
Chanwoo Chungǂ, Jinhyung Koo, Junsu Im, Arvindǂ, and Sungjin Lee

DGIST and MITǂ

DATA-INTENSIVE

COMPUTING SYSTEMS

LABORATORY

NVRAMOS ‘19

2019.10.24

2

C
o

m
p

u
ta

ti
o

n

…
Application

Server

Application

Server

Application

Server

Application

Server

Application

Server

S
to

ra
g

e

…

…

Datacenter Network

(e.g., Ethernet, InfiniBand, …)
…

…

Storage Node 0 Storage Node 1 Storage Node N

It is not mere storage – it is another high-end server!!!

High-end Xeon CPUs

Several GBs of DRAM

An array of SSDs

Large form-factor

…

Power Hungry (e.g., 1700 W)

Expensive (e.g., $2~40,000 w/o SSDs)

Large Volume (e.g., 2-4 U)

High TCO (e.g., Cooling)

…

Xeon
CPUs

GB
DRAM

Disk Array
w/ RAID

3

▪ HDD is slow – require large DRAM and array of disks
▪ 10 ms latency & 100~300 MB/s throughput

▪ HDD is dumb – the host system makes it smarter
▪ Xeon CPUs with advanced algorithms

…

300 MB/s

H
D

D

H
D

D

H
D

D

H
D

D

H
D

D

H
D

D

H
D

D

H
D

D

…

Xeon
CPUs

GB
DRAM

Disk Array
w/ RAID 300 MB/s

Aggr. Network Throughput = 20 GB/s

Host Protocol Translation (e.g., NFS, CIFS, …) Storage Host

Local File System (e.g., EXT4, WAFL, …)

Prefetching Caching/Buffering Parity Mgmt Dedup/Compresion

40GbE 40GbE 40GbE 40GbE

3

▪ HDD is slow – require large DRAM and array of disks
▪ 10 ms latency & 100~300 MB/s throughput

▪ HDD is dumb – the host system makes it smarter
▪ Xeon CPUs with advanced algorithms

…

1~10 GB/s

SS
D

SS
D

SS
D

SS
D

SS
D

SS
D

SS
D

SS
D

…

Xeon
CPUs

GB
DRAM

SSD Array
w/ RAID 1~10 GB/s

Aggr. Network Throughput = 20 GB/s

Host Protocol Translation (e.g., NFS, CIFS, …) Storage Host

Local File System (e.g., EXT4, WAFL, …)

Prefetching Caching/Buffering Parity Mgmt Dedup/Compresion

SSDs are not a bottleneck → Network/CPU are new bottlenecks

Aggr. SDD Throughput = 10~100 GB/s

(with 10 SSDs)

Bottleneck!!!

40GbE 40GbE 40GbE 40GbE

※ Aggr. SSD throughput was estimated assuming each SSD offers 1GB/s throughput

4

EMC

XtremIO

NetApp

SolidFire

HPE

3PAR

Hynix

AFA

SSD Array

Capacity 36~144TB 46TB 750TB 522TB

of SSDs 18~72 12 120 576

Aggr.

Throughput*
18~72 GB/s 12 GB/s 120 GB/s 576 GB/s

Network

Ports
4~8x

10Gb iSCSI

2x

25Gb iSCSI

4~12x

16Gb FC

3x

Gen3 PCIe

Aggr.

Throughput
5~10 GB/s 6.25 GB/s 8~24 GB/s 48 GB/s

▪ Supported by the latest works
▪ K. Kourtis et al., “Reaping the performance of fast NVM storage with uDepot,”

USENIX FAST ‘19
▪ J. Kim et al., “Alleviating Garbage Collection Interference through Spatial Separation

in All Flash Arrays,” USENIX ATC ‘19

4

▪ Supported by the latest works
▪ K. Kourtis et al., “Reaping the performance of fast NVM storage with uDepot,”

USENIX FAST ‘19
▪ J. Kim et al., “Alleviating Garbage Collection Interference through Spatial Separation

in All Flash Arrays,” USENIX ATC ‘19

5

▪ HDD is slow – require large DRAM and array of disks
▪ 10 ms latency & 100~300 MB/s throughput

▪ HDD is dumb – the host system makes it smarter
▪ Xeon CPUs with advanced algorithms

…

1~10 GB/s

SS
D

SS
D

SS
D

SS
D

SS
D

SS
D

SS
D

SS
D

…

Xeon
CPUs

GB
DRAM

SSD Array
w/ RAID 1~10 GB/s

Aggr. Network Throughput = 20 GB/s

Host Protocol Translation (e.g., NFS, CIFS, …) Storage Host

Local File System (e.g., EXT4, WAFL, …)

Prefetching Caching/Buffering Parity Mgmt Dedup/Compresion

SSDs are not a bottleneck → Network/CPU are new bottlenecks

Bottleneck!!!

Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl

SSDs are smart enough, supporting many features → Duplicate

storage management hurts performance

40GbE 40GbE 40GbE 40GbE

6

▪ 4 embedded CPUs (ARM) running at 700 MHz to 1.4 GHz and >

1~16GB DRAM that a desktop PC had 10 years ago

▪ Those resources are required for running firmware (i.e., FTL)

PCIe Interface (1~10 GB/s)

Host-to-PCIe Controller

DRAM

(>4 GB)

ARM CPU

(Max 1.4 GHz)

ARM CPU

(Max 1.4 GHz)

ARM CPU

(Max 1.4 GHz)

ARM CPU

(Max 1.4 GHz)

NAND

CHIP

NAND

CHIP

NAND

CHIP

NAND

CHIP

NAND

CHIP

NAND

CHIP

NAND

CHIP

NAND

CHIP

Block I/O-to-Flash I/O Interfacing

Cleaning

CompressionDeduplication Parity Mgmt.

Wear-LevelingRemapping

…

RAID

7

C
o

m
p

u
ta

ti
o

n
S

to
ra

g
e

…
Application

Server

Application

Server

Application

Server

Application

Server

Application

Server…

…

Datacenter Network

(e.g., Ethernet, InfiniBand, …)
…

…

Storage Node 0 Storage Node 1 Storage Node N

Xeon
CPUs

GB
DRAM

Disk Array
w/ RAID

Let’s assume that this storage node has 8TB 72 SSDs (EMC XtremIO)
▪ # of ARM cores: 4 cores x 72 = 288 ARM cores
▪ Aggregate DRAM: 8 GB x 72 = 576 GB DRAM

Just for managing NAND flash

Q: Is this a storage node or a low-power microserver?

▪Use simple SSD?
▪ Software Defined Flash (ASPLOS ’14)

▪ Application-managed Flash (USENIX FAST ’16)

▪ LightNVM (USENIX FAST ’17)

→ Network/CPU are still bottleneck

▪Use better SSD organization?
▪ SWAN (HotStorage ’16; USENIX ATC ‘19)

→ Still rely on power-hungry and expensive host

▪Any other solution?

8

▪Motivation

▪Basic Idea

▪LightStore Software

▪LightStore Controller

▪LightStore Adapters

▪Experimental Results

▪Conclusion

9

▪ Get rid of a space-consuming, expensive, power-hungry host server
▪ Put and run everything in SSDs
▪ Attach SSDs to a datacenter network
▪ Let application servers directly talk to SSDs

10

SS
D

SS
D

SS
D

SS
D

SS
D

SS
D

Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl

Application

Server

Application

Server

Application

Server

…

SS
D

Ctrl

…

Datacenter

Network

Host Protocol Translation (e.g., NFS, CIFS, …)

…

Local File System (e.g., EXT4, WAFL, …)

Prefetching Caching/Buffering Parity Mgmt

▪ Get rid of a space-consuming, expensive, power-hungry host server
▪ Put and run everything in SSDs
▪ Attach SSDs to a datacenter network
▪ Let application servers directly talk to SSDs

10

SS
D

SS
D

SS
D

SS
D

SS
D

SS
D

Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl

Application

Server

Application

Server

Application

Server

…

SS
D

Ctrl

…

Datacenter

Network

Host Protocol Translation (e.g., NFS, CIFS, …)

……

Local File System (e.g., EXT4, WAFL, …)

Prefetching Caching/Buffering Parity Mgmt

▪ Get rid of a space-consuming, expensive, power-hungry host server
▪ Put and run everything in SSDs
▪ Attach SSDs to a datacenter network
▪ Let application servers directly talk to SSDs

10

SS
D

SS
D

SS
D

SS
D

SS
D

SS
D

Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl

Application

Server

Application

Server

Application

Server

…

SS
D

Ctrl

…

Host-to-PCIe Controller

DRAM

(2~4 GB)

