LightStore: Software-defined Network-
attached Key-value Drives

Chanwoo Chung*, Jinhyung Koo, Junsu Im, Arvind¥, and Sungjin Lee
DGIST and MIT¥#

NVRAMOS ‘19
2019.10.24

I H " L dh DATA-INTENSIVE
I I LGS T 5=

COMPUTING SYSTEMS
LABORATORY

A

Motivation

_g Application Application Application Application Application
T Server Server Server Server Server
ER
£ Datacenter [Network
= ! ! 41
O U (e.g., Ethernet, InfiniBand, ...)
(O]
(@]
S <
o Xeon Disk Array GB E
n CPUs w/RAID DRAM E
: Storage Node O Storage Node 1 Storage Node N
T

It is not mere storage — it is another high-end server!!!

High-end Xeon CPUs Power Hungry (e.g., 1700 W)

Several GBs of DRAM Expensive (e.g., $2~40,000 w/o SSDs)
An array of SSDs ||~ Large Volume (e.g., 2-4 U)
Large form-factor High TCO (e.g., Cooling)

4

DATA-INTENSIVE
7 SF
COMPUTING SYSTEMS LAB I:‘J rS‘T Eﬂf?@ﬂ{—ng 2

/N

This Architecture is Invalid with SSDs
B B B D S

= HDD is slow - require large DRAM and array of disks
= |0 ms latency & 100~300 MB/s throughput

= HDD is dumb - the host system makes it smarter

= Xeon CPUs with advanced algorithms

Aggr. Network Throughput = 20 GB/s

J4OGbE I4OGbE I40GbE |ﬂGbE

[Host Protocol Translation (e.g., NFS, CIFS, ...)] Storage Host

[Prefetching] [Caching/Buffering] [Parity Mgmt][Dedup/Compresion]
Local File System (e.g., EXT4, WAFL, .]

B 300 MBIs 300 MB/s
o a
a 0
Ah I

4 DATA-INTENSIVE A
COMPUTING SYSTEMS LAB L S‘T tra i}c&jng 3

HDD

This Architecture is Invalid with SSDs
|

= HDD is slow - require large DRAM and array of disks
= |0 ms latency & 100~300 MB/s throughput

» SSDs are not a bottleneck 2 Network/CPU are new bottlenecks

= HDD jis dumb - the host system makes it smarter
eon CPUs with advanced algorithms

Bottleneck!!!

J4OGbE I4OGbE I40GbE |ﬂGbE

Host Protocol Translation (e.g., NFS, CIFS, ...)] Storage Host

[
[Prefetching] [Caching/Buffering] [Parity Mgmt][Dedup/Compresion]
(Local File System (e.g., EXT4, WAFL, ...) |

X SSD A (€]
CPUs w/RAID DRAM . L.L.L L 1 1=10GBls___ [1=10 GBIs

Aggr. SDD Throughput = 10~100 GB/s
(with 10 SSDs)

LY J[2 [2 Jl 2 |« |

g *
...

4 DATA-INTENSIVE — s s
COMPUTING SYSTEMS LAB L 5‘ EH??:B};JI@J 3

Institute of Science & Technology

Network/SSD Performance Trend in AFA

EMC NetApp HPE Hynix
XtremlO SolidFire 3PAR AFA
Capacity 36~144TB 46TB 750TB 522TB
SSD Array # of SSDs 18~72 12 120 576
Aggr. 18~72 GB/s 12 GB/s 120 GB/s 576 GB/s
Throughput*
Port 4~8x 2X 4~|2x 3x
orts 10Gb iSCSI 25Gb iSCSI 16Gb FC Gen3 PCle
Network
Aggr.
5~10 GB/s 6.25 GB/s 8~24 GB/s 48 GB/s
Throughput

X Aggr. SSD throughput was estimated assuming each SSD offers | GB/s throughput

= Supported by the latest works
= K. Kourtis et al.,“Reaping the performance of fast NVM storage with uDepot,’
USENIX FAST ‘19
= |. Kim et al.,“Alleviating Garbage Collection Interference through Spatial Separation
o in All Flash Arrays,” USENIX ATC 19

N

DATA-INTENSIVE —

&
COMPUTING SYSTEMS LAB a, IST EH?

