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CPU-core Count Continues to Rise.. 
à Many-core Era
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Concurrency algorithms are essential building block
• Data structures are essential for the most applications
• Synchronization mechanisms are essential building block of today’s 

application
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Concurrency algorithms are essential building block
• Data structures are essential for the most applications
• Synchronization mechanisms are essential building block of today’s 

application
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Hash table
Making scalable concurrent data structures

is key for improving system performance



Synchronization Approaches

• Blocking
• Spinlock
• Ticket lock
• Mutex
• Read-write lock
• Etc.
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• Non-blocking
• Lock-free
• Software Transactional 

Memory (STM)
• RCU, RLU, and MV-RLU
• Etc.



Can synchronization mechanisms scale at high 
core count?
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Read Copy Update (RCU)
• Widely used in Linux kernel
• Readers never block
• Multi-pointer update is difficult
• Programming with RCU is not easy
• Difficult to apply RCU to complex data structures

• Good performance only for read-intensive workloads
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1) Copy and Update node B
2) During the update, another thread can still read the old node B
3) Previous node points the new node by updating a single pointer

• Make B’ reachable and B unreachable

4) Node B will be freed when there are no threads to read
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: Thread execution

: Write thread

: Read thread



Read-Log-Update (RLU) [SOSP’15]

• RCU + STM (Software Transactional Memory)

• An extension to RCU
• Readers never block
• Support multi-pointer atomic updates
• Provide better programmability with DB transaction-like APIs

• Key idea: Use global clock and per-thread log to make multiple 
updates atomically visible
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Why does not RLU scale?

A B C D

B’

Reclaim!

Synchronous waiting due to restriction on number of versions 
per object is bottleneck in RLU design
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But it is not allowed to proceed because 
RLU allows only two versions of object

W1W2

Per-thread log

Write clock
(∞)

Write clock
(10)

Waiting
1.  A thread modify node B

- Create a new version of B in per-thread log

2.  The thread commit the modifies
- Update the write clock  
- Mean that updates are atomically visible

3.  Second thread tries to modify node B again
- Wait for reclamation of node B’



How to scale RLU?
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Problem:
Restriction in number of versions 

causes synchronous waiting

Solution:
Remove restriction on number 
of version == Multi-Versioning



Contributions of this study

• Multi-Version Read-Log-Update (MV-RLU)
– Allow multiple versions to exists at same time
– Removes synchronous waiting from critical path

• Scaling Multi-Versioning
– Concurrent and autonomous garbage collector
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Design: Overview

A

A’’
(55)

A’
(25)

Master Object

Copy Object

Copy Object

Per thread 
version log

Per thread 
version log

Version 
Chain
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Commit clock

• Master object
• Have zero or more copy objects

• Copy object
• Timestamp (clock) when committed
• Pointer of next older version
• Stored in per-thread log



Updates in MV-RLU

A B C D

B’’
(55)

Per thread 
version log

B’
(25)

Per thread 
version log

A thread does not need to synchronize with other 
read/write threads in critical section
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W1W2

1. A thread updates node B
- Creates a new copy of B with commit clock 25

2.   Second thread updates B again
- Create a new copy of object B with commit 

clock 55   

1. A thread updates node B
- Creates a new copy of B with commit clock 25

2.   Second thread updates B again
- Create a new copy of object B with commit 

clock 55   

1. A thread updates node B
- Creates a new copy of B with commit clock 25

2.   Second thread updates B again
- Create a new copy of object B with commit 

clock 55



Reads in MV-RLU

A B C D

B’’
(55)

Per thread 
version log

B’
(25)

Per thread 
version log
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(35 > 55)
False

(35 > 25)
True

R

Read clock: 
35

All read threads can read a proper version of object 
concurrently (Reader never blocks)

1. Reader note the global clock at start of critical 
section

2.   Reader traverses the version chain
- First node which satisfies the criteria
- Reader clock > commit clock

3.  B’ with commit clock 25 is the right object

1. Reader note the global clock at start of critical 
section

2.   Reader traverses the version chain
- First node which satisfies the criteria
- Reader clock > commit clock

3.  B’ with commit clock 25 is the right object

1. Reader note the global clock at start of critical 
section

2.   Reader traverses the version chain
- First node which satisfies the criteria
- Reader clock > commit clock

3.  B’ with commit clock 25 is the right object



Memory is limited!
à Garbage Collection (GC) is Required

• Garbage collection
• Obsolete version should be properly reclaimed 
• GC should be scalable
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Log Full!