NAND NAND NAND NAND NAND NAND NAND NAND…

RAID

Datacenter

Network

Low-level Flash Management

High-level Flash Management

Host Protocol Translation

▪ Get rid of a space-consuming, expensive, power-hungry host server
▪ Put and run everything in SSDs
▪ Attach SSDs to a datacenter network
▪ Let application servers directly talk to SSDs

10

SS
D

SS
D

SS
D

SS
D

SS
D

SS
D

Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl

Application

Server

Application

Server

Application

Server

…

SS
D

Ctrl

…

Host-to-PCIe Controller

DRAM

(2~4 GB)

NAND NAND NAND NAND NAND NAND NAND NAND…

RAID

Datacenter

Network

Low-level Flash Management

High-level Flash Management

Host Protocol Translation

Ethernet Controller

▪ Get rid of a space-consuming, expensive, power-hungry host server
▪ Put and run everything in SSDs
▪ Attach SSDs to a datacenter network
▪ Let application servers directly talk to SSDs

10

SS
D

SS
D

SS
D

SS
D

SS
D

SS
D

Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl

Application

Server

Application

Server

Application

Server

…

SS
D

Ctrl

…

Host-to-PCIe Controller

DRAM

(2~4 GB)

NAND NAND NAND NAND NAND NAND NAND NAND…

RAID

Datacenter

Network

Low-level Flash Management

High-level Flash Management

Host Protocol Translation

Ethernet Controller

Deliver Flash’s low latency & high throughput

to network ports!

▪ Get rid of a space-consuming, expensive, power-hungry host server
▪ Put and run everything in SSDs
▪ Attach SSDs to a datacenter network
▪ Let application servers directly talk to SSDs

10

SS
D

SS
D

SS
D

SS
D

SS
D

SS
D

Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl

Application

Server

Application

Server

Application

Server

…

SS
D

Ctrl

…

Datacenter

Network
An x86 storage server with N SSDs

is replaced with N SSDs

Low Power (e.g., 100 W / 10 SSDs)

Cheap (e.g., Zero server cost)

Small Volume (e.g., Less than 1U)

Low TCO (e.g., Less Cooling)

Scalability (No network bottleneck)

▪ Can we run complicated server software on wimpy ARM cores?

▪How can we provide the same interface with application servers?

▪How can we manage unreliable NAND without more ARM cores?

11

▪ Can we run complicated server software on wimpy ARM cores?

▪How can we provide the same interface with application servers?

▪How can we manage unreliable NAND without more ARM cores?

11

LightStore Cluster

NIC

KV Store

Flash

NIC

KV Store

Flash

NIC

KV Store

Flash

KVSFile SystemYCSB

Clients

(Datacenter Applications

)

YCSB Adapter FS Adapter

Block

Blk Adapter

INSERT fwrite() read()get()

KV requests hashed to

different nodes by adapters w/

Consistent Hashing

KV Request (GET, SET, DELETE, …)

Application

Servers

Datacenter Network

KV Protocol Server

LSM-tree Algorithm

LightStore Software

LightStore Node

(Drive-sized Embedded System)

Hardware FTL

Flash Controller

LightStore Controller

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

Network Interface Card

Flash

Exp. Net

E
x
p

an
si

o
n
 C

ar
d

N
et

w
o

rk

… …

Run a simple KV store (LSM-tree) which exposes a flexible KV interface

Run adaptors on application servers that translate XX-to-KV

Implement FTL in hardware since LSM-tree is append-only

▪ Can we run complicated server software on wimpy ARM cores?

▪How can we provide the same interface with application servers?

▪How can we manage unreliable NAND without more ARM cores?

11

LightStore Cluster

NIC

KV Store

Flash

NIC

KV Store

Flash

NIC

KV Store

Flash

KVSFile SystemYCSB

Clients

(Datacenter Applications

)

YCSB Adapter FS Adapter

Block

Blk Adapter

INSERT fwrite() read()get()

KV requests hashed to

different nodes by adapters w/

Consistent Hashing

KV Request (GET, SET, DELETE, …)

Application

Servers

Datacenter Network

KV Protocol Server

LSM-tree Algorithm

LightStore Software

LightStore Node

(Drive-sized Embedded System)