Network/SSD Performance Trend in AFA

|
500
10GbE (sockets)
400
2 300
%)
o
k 200 SSD (spdk)
100 Optane (spdk) ?
0 [] L !’-;

0 100 200 300 400 500 600
Throughput (kops)

= Supported by the latest works
= K. Kourtis et al.,“Reaping the performance of fast NVM storage with uDepot,’
USENIX FAST ‘19
= |. Kim et al.,“Alleviating Garbage Collection Interference through Spatial Separation

in All Flash Arrays,” USENIX ATC 19
4R

4 DATA-INTENSIVE

4
~ =sh|ae
COMPUTING SYSTEMS LAB LG f 5‘ T ‘EH?'??]{&]:E‘J 4

/N

SSI s Not a Dumb Device

= HDD is slow - require large DRAM and array of disks
= |0 ms latency & 100~300 MB/s throughput

» SSDs are not a bottleneck 2 Network/CPU are new bottlenecks

= HDD is dumb - the host system makes it smarter
= Xeon CPUs with advanced algorithms
» SSDs are smart enough, supporting many features = Duplicate

storage management hurts performance
Bottleneck!!!

J4OGbE I4OGbE I40GbE |ﬂGbE

[Host Protocol Translation (e.g., NFS, CIFS, ...)] Storage Host

[Prefetching] [Caching/Buffering] [Parity Mgmt][Dedup/Compresion]
(Local File System (e.g., EXT4, WAFL, ...) |
]

Xeon SSD Array GB
CPUs w/RAID DRAM ORI TN BTN VN [T SRR feeee iedt R Lo i |0 GB/s

4 DATA-INTENSIVE

4
~ =sh|ae
COMPUTING SYSTEMS LAB LG 5‘ T ‘EH?‘??]{&]:E‘J S

Let’s Look into SSDs

* 4 embedded CPUs (ARM) running at 700 MHz to 1.4 GHz and >
I~16GB DRAM that a desktop PC had 10 years ago
* Those resources are required for running firmware (i.e., FTL)

PCle Interface (1~10 GB/s)

Host-to-PCle Controller

I
Block |/O-to-Flash 1/O Interfacing
| Remapping I Wear-Leveling]_I[Cleaning (Df'ér;)
\ i v) P . o >
Deduplication];{ Compression }|[Parity Mgmt.

",
--

DATA-INTENSIVE 4 =
~ =usias
COMPUTING SYSTEMS LAB n’ fy E!‘Eizﬂ&nfﬁ 6

Application
Server

Application Application Application Application
Server Server Server Server
DatacenterTNetwork T |

Computation
A

- (eg Ethernet, InfmlBand ..)

(O]
(@)
S <
S Xeon Disk Array
w CPUs w/RAID DRAM
.............. StorageNodeO Storage Node 1 Storage Node N
g

Let’s assume that this storage node has 8TB 72 SSDs (EMC XtremlO)

= # of ARM cores: 4 cores x 72 = | 288 ARM cores Just for managing NAND flash
= Aggregate DRAM:8 GB x 72 = [576 GB DRAM &ihs

Q: Is this a storage node or a low-power microserver?

4

DATA-INTENSIVE 4 =
~ =E|es
COMPUTING SYSTEMS LAB Ln-’ rS‘T %;?&;’eﬂmﬂfi

/N

Possible Solutions?
B B ., s

= Use simple SSD?
= Software Defined Flash (ASPLOS ’14)
= Application-managed Flash (USENIX FAST ’[6)
= LightNVM (USENIX FAST ’17)
= Network/CPU are still bottleneck

* Use better SSD organization?

= SWAN (HotStorage ’16; USENIX ATC ‘19)
—> Still rely on power-hungry and expensive host

* Any other solution?

4 DATA-INTENSIVE

4
~ =sh|ae
7 COMPUTING SYSTEMS LAB LG f 5‘ ‘EH???]}*::E‘J 8

Index

_ 1 b B
= Motivation
" Basic Idea
= LightStore Software
* LightStore Controller
* LightStore Adapters
= Experimental Results
= Conclusion

DATA-INTENSIVE 2 s
~ =sIes
7 COMPUTING SYSTEMS LAB G/ 5‘ O ieoEs 9

Institute of Science & Technology

4

LightStore: Basic Idea
|

" Get rid of a space-consuming, expensive, power-hungry host server

* Put and run everything in SSDs
= Attach SSDs to a datacenter network
= Let application servers directly talk to SSDs

Application Application Application
Server Server (XN Server
A
Datacenter
Network

[Host Protocol Translation (e.g., NFS, CIFS, ...) |
[Prefetching] [Caching/Buffering] [Parity Mgmt]
Local File System (e.g., EXT4, WAFL, ...)]

