Gorder

Opage cache + Gorder  Epage cache + Norder

OBASC + Gorder

OBASC + Norder
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Evaluation of BASC + Norder

e Avg. 1.54x, Max. 2.06x speed-up compared to page cache + Gorder
* Avg. 1.17x, Max. 1.36x speed-up compared to page cache + Norder
* Avg. 1.18x, Max. 1.49x speed-up compared to BASC + Gorder
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Normalized Execution Time

o
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Efficiency of BASC w/ Graphene’s small 1/0 reques

B BASC

()

0.8 -
0.6 -
0.4 -
0.2 -

0

8KB e

2 7
(o)
» 512B

)
£

m m
¥ o
q)Lf)

DIAM
(4.26)

Livedournal

28]
\'d
e0)

a8
Al
Lo

DIAM
(37.3)

Twitter

K
512B

APSP
(56)

512B [y

BFS
(35.3)

Twitter

51



Preprocessing Overhead of Norder and GVS

= Preprocessing time of Norder (in seconds)

| YT | FL_ | U | WK | TW
Gorder 12.5 39.6 45.6 169.3 11687.1
Norder 2.0 2.7 7.2 16.9 243.5
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Preprocessing Overhead of Norder and GVS

= Preprocessing time of Norder (in seconds)

| YT | FL_ | U | WK | TW
Gorder 12.5 39.6 45.6 169.3 11687.1
Norder 2.0 2.7 7.2 16.9 243.5

" Preprocessing time of GVS (in seconds)

-____m

19.8
10 5.9 7.6 11.3 29.2 321
100 16.7 24.7 26.3 76.4 1581
1000 94.8 103 146 449 5612
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Effectiveness of GVS w/ increasing K
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When K=100, LJ=26.3 sec WK=76.4 sec, TW=26.4 min

! More evaluation results in the paper
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Conclusion

BFS-like algorithms on disk-based graph engine
* Uniform edge-list request
e Page cache not effective

BASC with GVS

= Norder

Evaluation
* Implementation on two graph engines
* Experiments with six BFS-like algorithms
five real-world graphs
* 54% faster than existing schemes (up to 2.06 times faster)
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Q&A

= seojiwon@gmail.com

* Thank you
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