NVRAMOS 2023

Workshop on Operating System Support for

A N /,\
VLDB2023 WSQ | tioctconarton Large Sl i

vancouver

FlashAlloc: Dedicating Flash Blocks By Objects

Jonghyeok Park”, Soyee Choi**, Gihwan Oh*, Soojun Im™,
Moon-Wook Oh™", Sang-Won Lee*

Hankuk University of Foreign Studies”, Samsung Electronics™
Sungkyunkwan University*

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

Background

*,.dblwr *,sst

 Most data stores manages data by logical objects @ %
— SSTable in RocksDB
— Double write buffer (DWB) in MySQL

— Segment in F2FS \ fallocate

File system

-’ 7 |

.f/::~ i

2 s
Multiplexed

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

Background

*,.dblwr *,sst

 Most data stores manages data by logical objects @ [_:‘

— SSTable in RocksDB
— Double write buffer (DWB) in MySQL
— Segment in F2FS

\ fallocate

File system

* Each objects is the unit of logical space allocation
— Host: fallocate()
— Flash Device: stream-write-by-time

:’ 2 |
o v O i
2 s
Multiplexed

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

Background

*,.dblwr *,sst

 Most data stores manages data by logical objects @ [_:‘

— SSTable in RocksDB
— Double write buffer (DWB) in MySQL
— Segment in F2FS

\ fallocate

File system

* Each objects is the unit of logical space allocation
— Host: fallocate()
— Flash Device: stream-write-by-time

* Page deathtime .’ =
|
— Host: TRIM command b ,y o, i i
|
— Flash Device: multiplexed with different deathtimes) :
\ _________________ |
Multiplexed

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
Multiplexing

* Flash blocks are multiplexed with pages with different deathtimes
— Stream-write-by-time policy
— Copyback overhead in GC = write amplification T

m W/// M m '-°8ic?(|a 3b1:|clg

deleted fallocate Logical Space Allocation File System
Q- = .
(Logical Address)

N7 4% %%
N\W7 7
Flash Storage
Block-Interface SSD FlashAlloc-ed SSD (Physical Address)

Scattering over different Physical block(s)|| Per-object Physical block(s) dedication

Nz | NzIle
2l N Z, N\ Zlll 7=
W 2 2 — Nl 7=
DN E 7) NZ %

Multiplexed Clustered by Objects

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

N
Multiplexing

* Flash blocks are multiplexed with pages with different deathtimes
— Stream-write-by-time policy
— Copyback overhead in GC = write amplification T

Flash devices are object-oblivious:

Host semantic about the object’s logical address range
CAN NOT cross the storage Interface WALL

N7z % | Nzll7Z =
2l N\ Z, N7 =
W% 7 =l | N7 =
BN E 7 J N2 22

Multiplexed Clustered by Objects

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
The Myth of Flash-Friendly Writes

* Flash-friendly sequential writes are no less harmful than random writes
in terms of write amplification

— Split into smaller write requests due to file system fragmentation and kernel 10 scheduling

— Pages from multiple SSTables with distinct deathtime tend to be stored together in the same
flash blocks.

* Object-oblivious and stream-writes-by-time policy

—— WAF —=— OPS —&— TPS

S 4

6 25 8 5 5 s 9 80 ~

5 2 v - A 4 L =
L 4 15 < w L3 w ! 3
< 20 < 3¢ 5 X <5 1 40 8
=3 1 a = 4 2 7 = —
2 0.5 O 2 118 3 20 x

1 0o 9 1 0" 1 0o g
Write Sequence < Write Sequence Write Sequence O

(a) 4 db_bench Tenants (RocksDB) (b) TPC-C (MySQL) (c) Multi-tenants DB (db_bench+TPC-C)

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
How about the Object-aware SSD? — MS-SSD and ZNS

Tenant 1 Tenant N

Stream-id conflicts

Multi-stream SSD

1 3
1 3

Page Page Page
Page Page Page
StreamID=1 StreamID=2 StreamIiD=3 StreamID=4

*GC Block

" —————

 Static binding of limited stream-id
* Stream-id conflicts in multi-tenant
* No stream-aware GC

 Suffer from write amplification

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

Farewell, Multi-Stream SSD

linux-block.vger.kernel.org archive mirror
search help / color / mirror / Atom feed

From: Christoph Hellwig <hch@lst.de>

To: axboel@kernel.dk

Cc: sagi@grimberg.me, kbusch@kernel.org, song@kernel.org,
linux-block@vger.kernel.org, linux-raid@vger.kernel.orgqg,
linux-nvme@lists.infradead.org, linux-fsdevel@vger.kernel.org

Subject: [PATCH 1/2] nvme: remove support or stream based temperature hint

Date: Fri, 4 Mar 2022 18:55:55 +0100 [thread overview]

Message-ID: <20220304175556.407719-1-hch@lst.de> (raw)

This support was added for RocksDB, but RocksDB ended up not using it.