(@)
[N N J D
n
wn

e

Ctrl Ctrl

(@) @) o
N N N
n n n

ssDRY
SSD

@)
N
n

4

A=IEE] 10

DATA-INTENSIVE 2
% =
COMPUTING SYSTEMS LAB LG f 5‘ T Eﬁl? =

/N

htStore: Basic Idea

A

* Get rid of a space-consuming, expensive, power-hungry host server

* Put and run everything in SSDs
= Attach SSDs to a datacenter network
= Let application servers directly talk to SSDs

Application Application Application
Server Server oo Server
A

[Host Protocol Translation (e.g., NFS, CIFS, ...) |
[Prefetching] [Caching/Buffering] [Parity Mgmt]
| Local File System (e.g., EXT4, WAFL, ...)]

eeoe A
)

4

DATA-INTENSIVE s T
1) &2
COMPUTING SYSTEMS LAB IL’ b ,‘S‘T EI? =EDISE] 0

/N

LightStore: Basic Idea
|

" Get rid of a space-consuming, expensive, power-hungry host server

* Put and run everything in SSDs
= Attach SSDs to a datacenter network
= Let application servers directly talk to SSDs

Application Application Application
Server Server oo Server
A

Datacenter m"""""ﬂ"""""ﬂ"m
Network
Host-to-PCle Controller

[Host Protocol Translation]
I
[High-level Flash Management] DRAM
. (2~4 GB)
[Low-level Flash Management]
I
RAID

Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl | | Ctr| | 7— N NN T N P U ——
(@) @) (A (A O O eee
v wn wn %)))
wn wn w w w w

numy

~ EDEE
buk

DATA-INTENSIVE 4
ﬂ =
COMPUTING SYSTEMS LAB P EVAY s

/N

LightStore: Basic Idea
|

" Get rid of a space-consuming, expensive, power-hungry host server

* Put and run everything in SSDs
= Attach SSDs to a datacenter network
= Let application servers directly talk to SSDs

Application Application Application
Server Server (XN Server
A
Datacenter I
Network
Ethernet Controller

[Host Protocol Translation]
I
[High-level Flash Management] DRAM
. (2~4 GB)
[Low-level Flash Management]
RAID

Ctrl Ctrl Ctrl || CCr| | [SN I NN FUUU ST SN N .
[o o
n wn v
(%) (%] (%]

4 DATA-INTENSIVE
/N COMPUTING SYSTEMS LAB

LightStore: Basic Idea
|

" Get rid of a space-consuming, expensive, power-hungry host server

* Put and run everything in SSDs
= Attach SSDs to a datacenter network
= Let application servers directly talk to SSDs

Application Application Application
Server Server oo Server
A <« 4y

Datacefiter I
Net Ak

[High-level Flash Management] (2~4 GB)

[Low-level Flash Management]
I

, Ethernet Controller
[Host Protocol Translation]
{ & ‘ ' DRAM

RAID

[o

))
w w

(@)
N
n

SSD
SSD

o
N
n

Deliver Flash’s low latency & high throughput

numy

Ctrl Ctrl Ctrl Ctrl PO NN RN RN NN DU SN O ——
[N N J D g

_ to network ports! .
E, 'ESTGP'UI.EN”S'Q’YZTEMS " DG\/ST ==

EDEE
buk

LightStore: Basic Idea
|

" Get rid of a space-consuming, expensive, power-hungry host server

* Put and run everything in SSDs
= Attach SSDs to a datacenter network
= Let application servers directly talk to SSDs

Application Application Application
Server Server oo Server
A
Network .
il An x86 storage server with N SSDs

is replaced with N SSDs

Low Power (e.g., 100 W/ 10 SSDs)
Cheap (e.g., Zero server cost)
Small Volume (e.g., Less than |U)
eee | N Low TCO (e.g., Less Cooling)
3 | Scalability (No network bottleneck)

10

i n ‘DATA—INTENSIVE — ra=nshIas
SiEDIEs]
N COMPUTING SYSTEMS LAB l:l’ f 5‘ T B P2 & Tochnolagy

Key Technical Challenges
B B Da—.—,— s

= Can we run complicated server software on wimpy ARM cores?
* How can we provide the same interface with application servers?

* How can we manage unreliable NAND without more ARM cores?

4 DATA-INTENSIVE 11

/S COMPUTING SYSTEMS LAB

Overall Architecture of LightStore

= Can we run complicated server software on wimpy ARM cores?
=) Run a simple KV store (LSM-tree) which exposes a flexible KV interface
* How can we provide the same interface with application servers?
=% Run adaptors on application servers that translate XX-to-KV
* How can we manage unreliable NAND without more ARM cores?
- mp Implement FTL in hardware since LSM-tree is append-only

Application Clients LightStore Node
Ser¥ers (Datacef}er Ap,QI‘ications (Drive-sized Embedded System)
YCSB File System e NEIWOK Interface Card F
........... I.’.\l.é.E.I.:\;_i_. ™ B .f;/\./.r]f:él(il N A .g.ért.(.).......l.l:e.é.a-(-)- .‘: E nghtStOI‘e Software E ““‘:‘,v”‘
; Pk KV Protocol Server b IR
e LSM-tree Algorithm
KV Request (GET SET, DELETE, ... i [LightStore Controller & .-
T e e ST SOkl Hardware FTL) Hee
Ve vy ___Flash Controler _};
[a] (=] a o
Datacenter Network g S S S