Hardware FTL

Flash Controller

LightStore Controller

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

Network Interface Card

Flash

Exp. Net

E
x
p

an
si

o
n
 C

ar
d

N
et

w
o

rk

… …

Run a simple KV store (LSM-tree) which exposes a flexible KV interface

Run adaptors on application servers that translate XX-to-KV

Implement FTL in hardware since LSM-tree is append-only

①LightStore Software

②LightStore Controller

③LightStore Adapter

▪Motivation

▪Basic Idea

▪LightStore Software

▪LightStore Controller

▪LightStore Adapters

▪Experimental Results

▪Conclusion

12

▪Hash-based KVS

13

▪ Simple implementation

▪ Unordered keys

▪ limited RANGE & SCAN

▪ Random==Sequential access

▪ Unbounded tail-latency

▪ KV-SSDs (mounted on host)

▪ Samsung KV-SSD

▪ KAML [Jin et. al., HPCA 2017]

▪ BlueCache [Shuotao et. al.,

VLDB 2016]

▪LSM-tree-based KVS

▪ Multi-level search tree

▪ Sorted keys

▪ RANGE & SCAN

▪ Fast sequential access

→Adapter-friendly

▪ Bounded tail-latency

▪ Append-only batched writes

→ Flash-friendly

Our Choice!

▪ LightStore Software is implemented using the LSM-tree algorithm

▪ Popular algorithm for implementing key-value store (KVS)

▪ Suitable for NAND flash since it is append-only

▪ How about using existing popular KV software (e.g., RocksDB)?

▪ It is quite heavy to run on ARM cores

▪ RocksDB on 4-core ARM + Samsung’s 960PRO SSSD

▪ Failed to deliver raw flash throughput to a network port

14

▪Three main bottlenecks in running RocksDB on ARM
1. Excessive Memory-copy Overhead:

• memcpy() calls account for up to 30% of the total CPU cycles

• Partially due to compaction

2. High Context Switch Overhead:

• Spawns more than 20 threads for simultaneously processing user

requests, flush and compaction

• 4 cores are available in SSD controller

3. Deep and Sophisticated Software Stack:

• Runs atop kernel layers, such as a page cache, a file system and a block

I/O layer

▪ Solutions?
1. Implement KVS from scratch so that it efficiently runs on ARM

2. Rebuild a lightweight storage stack

15

▪ Platform Library

• Not rely on the kernel too much

• Zero-copy memory allocator: Use

mmap() to directly transfer data

between DRAM and devices

• Direct-IO engine: Use memory-

mapped registers and poll to

control HW

16

Direct-IO Engine

LPDRAM

Zero-Copy Memory

Allocator
Userspace

Kernel

Hardware Interrupt

poll ()

Platform Library

mmap ()

Poller

Thread #5

Interrupt

Handler

Memory

Mapper

Device

Ctrl.

Device Driver

User Library

LightStore Controller

17

KV Protocol Server

Datacenter Network

Direct-IO Engine

LPDRAM

Zero-Copy Memory

Allocator

ls
n
_

m
a
ll

o
c

()

ls
n
_
fr

ee
()

Userspace

Kernel

Hardware Interrupt

poll ()

LightStore-Engine

Platform Library

mmap ()

KV Reply

Handler

Thread #2Thread #1

KV Request

Handler

Poller

Thread #5

Interrupt

Handler

Memory

Mapper

Device

Ctrl.

Device Driver

User Library

LightStore Controller

▪ KV Protocol Server

• A simple socket server to deal

with KV requests

• Use the zero-copy allocator to

avoid data copy between NIC

and DRAM

18

LSM-Tree Engine

KV Protocol Server

Datacenter Network

Memtable

Direct-IO Engine

LPDRAM

Zero-Copy Memory

Allocator

ls
n
_

m
a
ll

o
c

()

ls
n
_
fr

ee
()

lsn_read()

lsn_write()

Userspace

Kernel

Hardware

A
ckn

o
w

led
g
e

Interrupt

poll ()

lsn_read()

Lock-free Queues

LightStore-Engine

Platform Library

mmap ()

KV Reply

Handler

Thread #2Thread #1

KV Request

Handler

LSM-Tree

Manager

Thread #3 Thread #4

Writer &

Compaction

Poller

Thread #5

Interrupt

Handler

Memory

Mapper

Device

Ctrl.

