MV-RLU : Scaling Read-Log-
Update with Multi-Versioning

Jaeho Kim, Ajit Mathew, Sanidhya Kashyap, Madhav K. Ramanathan, Changwoo Min
Published in ACM ASPLOS 2019

\V/7ak Georgia |
VIRGINIA TECH Tech||
Jaeho Kim

Gyeongsang National University (GNU)
jaeho.kim@gnu.ac.kr

mailto:Jaeho.kim@gnu.ac.kr

Contents

* Motivation

* What is RCU
 What is RLU

* Design of MV-RLU
* Evaluation

e After MV-RLU

e Conclusion

CPU-core Count Continues to Rise..
- Many-core Era

The Intel Second Generation Xeon Scalable: /LY AMD Second Gen EPYC Beastly Server CPUs Could Rock 64 Marvell Announces ThunderX3: 96 Cores & 384 S
Cascade Lake, Now with Up To 56-Cores and camms Cores. 128 Threads And 256MB Cache Thread 3rd Gen Arm Server Processor Conmerts

Opt&nG' +Add A by Andrei Frumusanu on March 16, 2020 8:30 AM EST +Add A

Comment Comment
by lan Cutress on April 2, 2019 1:02 PM EST u a a m B ﬂ Posted in Servers CPUs Marvell Arm Enterprise Enterprise CPUs Cavium ThunderX3
o) s .
* J

Postt CPUs Intel Xeon Enterprise CPUs XeonScalable CascadeLake Cascade-AP

Concurrency algorithms are essential building block

e Data structures are essential for the most applications
e Synchronization mechanisms are essential building block of today’s

application
. Hash table
‘ Lists .
mongo - —
LlIlllX Trees
/N
/ 4\

redls MEMCACHED

Concurrency algorithms are essential building block

» Data structures are essential for the most applications
e Synchronization machanis nhbuildino block of today’s

Making scalable
is key for improving system performance

redls TSR

Synchronization Approaches

* Spinlock * Lock-free
* Ticket lock * Software Transactional
° Mutex Memory (STM)

* Read-write lock RCU, RLU, and MV-RLU
e Etc. * Etc.

Can synchronization mechanisms scale at high
core count?

Concurrent Hash table (10% Update)
@ —Lock Free =-RCU —+RLU

1400
1200
1000

Million Operations/s

Performance Collapse Threads

Read Copy Update (RCU)

Widely used in Linux kernel

* Readers never block

Multi-pointer update is difficult 2

* Programming with RCU is not easy

 Difficult to apply RCU to complex data structures

* Good performance only for read-intensive workloads ()

Basic Operations of RCU

1) Copy and Update node B
2) During the update, another thread can still read the old node B

3) Previous node points the new node by updating a single pointer
* Make B’ reachable and B unreachable

4) Node B will be freed when there are no threads to read

/@ : Write thread \

e : Read thread

3 : Thread execution

- J

Read-Log-Update (RLU) [SOSP’15]

* An extension to RCU
* Readers never block
e Support multi-pointer atomic updates
* Provide better programmability with DB transaction-like APIs

* Key idea: Use global clock and per-thread log to make multiple
updates atomically visible

Why does not RLU scale?

ﬁA thread modify node B \

- Create a new version of B in per-thread log But it is not allowed to proceed because
RLU allows only two versions of object

2. The thread commit the modifies
- Update the write clock
- Mean that updates are atomically visible

3. Second thread tries to modify node B again

KWait for reclamation of node B’ /

Per-thread log |

(Write clock)

due to restriction on number of versions

per object is in RLU design

11

How to scale RLU?

Problem:
7o Restriction in number of versions
- causes synchronous waiting

~
S0

/

\\ P Solution:
Remove restriction on number
of version == Multi-Versioning

12

Contributions of this study

* Multi-Version Read-Log-Update (MV-RLU)
— Allow multiple versions to exists at same time
— Removes synchronous waiting from critical path

e Scaling Multi-Versioning
— Concurrent and autonomous garbage collector

13

Design: Overview

* Master object

* Have zero or more copy objects Master Object
* Copy object . VR —
* Timestamp (clock) when committed { Per thread ; g
. . i ' C Object |
* Pointer of next older version ; version log Py TbJeCt |
» Storedin per-threadlog S __ Version
Chain

Per thread _
version log Copy Object

Commit clock

14

Updates in MV-RLU

G a

. A thread updates node B
- Creates a new copy of B with commit clock 25

2. Second thread updates B again
- Create a new copy of object B with commit

\clock 55 /

Per thread
version log

Per thread
i version log

A thread does not need to synchronize with other

read/write threads in critical section

15

Reads in MV-RLU

ﬁ Reader note the global clock at start of critical\
section

2. Reader traverses the version chain
- First node which satisfies the criteria
- Reader clock > commit clock

T '! .
i' B m%r thread

Q B’ with commit clock 25 is the right object /
| version log

(35 > 25)

. Per thread
i version log

All read threads can read a proper version of object

concurrently (Reader never blocks)