4 4 K
KV requests hashed to NIC NIC NIC
different nodes by adaptersw/ o KV Store KV Store KV Store
Consistent Hashin S5
g LC) %‘ Flash Flash Flash
2 2 —]
4R g 2 | _Exp. Net LightStore Cluster
3 Flash
" DATA-INTENSIVE L

COMPUTING SYSTEMS LAB

/N

11

Ll

Overall Archi

\ ShLE

ecture of LightStor

= Can we run complicated server software on wimpy ARM cores?
=) Run a simple KV store (LSM-tree) which exposes a flexible KV interface

* How can we provide the same interface with application servers?
=) Run adaptors on application servers that translate XX-to-KV

* How can we manage unreliable NAND without more ARM cores?
=) |[mplement FTL in hardware since LSM-tree is append-only

Application Clients

LightStore Node
Ser¥ers (Datacef}er Ap,QI‘ications (Drive-sized Embedded System)
YCSB File System ~eeeaNELWOrK Interface Card
........... R T Thireo a0 Treadg | [Lightstore Software '
{ i | Kvprotocol Server {|(DLightStore Software
(3)LightStore Adapteri ——— - - - P LSM-tree Algorithm
KV Request (GET, SET, DELETE, ...) : [LightStore Controller 3
B S i3 f Bl Hadware FTL ___ }#(2)LightStore Controller
SO) [Flash Controller |
e o
Datacenter Network
................................... ol ‘: — = o
: KV requests hashed to NIC NIC NIC
dlffeg:nt nodes b%adﬁpters w/ = KV Store KV Store | ... | KV Store
: onsistent Hashing O« ™5 Flash Flash
... _g E _>|
“ 5 = | _Exp. Net LightStore Cluster
o
X Flash
4 DATA-INTENSIVE L

COMPUTING SYSTEMS LAB

/N

11

Index

_ 1 b B
= Motivation
= Basic Idea
= LightStore Software
* LightStore Controller
* LightStore Adapters
= Experimental Results
= Conclusion

DATA-INTENSIVE 4 -
" Hra=sasdiEs
» 7 COMPUTING SYSTEMS LAB l—L,, f 5‘ Doegs ovar 12
Institute of Science & Technology

4

Which KVS on LightStore?

4)
* Hash-based KVS = LSM-tree-based KVS
= Simple implementation " Multi-level search tree
* Unordered keys = Sorted keys
" limited RANGE & SCAN = RANGE & SCAN
* Random==Sequential access * Fast sequential access
—> Adapter-friendly
* Unbounded tail-latency " Bounded tail-latency
= KV-SSDs (mounted on host) = Append-only batched writes
= Samsung KV-SSD —> Flash-friendly
= KAML [Jin et.al.,, HPCA 2017]
= BlueCache [Shuotao et. al,,
VLDB 201 6] _ Our Choice! /
13
®,) Conputivg svsrews tas DGNST wrzaese 13

LightStore Software
* LightStore Software is implemented using the LSM-tree algorithm

" Popular algorithm for implementing key-value store (KVYS)
= Suitable for NAND flash since it is append-only

* How about using existing popular KV software (e.g., RocksDB)?
" |t is quite heavy to run on ARM cores

* RocksDB on 4-core ARM + Samsung’s 960PRO SSSD
" Failed to deliver raw flash throughput to a network port

. a RocksDB on ARM &=
2 160 1 1 RocksDB on x86 = | 1.2
Q.
2120 - A 109 .
5 foa)
é— 80 |- 406 O
% v v
E 40 — v I] 03
}_

0 — — 0.0

4 DATA-INTENSIVE

COMPUTING SYSTEMS LAB

14

/N

Bottleneck Analysis
B B Da—.—,— s

* Three main bottlenecks in running RocksDB on ARM

|. Excessive Memory-copy Overhead:
* memcpy() calls account for up to 30% of the total CPU cycles
* Partially due to compaction

2. High Context Switch Overhead:
* Spawns more than 20 threads for simultaneously processing user

requests, flush and compaction

* 4 cores are available in SSD controller

3. Deep and Sophisticated Software Stack:
* Runs atop kernel layers, such as a page cache, a file system and a block

/O layer

= Solutions?
|. Implement KVS from scratch so that it efficiently runs on ARM
2. Rebuild a lightweight storage stack

N

DATA-INTENSIVE

L
7% =a[ae
COMPUTING SYSTEMS LAB n’ fS‘T %iizﬂ;ﬁ’?ﬁ 15

Platform Library
_ § B . s

Platform Library = Platform Library
User Library Thread #5 * Not rely on the kernel too much
[Zero'ﬁﬂgléa';gfmow][Direct-10 Engine] [Poller] Zero-copy memory allocator: Use
Userspace | ——— S — S W——— - mmap() to directly transfer data
Lmmap () poll () between DRAM and devices
Kernel Device Driver Device * Direct-lO engine: Use memory-
Mapper Ctrl. Handler d . d poll
' mapped registers and poll to

e v R control HW
LPDRAM LightStore Controller
dh

)