Device Driver

User Library

LightStore Controller

▪ LSM-Tree Engine

• Implementation of the LSM-tree

algorithm optimized for ARM

1. Key-value decoupling

2. Key-table caching

3. …

• Use the direct-IO engine to

control the LightStore controller

• Just forward pointers of

allocated memory chunks to the

LightStore controller

19

LSM-Tree Engine

KV Protocol Server

Datacenter Network

Memtable

Direct-IO Engine

LPDRAM

Zero-Copy Memory

Allocator

ls
n
_

m
a
ll

o
c

()

ls
n
_
fr

ee
()

lsn_read()

lsn_write()

Userspace

Kernel

Hardware

A
ckn

o
w

led
g
e

Interrupt

poll ()

lsn_read()

Lock-free Queues

LightStore-Engine

Platform Library

mmap ()

KV Reply

Handler

Thread #2Thread #1

KV Request

Handler

LSM-Tree

Manager

Thread #3 Thread #4

Writer &

Compaction

Poller

Thread #5

Interrupt

Handler

Memory

Mapper

Device

Ctrl.

Device Driver

User Library

LightStore Controller

❶ Less context switch overheads

• # of threads is limited to five

• Glued via lock-free queues

❸ Less intervention by the deep

I/O stack

• No block layer, no file system, …

❷ No mem copy across all layers,

• including KV server, LSM-tree engine,

and platform library

▪Motivation

▪Basic Idea

▪LightStore Software

▪LightStore Controller

▪LightStore Adapters

▪Experimental Results

▪Conclusion

20

▪ The LSM-tree writes all the data sequentially all the time

▪ Example:

• I/O access patterns of RocksDB based on LSM-tree

21

Always Append Data

LSM-Tree Compaction

▪ The append-only behaviors of the LSM-tree simplify the FTL design
▪ No fine-grained mapping (e.g., page-level mapping)

▪ No garbage collection (i.e., LSM-tree’s compaction replaces it)

▪ The FTL is completely implemented in HW
▪ No ARM CPU is necessary; enables us to use more ARM cores to run software

▪ Faster than SW FTL; 700 ns for address translation

22

N
A

N

D

N
A

N

D

N
A

N

D

N
A

N

D

NAND Flash Array Card

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

NAND Flash Array Card

Software Interface & DMA Engines

LightStore Controller

FMC

Lightweight Flash Translation Layer

(Segment Mapping, Wear-leveling, Bad-block

Mgmt.)

Expansion Card Manager

Flash Chip Manager

(NAND Control, ECC, I/O Scheduling)

Expansion Card Manager

Flash Chip Manager

LightStore

Expansion CardB
lo

ck
 R

A
M

B
u
il

t-
in

B
at

te
ry

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

N
A

N
D

NAND Flash Array Card

ARM Core (e.g., Cortex-A53)

N
A

N
D

System Bus (e.g., AXI Bus)

FMC

Serial

Link

▪Motivation

▪Basic Idea

▪LightStore Software

▪LightStore Controller

▪LightStore Adapters

▪Experimental Results

▪Conclusion

23

▪ LightStore adapter is responsible for translating traditional I/O

commands into KV pairs

▪ Run on applications server side as FUSE, BUSE, and library

24

LightStore Cluster

NIC

KV Store

Flash

NIC

KV Store

Flash

NIC

KV Store

Flash

KVSFile SystemYCSB

Clients

(Datacenter Applications

)

YCSB Adapter FS Adapter

Block

Blk Adapter

INSERT fwrite() read()get()

KV Request (GET, SET, DELETE, …)

Application

Servers

Datacenter Network

Flash

Exp. Net
E

x
p

an
si

o
n
 C

ar
d

N
et

w
o

rk

… …

Virtual File System

Network Driver

File-to-KV Adapter

(FUSE module)

FUSE Kernel

POSIX Interface

User Application

Socket
File IO

(e.g., fwrite())

File IO

KV Pairs

K
e

rn
e

l-
s

p
a

c
e

U
s

e
r-

s
p

a
c

e

Example: File-to-KV Adapter

▪The flexibility of KV interface makes it possible for us to

support various traditional protocols

▪ Four protocols are supported
1. Native KV Interface: Get/Put …

• LightStore supports a KV interface natively

2. YCSB Interface: Read/Insert/Scan …
• Each YCSB command directly corresponds to a specific KV operation, except for

multiple fields

• Multiple fields can be supported with MGET/MSET

3. Block Interface: Read/Write/Trim
• A key corresponds to LBA; A value corresponds to 4KB fixed-size data

4. File Interface: fread()/fwrite() …

• A file can be handled as the form of a key-value object

• Currently, run a file system atop the block interface

25

▪Motivation

▪Basic Idea

▪LightStore Software

▪LightStore Controller

▪LightStore Adapters

▪Experimental Results

▪Conclusion

26

27

▪ Each LightStore Prototype node is implemented using a Xilinx ZCU102

evaluation board (w/ Cortex A53 CPU) and a custom flash card

28

▪ Clients and storage nodes are connected to the same 10GbE switch

x86-based storage system LightStore

CPU
Xeon E5-2640

(20 cores @ 2.4 GHz)