Memory is limited!
- Garbage Collection (GC) is Required

Thread 1 * Garbage collection
@ * Obsolete version should be properly reclaimed
é ﬂ * GC should be scalable

Brief procedure of GC

Master Object Master Object

Per Thread Log
Used GG

Write back a copy to
master object

(1) (2)

Tail —

Head Copy Object
ead —>

Challenges to Garbage Collection

* How to detect obsolete version in a scalable manner?
» Reference counting and hazard pointer do not scale well

* How to reclaim obsolete versions?
* Single thread is insufficient

* When to trigger garbage collection?
* Eager: Triggering too often wastes CPU cycles
* Lazy: Increases version chain traversal cost

18

Solutions for Challenges

* Detecting obsolete version

» Use grace period detection technique like RCU to find safely reclaimable
versions

* Grace Period (GP): Time interval in which every thread has been the outside
critical section

* Scalable garbage collector
* Every thread reclaim their own log
* Cache friendly

e Autonomous garbage collector
* Detect reader’s version traverse pattern
* Trigger GC dynamically according to the reader’s pattern

19

GC Example

Okay! Here is
he | P
| need GC the last G

Grace period (GP)
detector thread

Y,

Thread 2

Thread 1

________ y--oooo--- Qoo Capacity Watermark
Per Thread Log:

Used I

20

Capacity Watermark is not sufficient

e Capacity watermark will not be triggered in read mostly workload

Master Object

Copy Object

Read mostly workload: one copy object

21

Worst Case of Version Traversal

* In worst case, every object read will require access to version chain
* To alleviate the cost, garbage collector should be clever

Master Object

GC

Copy Object

Pointer chasing slow down read performance due to

22

Reduced Version Traversal Cost

» After the GC, readers can traverse only master objects

Master Object

Copy Object

23

Dereference Watermark

to reduce version traversal

* To reduce pointer chasing, we employ dereference watermark
* Readers check if they are accessing version chain too often
* If yes, trigger GC for the write-back

Combination of and

makes GC trigger workload agnostic

24

More detail

Scalable timestamp allocation

Version management
Proof of correctness
Implementation details

Session: Synchronization

ASPLOS"19, April 13-17, 2019, Providence, RI, USA

MV-RLU: Scaling Read-Log-Update with
Multi-Versioning

Jaeho Kim* Ajit Mathew* Sanidhya Kashyap’ Madhava Krishnan Ramanathan Changwoo Min

Virginia Tech ' Georgia Institute of Technology

Abstract

This paper presents multi-version read-log-update (MV-RLU),
an extension of the read-log-update (RLU) synchronization
mechanism. While RLU has many merits including an in-
tuitive progr ing model and llent performance for
read-mostly workloads, we observed that the performance
of RLU significantly drops in workloads with more write op-
erations. The core problem is that RLU manages only two
versions. To overcome such limitation, we extend RLU to sup-
port multi-versioning and propose new techniques to make
multi-versioning efficient. At the core of MV-RLU design is
concurrent garbage collection, which prevents
reclaiming invisible versions being a bottleneck, and reduces
the version traversal overhead—the main overhead of multi-
version design. We extensively evaluate MV-RLU with the
state-of-the-art sy izati hanisms, including RCU,
RLU, software transactional memory (STM), and lock-free
approaches, on concurrent data structures and real-world
applications (database concurrency control and in-memory
key-value store). Our evaluation shows that MV-RLU signif-
icantly outperforms other techniques for a wide range of
workloads with varying contention levels and data-set size.

CCS Concepts + Computing methodologies Concur-
rent aloorithms.

and Changwoo Min. 2019. MV-RLU: Scaling Read-Log-Update with Multi-
Versioning. In 2019 Architectural Support for Programming Languages and
Operating Systems (ASPLOS °19), April 13-17, 2019, Providence, RI, USA. ACM,
NY, NY. 14 pages. DOL https://doi.org/10.1145/3207858.3304040

1 Introduction

Synchronization mechanisms are an essential building block
for designing any concurrent applications. Applications such
as operating sy [4, 7-9), storage systems [37], network
stacks [24, 53], and database systems [59], rely heavily on
synchronizati hani as they are integral to the
performance of these applications. However, designing ap-
plications using synchronization mechanisms (refer Table 1)
is challenging; for instance, a single scalability bottleneck
can result in a performance collapse with increasing core
count (7, 24, 48, 53, 59). Moreover, scaling them is becoming
even more difficult because of two reasons: 1) The increase
in unprecedented levels of hardware parallelism by virtue
of recent advances of manycore processors. For instance,
a recently released AMD (57, 58], ARM [22, 63], and Xeon
servers [11] can be equipped with up to at most 1,000 hard-
ware threads." 2) With such many cores, a small, yet critical
serial section can easily become a scalability bottleneck as
per the reasoning of Amdahl’s Law.

.~ e

ana P .

Please refer to the paper for details

25

Evaluation Question

* Does MV-RLU scale?
* What is the impact of our proposed approaches?
* What is its impact on real-world workloads?