DATA-INTENSIVE

2 =] A
COMPUTING SYSTEMS LAB a:; f 5‘ T %g'agﬂ}fjlsd 16

KV Protocol Server

LightStore-Engine 4 Datacenter Network
e— = KV Protocol Server
rotocol Server v * A simple socket server to deal
Thread #1 Thread #2 .
i [KV Request] [KV Reply] with KV requests
Handler Handler * Use the zero-copy allocator to

avoid data copy between NIC

and DRAM
o <
o o
— [«B]
T =
E o
5 2
Platform Library
User Library Thread #5
{ Zero-g\ﬂgzall/(l)erzmory][Direct-10 Engine] [Poller]
Userspace x yy 7y
.. 1}4
] mmap () poll ()
Kernel Device Driver Memory Device Interrupt
Mapper Ctrl. Handler

Hardware 7 Interrupt
LPDRAM LightStore Controller
dh
Er I

DATA-INTENSIVE

']
P =ish|&s)
COMPUTING SYSTEMS LAB Lu.’ fS‘T %Eaiﬂ_‘zlfj 17

LSM-Tree Engine

|
LightStore-Engine 4 Datacenter Network
KV Protocol Server il
Thread #1 Thread #2
) KV Request KV Reply
Handler Handler
: 4
Lock-free Queues T
LSM-Tree EnJ;ine
Thread #3 ¢ Memtable Thread #4
S o LSM-Tree] |[Writer &] = LSM-Tree Engine
o .
= & Manager 4 . _Compaction ~ ° Implementation of the LSM-tree
S A . _—
- & e — = algorithm optimized for ARM
@ Isn_read() Isn_read() o .
_ Isn_write() = |. Key-value decoupling
Platform Library - S .
: . le 2. Key-table caching
User Library vV Thread #5 3
J Zero-Copy Memor . .]) .
U " Aleeator || Direct-10 Engine Poller * Use the direct-lO engine to
serspace :
........... p f‘l.-‘-“ control the L|ghtStore controller
Sevice Driver Lmmap 0 polt 0 * Just forward pointers of
Devi |
Kernel ool allocated memory chunks to the

LightStore controller

Hardware 7 1 Interrupt
LPDRAM LightStore Controller
dh

DATA-INTENSIVE

- P 1]
COMPUTING SYSTEMS LAB ’:E; f 5‘ T %g’%igﬂ}g&-‘?lsd 18

4

/N

Summary

|
LightStore-Engine 4 Datacenter Network €@ Less context switch overheads
Thread #1 Thread #2 * Glued via lock-free queues
5l [KV Request] [KV Reply]
Handler Handler @ No mem copy across all layers,
v Lockfree O + * including KV server, LSM-tree engine,
ock-free Queues
. and platform librar
LSM-Tree EnJ;lne ! P Y
Thread #3 § Memtable Thread #4
o o LSM-Tree | Writer &
= o Manager Compaction
g X . 1\ 4 >
CI % N N——— %
s Isn_read() Isn_read() é
) Isn_write =
Platform Library -writeQ 8
A D
User Library vV Thread #5
J Zero-Copy Memory Direct-10 Engine Poller]
L Allocator J
Userspace 7y A 7y
.. Jeeveereraenaerasaenasnaseenasnaseeshoraifansaasseransassesannasaafeansassarannasrasandnrnasannas
_ Lmmap (poll @® Less intervention by the deep
Kernel Device Driver Memory Device Interrupt 1/0 stack
Mapper Ctrl. Handler .
* No block layer, no file system, ...

Hardware 7 1 Interrupt
LPDRAM LightStore Controller
dh

DATA-INTENSIVE

L
~ =Nsise
COMPUTING SYSTEMS LAB LG f 5‘ T ‘Eﬂ?a;m‘_‘mg& 19

4

/N

Index

_ 1 b B
= Motivation
= Basic Idea
= LightStore Software
= LightStore Controller
* LightStore Adapters
= Experimental Results
= Conclusion

DATA-INTENSIVE s T
1) &2
/N COMPUTING SYSTEMS LAB ln” b ,‘5‘ E}l?q?;g}k [[[[Sl 20
Institute of Science & Technology

4

LightStore Controller
|

* The LSM-tree writes all the data sequentially all the time
= Example:
* |/O access patterns of RocksDB based on LSM-tree

180000000 .
LSM-Tree Compaction
160000000
- -
140000000

-
i s -,
o Yo Yo
-
-

\

Always Append Data

120000000 \//[/

- o y 4

\

7
100000000 ! e
II !
g
7 /]

— L £ Y
-
—

-

= f = L~ L
- o = L [
= b L
- 4 - 4 - 4

80000000

/]
60000000 ,:' !
L/

1
7
Vi
7

/ /

I
'l
40000000 l

20000000

7

I
1
I
I
I
11
I
i
O\
0

2000 4000 6000 8000 10000 12000 14000

“ e write e read

" DATA-INTENSIVE ~ " Ty | P
COMPUTING SYSTEMS LAB l:b f 5‘ T EH??;B};J:%‘J 21

Institute of Science &

/N

LightStore Controller (Cont.)