ARM Cortex-A53

(4 cores @ 1.2 GHz)

DRAM 32 GB 4 GB

SSD or flash

Throughput

Latency

Samsung 960 PRO 512 GB SSD
3.21 GB/s / 1.38 GB/s

80 us / 120 us

Firmware (FTL, buffers ...)

Custom 512 GB NAND Flash
1.2 GB/s / 430 MB/s

120 us / 480 us

Raw Flash

KVS RocksDB v5.8 Our LSM-tree engine

Client Ifc ARDB Our KV protocol server

Network
10 Gbit Ethernet

(* up to 1.20 GB/s)

10 Gbit Ethernet

(* up to 620 MB/s)

OS Ubuntu 16.04 (Linux 4.9.0)

29

▪5 synthetic workloads to evaluate KVS performance

▪ The value size of 8-KB used to match the flash page size
• The latest version has been improved to support various key/value sizes

Synthetic Workloads

S-SET Sequential Write

S-GET Sequential Read

R-SET Random Write

R-GET Random Read

R-Mixed Random R:W=9:1

30

Search overheads

▪ Except for write workloads, LightStore fully saturates flash bandwidth

S-SET: Sequential Set
S-GET: Sequential Get
R-SET: Random Set
R-GET: Random Get
R-Mixed: Random Mixed

Compaction overheads

Fully saturate NAND bandwidth

for sequential I/O

Search & memory

overheads

31

▪ Except for write workloads, LightStore fully saturates Net bandwidth

S-SET: Sequential Set
S-GET: Sequential Get
R-SET: Random Set
R-GET: Random Get
R-Mixed: Random Mixed

Fully saturate NAND bandwidth

for sequential I/O

▪ x86-RocksDB performs better thanks to high speed of Samsung 960PRO

▪ LightStore outperforms x86 under random writes (e.g., R-SET and R-Mixed)

▪ x86-ARDB suffers from non-trivial software stack overheads

32

Flash Bottleneck
Net Bottleneck

Net Bottleneck

33

▪ LightStore scales linearly according to the number of SSDs added to a cluster

34

▪ Assume that x86-ARDB scales with up to 4 SSDs

▪ 4 times the performance seen previously

▪ Peak power

▪ x86-ARDB – 400W, LightStore-Prototype – 25W

IOPS/W S-SET S-GET R-SET R-GET R/W mix

LightStore

Gain
1.8x 2.5x 7.4x 2.8x 5.7x

35

36

▪ HW FTL > Lightweight SW FTL > Full SW FTL

▪ Full SW: page mapping; garbage collection copying overhead

▪ Read: 7-10% degradation

▪ Write: 28-50% degradation

▪ Compaction thread very active; More SW FTL tasks

➔Without FPGA (or HW FTL), we would need an extra set of cores

(Trade-off between Cost and Design Efforts)

<YCSB performance>

37

<Block I/O performance> <File I/O performance>

▪ Network-attached Single Node Performance

▪ Scalability w/ Multiple Nodes

Max. Network

Max. NAND

Ceph is inefficient for handling small data

Max. Network

Max. NAND

▪ This work was motivated by two observations in distributed storage
1. The existing storage architecture did not scale well

2. Applications failed to exploit full performance of SSDs over the network

▪ LightStore is a lean drive-sized high-speed KV node which plugs

directly into a network port
1. Lightweight KV storage engine → Deliver full NAND speed to network ports

2. Hardware FTL → Minimize resource requirements

3. XX-to-KV adapters → Support various applications w/ no modification

▪ A four-node cluster showed a comparable throughput to the AFA with

four SSDs and achieved up to 7.4x better ops/J

38

Thank you!
https://datalab.dgist.ac.kr

https://datalab.dgist.ac.kr/