Per Thread Log
Used

Thread 1

W1

Head

Tail

A

A’

Master Object

Copy Object

A

GG

Master Object

A’

Write back a copy to 
master object

Brief procedure of GC

(1) (2)



Challenges to Garbage Collection
• How to detect obsolete version in a scalable manner?

• Reference counting and hazard pointer do not scale well

• How to reclaim obsolete versions?
• Single thread is insufficient

• When to trigger garbage collection?
• Eager: Triggering too often wastes CPU cycles
• Lazy: Increases version chain traversal cost
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Solutions for Challenges
• Detecting obsolete version

• Use grace period detection technique like RCU to find safely reclaimable 
versions

• Grace Period (GP): Time interval in which every thread has been the outside 
critical section 

• Scalable garbage collector
• Every thread reclaim their own log
• Cache friendly

• Autonomous garbage collector
• Detect reader’s version traverse pattern
• Trigger GC dynamically according to the reader’s pattern

19



GC Example

Per Thread Log:
Used

Grace period (GP) 
detector thread

I need GC

Okay! Here is 
the last GP

Capacity Watermark

Done Done zzz…
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Thread 1 Thread 2 Thread 3



A’

Capacity Watermark is not sufficient
• Capacity watermark will not be triggered in read mostly workload
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A B C D

Master Object

Read mostly workload: one copy object

Copy Object



Worst Case of Version Traversal
• In worst case, every object read will require access to version chain
• To alleviate the cost, garbage collector should be clever
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A B C D

A’ B’ C’ D’

GC

Master Object

Copy Object

Pointer chasing slow down read performance due to cache pollution



Reduced Version Traversal Cost
• After the GC, readers can traverse only master objects
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Master Object
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Dereference Watermark
to reduce version traversal 
• To reduce pointer chasing, we employ dereference watermark
• Readers check if they are accessing version chain too often
• If yes, trigger GC for the write-back

24

Combination of capacity watermark and dereference watermark
makes GC trigger workload agnostic



More detail
• Scalable timestamp allocation
• Version management
• Proof of correctness
• Implementation details
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Please refer to the paper for details



Evaluation Question

• Does MV-RLU scale?
• What is the impact of our proposed approaches?
• What is its impact on real-world workloads?
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Evaluation Setup

• Evaluation Platform 
• Supermicro server: 448-core on 8 sockets (with hyperthreading)

• Intel Xeon Platinum 8180

• DRAM size: 337 GB

• OS: Linux 4.17.3

• Workloads
• Microbenchmark: 

• random access on linked-lists, hash tables, and binary trees

• Kyoto Cabinet benchmark: key-value database workload
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After MV-RLU
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Can we leverage MV-RLU for 
persistent memory?



Durable Transactional Memory (DTM)

• DTMs are software framework supporting ACID properties
• DTMs make persistent memory (PM) programming easier
• Relieves the burden on PM application developers

• Existing DTMs have serious problems
• Existing DTMs: PMDK, DUDETM[ASPLOS17], Romulus[SPAA18]
• Poor Scalability
• High Write Amplification (up to 6x)
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Our proposed DTM

• A scalable and high performance DTM leveraging MV-RLU

• Our Solution: TimeStone
• published in ACM ASPLOS20
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Please refer to the paper for details



Conclusion
• MV-RLU: Scaling RLU through Multi-Versioning
• Multi-Versioning removes synchronous waiting
• Concurrent and autonomous garbage collection
• MV-RLU shows unparalleled performance for a variety of benchmark
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https://github.com/cosmoss-vt/mv-rlu

Thank you!