* The append-only behaviors of the LSM-tree simplify the FTL design
* No fine-grained mapping (e.g., page-level mapping)
* No garbage collection (i.e., LSM-tree’s compaction replaces it)

* The FTL is completely implemented in HW
* No ARM CPU is necessary; enables us to use more ARM cores to run software
= Faster than SW FTL; 700 ns for address translation

ARM Core (e.g., Cortex-A53)

LightStore Controller I System Bus (e.g., AXI Bus)

<§E Software Interface & DMA Engines
5 Lightweight Flash Translation Layer _
S (Segment Mapping, Wear-leveling, Bad-block LightStore
o Mgmt.) Expansion Card
Expansion Card Manager <+ [Expansion Card Manager
Serial
Flash Chip Manager Link .
(NAND Control, ECC, /0 Scheduling) Flash Chip Manager
t FMC t FMC

NAND Flash Array Card

NAND Flash Array Card
a) [a)
DATA-INTENSIVE

< <
= =z
-~ UPa=IEnIss
COMPUTING SYSTEMS LAB w fS‘T ﬁ{i\'\’f—_r: Elg‘lct;ﬁchfﬂ-;—v 22

NAND
NAND
NAND
NA
NA
NA
NAND
NAND
NAND

4

/N

Index

_ 1 b B
= Motivation
= Basic Idea
= LightStore Software
* LightStore Controller
= LightStore Adapters
= Experimental Results
= Conclusion

DATA-INTENSIVE s T
1) &2
/N COMPUTING SYSTEMS LAB ln” b ,‘5‘ E}l?q?;g}k [[[[Sl 23
Institute of Science & Technology

4

LightStore Adapter

* LightStore adapter is responsible for translating traditional 1/O
commands into KV pairs

* Run on applications server side as FUSE, BUSE, and library

Example: File-to-KV Adapter

Application Clients
o Seryers (Datace;r}er AQQ!C&UOI’]S
@ | Filelo YCSB File System
o : ;
] INSERT fwrite() iget() read()
() : (FUSE module) . - :
8 File 10 o
(e.g., fwrite()) [Socket] KV Request (GET, SET, DELETE, ...)
KV Pairs COR T
[POSIX Interface] v Tt
Datacenter Network
A 4

q') 1 e e [[
% [Virtual File System]
Q ::. ol ::, 0."‘
‘{) \ 4 \ 4 \ 4 \
— NIC NIC NIC
GC) [FUSIE STl] = KV Store KV Store KV Store
S A 4 8 o cee
Q . = 3
X [Network Driver 58 Flash Flash Flash

§ 2 | Exp. Net LightStore Cluster

X Flash

Lu —

A 4

DATA-INTENSIVE

- P 1]
COMPUTING SYSTEMS LAB ’:E; f 5‘ T %?’:c‘lgﬂ}gﬂlsd 24

4

/N

Protocol Translation
B B B D S

* The flexibility of KV interface makes it possible for us to
support various traditional protocols

" Four protocols are supported

|. Native KV Interface: Get/Put ...
* LightStore supports a KV interface natively
2. YCSB Interface: Read/Insert/Scan ...

* EachYCSB command directly corresponds to a specific KV operation, except for

multiple fields
» Multiple fields can be supported with MGET/MSET

3. Block Interface: Read/Write/Trim
* A key corresponds to LBA; A value corresponds to 4KB fixed-size data

4. File Interface: fread()/fwrite() ...
* A file can be handled as the form of a key-value object
* Currently, run a file system atop the block interface

4 DATA-INTENSIVE

4
~ =sh|ae
COMPUTING SYSTEMS LAB LG f 5‘ T ‘EH???]}*::E‘J 25

/N

Index

_ 1 b B
= Motivation
= Basic Idea
= LightStore Software
* LightStore Controller
* LightStore Adapters
* Experimental Results
= Conclusion

DATA-INTENSIVE s T
1) &2
/N COMPUTING SYSTEMS LAB ln” b ,‘5‘ E}l?q?;g}k [[[[Sl 2 6
Institute of Science & Technology