Evaluation Setup

* Evaluation Platform

» Supermicro server: 448-core on 8 sockets (with hyperthreading)
* Intel Xeon Platinum 8180
* DRAM size: 337 GB

e OS:Linux4.17.3

 Workloads
* Microbenchmark:

* random access on linked-lists, hash tables, and binary trees
* Kyoto Cabinet benchmark: key-value database workload

27

Microbenchmark Result

@

1400

MILLION OPERATIONS/S

1200
1000

800
600
400
200

CONCURRENT HASH TABLE (10% UPDATE) 150x speedup

over RLU
~LockFree —=-RCU —RLU CCMV-RLU

1 4

8

14 28 56 84 112 140 168 196 224 280 336 392 448

THREADS

28

Factor Analysis

2% Update

@

Million Operations Per Second

20% Update

80% Update

GCis
bottleneck

29

Key Value Benchmark

KyotoCabinet: Update(2%)

—RLU —--Vanilla 8x speedup

over RLU

@

Million Operations/s

2 4 8 12 16 20 24 32 40 48 56 64 128 192 224 280 336

=

Threads

30

After MV-RLU

: P
P

Q

Can we leverage MV-RLU for
persistent memory?

31

Durable Transactional Memory (DTM)

 DTMs are software framework supporting ACID properties
 DTMs make persistent memory (PM) programming easier
* Relieves the burden on PM application developers

* Existing DTMs have serious problems
* Existing DTMs: PMDK, DUDETM[ASPLOS17], Romulus[SPAA18]

* Poor Scalability
* High Write Amplification (up to 6x)

32

Our proposed DTM

* A scalable and high performance DTM leveraging MV-RLU

. Our Solution: TimeStone
 published in ACM ASPLOS20

Session 4B: Speculation and consistency — Brain teasers.

ASPLOS’20, March 16-20, 2020, Lausanne, Switzerland

Durable Transactional Memory Can Scale with
TIMESTONE

R. Madhava Krishnan Jaeho Kim! Ajit Mathew Xinwei Fu Anthony Demeri Changwoo Min

Sudarsun Kannan*

Virginia Tech Huawei Dresden Research Center *Rutgers University

Abstract

ACM Reference Format:
R Madhava Krishnan, Jacho Kim, Ajit Mathew, Xinwei Fu, Anthony Demeri,

Non-volatile main memory (NVMM) ies promise
byte addressability and near-DRAM access that allows de-
velopers to build persistent applications with common load
and store instructions. However, it is difficult to realize these
promises because NVMM software should also provide crash
consistency while providing high performance, and scalabil-
ity. Durable transactional memory (DTM) systems address
these challenges. However, none of them scale beyond 16
cores. The poor scalability either stems from the underlying
STM layer or from employing limited write parallelism (sin-
gle writer or dual version). In addition, other fundamental
issues with guaranteeing crash consistency are high write
amplification and memory footprint in existing approaches.

To address these challenges, we propose TIMESTONE: a
highly scalable DTM system with low wri ification and

Ch Mi K 020, Durabl ional Memory
Can Scale with Timestone. In 2020 Proceedings of the Twenty-Fifth International
Conf Support f ing Languages and
Operating Systems (ASPLOS '20), March 16-20, 2020, Lausanne, Switzerland
ACM, NY, NY. 14 pages. DOI: https://doi.org/10.1145/3373376.3378483

1 Introduction

New emerging non-volatile main memory (NVMM) tech-
nologies, such as Intel Optane [2, 63], provide persistence
along with traditional main memory characteristics [84, 94],
such as byte-addressability and low access latency. In addi-
tion, the NVMM offers data durability and larger in-memory
capacity at a signi lower $/GB compared to traditional
DRAMs [14, 59, 75, 82, 92]. Although NVMMs incur higher

‘minimal memory footprint, TIMESTONE uses a novel multi-
layered hybrid logging technique, called TOC logging, to
guarantee crash consistency. Also, TIMESTONE further relies
on Multi-Version Concurrency Control (MVCC) mechanism
to achieve high scalability and to support different isolation
levels on the same data set. Our evaluation of TIMESTONE

*Jaeho Kim had contributed to this work while he was at Virginia Tech.

d latency to DRAMs [17, 42,
54], they enable software to have a larger capacity and almost
attain free durability of data.

While NVMM technology is promising, it poses system
developers with several new challenges such as guarantee-

ing crash consistency with a

crash consis-
ns in the crit-
order proces-
consequence,
ng the many-

Ume an onerous

ility is an in-
evitable design principle when designing NVMM software
as NVMMs are expected soon to be a part of data center
servers [8]. For example, the first public Cloud

Permission to make digital or hard copies of all or part of this work for
personal
‘made or distributed for profit or commercial advantage and that copies bear

service of DCPMM used by SAP HANA, an in-memory data-
base system, which requires manycore parallelism [8]. So
a competent NVMM librarv should provide better verfor-

33

Conclusion

 MV-RLU: Scaling RLU through Multi-Versioning

* Multi-Versioning removes synchronous waiting

* Concurrent and autonomous garbage collection

 MV-RLU shows unparalleled performance for a variety of benchmark

https://github.com/cosmoss-vt/mv-rlu

Thank youl!

34