4

L |ghtSt ore Prototype

= Each LightStore Prototype node is implemented using a Xilinx ZCU 102
evaluation board (w/ Cortex A53 CPU) and a custom flash card

(':\.‘n..n £y _::_;~.‘::. sesees 2 01
10Gbit Ethernet [
v Zynq Ultrascale+ SoC

® HH M| (Quad-core ARM Cortex-A53
—— with FPGA) I

| ————

4

DATA-INTENSIVE 27
COMPUTING SYSTEMS LAB

/N

Experimental Setup
|

_ x86-based storage system LightStore

CPU Xeon E5-2640 ARM Cortex-A53
(20 cores @ 2.4 GHz) (4 cores @ 1.2 GHz)
DRAM 32 GB 4 GB
SSD or flash Samsung 960 PRO 512 GB SSD Custom 512 GB NAND Flash
Throughput 3.21 GB/s/ 1.38 GB/s 1.2 GB/s / 430 MB/s
Latency 80 us / 120 us 120 us / 480 us
Firmware (FTL, buffers ...) Raw Flash
KVS RocksDB v5.8 Our LSM-tree engine
Client Ifc ARDB Our KV protocol server
Network |0 Gbit Ethernet |0 Gbit Ethernet
(* up to 1.20 GB/s) (* up to 620 MB/s)
OS Ubuntu 16.04 (Linux 4.9.0)

= Clients and storage nodes are connected to the same |0GbE switch

)

DATA-INTENSIVE 28
COMPUTING SYSTEMS LAB

KVS Workloads

*5 synthetic workloads to evaluate KVS performance

Synthetic Workloads

S-SET Sequential Write
S-GET Sequential Read
R-SET Random Write

R-GET Random Read
R-Mixed Random R:W=9:|

" The value size of 8-KB used to match the flash page size
* The latest version has been improved to support various key/value sizes

i ‘ DATA-INTENSIVE ’ =
= n] COMPUTING SYSTEMS LAB PEAY S Eﬁl# 4 29

Local Performance

|
. S-SET: Sequential Set
Fully saturate NAND bandwidth S-GET: Sequential Get
for sequential I/O R-SET: Random Set
A R-GET: Random Get
200 LightStore-Local = 1 1.6 R-Mixed: Random Mixed
1 1.4
w» 150) | 1.2
a LightStore
Q
Q Read BW Search & memory 110
< overheads "
5 .)
2 100 as 0.8 @
(@) \
3 10.6
E N N
50 | A\ — R P
LightStore | W
N Write BW | N 1 0.2
0 ﬁ:-:: | \ NN :‘::' | N | 0.0

S-SET S-GET TR-S ET R-GET R-Mixed
Compaction overheads

= Except for write workloads, LightStore fully saturates flash bandwidth
13

)

DATA-INTENSIVE

4
~ =sh|ae
COMPUTING SYSTEMS LAB LG f 5‘ T ‘EH?'??]{&]:E‘J 30

Network Performance
— § B D N
Fully saturate NAND bandwidth

200

—_—
(&)
o

100

Throughput (Kops/s)

(&)
o

for sequential /0O

LightStore-Local \=
LightStore-

LightStore
Read BW

LightStore
Write BW

AN

................. T

LightStore
Ethernet BW

S-SET

S-GET

R-SET

R-GET R-Mixed

1.6

1.4

1.2

1.0

1 0.8

0.6

0.4

0.2

0.0

S-SET: Sequential Set
S-GET: Sequential Get
R-SET: Random Set
R-GET: Random Get
R-Mixed: Random Mixed

GB/s

= Except for write workloads, LightStore fully saturates Net bandwidth

)

DATA-INTENSIVE

COMPUTING SYSTEMS LAB

DGIST

Ura=sns=liss
Technology

yyyyyyyyyyyy

31

Comparison with x386
B B Da—.—,— s

* x86-RocksDB performs better thanks to high speed of Samsung 960PRO
* LightStore outperforms x86 under random writes (e.g., R-SET and R-Mixed)
* x86-ARDB suffers from non-trivial software stack overheads

200 | LightStore-Local = x86-RocksDB =1 | 1-6
LightStore-Net mm x86-ARDB = 4
E 150 - 1 ----- Net Bottleneck | T ------------------------------------ T 12
8 Flash Botrleneck | /\i LightStore X86-ARDB |
@] _
_K/ /\i Read BW Net Bottleneck Etheret BW - ®
5 ' LightStore)
2 100 > Ethernet BW | -8 ©
(@]
3 [T b ke N l— 0.6
=
50F e | OB | T T o404
LightStore
Write BW 4 0.2
0 \ N L 0.0
S-SET S-GET R-SET R-GET R-Mixed
dh

A

| E—
—
| —
—
(===

A

6

| —
| —

N

l k'/‘

Throughput (MB/s)

An x86 with 2 NICs
(Network limit = 20Gb/s)

LightStore-Net x86-ARDB1

i 2 3 4
x86-ARDB2

Number of SSDs / LightStore nodes

DATA-INTENSIVE
COMPUTING SYSTEMS LAB

&
j’ ‘,‘5‘ T Ura=sns=liss
L Daegu Gyeangbuk
Institute of Science &Technology

= LightStore scales linearly according to the number of SSDs added to a cluster

KVS IOPS-per-Watt

= Assume that x86-ARDB scales with up to 4 SSDs
= 4 times the performance seen previously

* Peak power
= x86-ARDB — 400WV, LightStore-Prototype — 25W

IOPS/W S-SET S-GET R-SET R-GET

LightStore 1.8
Gain

N

DATA-INTENSIVE

]
— =s|as
DG ST rzmames 34

Latency Comparison
B B ., s

I NAND Device
x86-ARDB
S.GET B L ocal KV Store
LightStore-Net [KV Server
[Network
x86-ARDB
R-GET
LightStore-Net
| |
0 100 200 300

Latency (us)

4 DATA-INTENSIVE

@
~— =E|ae
/N COMPUTING SYSTEMS LAB Ln-’ ,‘.s‘ g;i:‘gimi:fﬁ 35

Impact of HW FTL on Performance

100
HW FTL (HWFTL) m—
Lightwe:ght SW FTL (SWFTL) =3
80 ull SW FTL (SWFTL) msmm |
; .
Q
(®]
X
— m
= 3]
g ©
(=]
3
(@)
S
|_

S-SET S-GET R-SET R-GET

= HW FTL > Lightweight SW FTL > Full SW FTL

= Full SW: page mapping; garbage collection copying overhead
= Read: 7-10% degradation
" Write: 28-50% degradation

= Compaction thread very active; More SW FTL tasks

=>» Without FPGA (or HW FTL), we would need an extra set of cores
(Trade-off between Cost and Design Efforts)

i N ‘DATA—INTENSIVE — s e
COMPUTING SYSTEMS LAB DJ f S‘ T D”*??ﬁf'{"i!*f 36

Institute of Science &

Adapter Pe

rformance

* Network-attached Single Node Performance
<YCSB performance>

Throughput (Kops/s)

120

100

80

60

40

20

x86-ARDB =

LightStore-Net mm

G, %

Q., 0., 0. 0. 0
Yo O, % %, s %,

Qs
‘7«7@00

4

(e}

B R

%,
O

1
1

w1

Throughput (MB

= Scalability w/ Multiple Nodes

4

/N

DATA-INTENSIVE
COMPUTING SYSTEMS LAB

Throughput (MB/s)

2500

2000

1500

1000

500

<Block I/O performance>

400

. Ceph-BS ===
200 | LightStore-BS
000 - LightStore

rite BW

800 |-
600 B4t Max. Network
400 F T B 1 Max. NAND
200

v
=

Throughput (MB

<File I/O performance>

1400

1200

1000

800

600

400

200

0

Ceph-FS ==

| LightStore-FS

T

LightStore
Ethernet BW

Ceph is inefficient for handling small data

1234 1234 1234 1234
LightStore-FS Ceph-FS LightStore-FS Ceph-FS
(SR) (SR) (RR) (RR)

Number of SSDs / LightStore nodes

Max. Network

1 Max. NAND

37

Conclusion
B B B D S

* This work was motivated by two observations in distributed storage
|. The existing storage architecture did not scale well
2. Applications failed to exploit full performance of SSDs over the network

" LightStore is a lean drive-sized high-speed KV node which plugs

directly into a network port
|. Lightweight KV storage engine = Deliver full NAND speed to network ports
2. Hardware FTL = Minimize resource requirements
3. XX-to-KV adapters = Support various applications w/ no modification

= A four-node cluster showed a comparable throughput to the AFA with
four SSDs and achieved up to 7.4x better ops/}

4 DATA-INTENSIVE

4
~ =sh|ae
COMPUTING SYSTEMS LAB LG f 5‘ T 9???]t&j:§J 38

/N

be’rformance

dataséts " VA T (VAN 29 T A=
Y augmem

in-store S
without = \i ca\;\oﬂ

'\3 By
e solutlon Chy
|ran: im tﬂatiéénters

>
Selvers g

architectu rer g
Stores. cores datacenter o

|mplemente

ﬂ‘“h basperﬂposed key -value |
“interface e\(en

Pt
virtue Wbased
'H‘O t:compnsedpower

Manney cluster
controller

ore

Thank you!

https://datalab.dqgist.ac.kr

4

DATA-INTENSIVE

) st
COMPUTING SYSTEMS LAB DJ f S‘ T ‘m??;?m mjls:j

/N

https://datalab.dgist.ac.kr/