At the same time drives on the open marked (vs those build for OEMs

for non-Linux support) that actually support streams are extremly
Don't bloat the nvme driver for itJ

https://lore.kernel.org/linux-block/20220304175556.407719-1-hch@Ist.de/

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
How about the Object-aware SSD? — MS-SSD and ZNS

Host

App 1 App 2 App 3

Tenant 1 Tenant N

Zone Translation Layer (e.g., XZTL, ZenFS)

Stream-id conflicts _ Sequential writes only
Multi-stream SSD Zoned Namespace (ZNS) SSD

Internal Data Placement by Zone
1 3
1 3

Page Page Page
Page Page Page
StreamID=1 StreamID=2 StreamIiD=3 StreamID=4

*GC Block

" —————

 Static binding of limited stream-id e Strict write-ordering rule

* Stream-id conflicts in multi-tenant * Non-transparent write streaming
* No stream-aware GC * Yet-more expensive tax for log-
 Suffer from write amplification structured writes

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
FlashAlloc

Enlighten flash device to stream writes by objects

— Offload the host semantic about object’s LBA ranges to the storage

— De-multiplex concurrent writes from multiple objects with distinct deathtimes
into per-object dedicated blocks

Clusters data from the same object into same flash blocks

— Logically fragmented — Physically de-fragmented into same flash block

* Enables per-object fine-grained write streaming

* Minimal changes on applications and FTL
— No need for additional translation layer or mapping information in host-side

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
FlashAlloc: Interface © @

* Logical objects with distinct * Small and random overwrites
deathtime * Tiny object

* Sequentially append and * Append-only writes of
cyclically reused unknown size

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
FlashAlloc: Interface © @

* Logical objects with distinct * Small and random overwrites
deathtime * Tiny object

* Sequentially append and * Append-only writes of
cyclically reused unknown size

Applications \EEEBTE"EB‘; k‘S‘EE% DWb @ . A

"‘“““‘l

fallocate

File Systems [EXT4 NN 7 NN] [FZFS

Hankuk University of Foreign Studies | Jonghyeok Park

FlashAlloc: Deallocating Flash Blocks By Objects

NI
FlashAlloc: Interface © @

* Logical objects with distinct * Small and random overwrites ‘
deathtime * Tiny object
* Sequentially append and * Append-only writes of
cyclically reused unknown size
. g — .. n
Applications %SSTable ‘5951‘529& DWE 0 A
fallocate
File Systems [EXT4 NN 771NN] [F2FS II]
FlashAlloc (LBA4,LBA,)
Flash Storage Host Interface
FTL e) L2P Mapping Table
LPN PPN

Hankuk University of Foreign Studies | Jonghyeok Park

FlashAlloc: Deallocating Flash Blocks By Objects

NI
FlashAlloc: Interface © @

* Logical objects with distinct * Small and random overwrites ‘
deathtime * Tiny object
* Sequentially append and * Append-only writes of
cyclically reused unknown size
Applications %SSTable D RocksDB§ DWDB (@ . A
fallocate
File Systems [EXT4 NN 7 NN] [F2FS]]
FlashAlloc (LBA4,LBA,)

Flash Storage Host Interface

4 N\ H
FTL FlashAlloc Instances 1A LB I 1Ll
Instance 1 Instance N LPN PPN
- LBArange {LBA{,LBA,,} |. | —LBArange
- Block Groups {B;, By} ~ Block Groups {B), B4}
— Next_write_ptr — Next_write_ptr
. J

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
FlashAlloc: Interface © @

* Logical objects with distinct * Small and random overwrites ‘
deathtime * Tiny object
* Sequentially append and * Append-only writes of
cyclically reused unknown size
Applications %SSTable D RocksDB§ DWDB (@ . A
fallocate
File Systems [EXT4 NN 7 NN] [F2FS]]
FlashAlloc (LBA4,LBA,)

Flash Storage Host Interface

4 N\ H
FTL FlashAlloc Instances 1A LB I 1Ll
Instance 1 Instance N LPN PPN
- LBArange {LBA{,LBA,,} |. | —LBArange
- Block Groups {B;, By} ~ Block Groups {B), B4}
— Next_write_ptr — Next_write_ptr
. J

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
FlashAlloc: Core operations

Flash Storage

Host Interface Read (LBAy,) Discard (LBA,) Write (LBA,,)
FIiL FlashAlloc Instances) L2P Mapping Table
Instance 1 Instance N

- LBArange {LBA4,LBA,,} |. | —LBArange :g‘b P;

- Block Groups {B;, By} ~ Block Groups {Bp, B4} P

- Next_write_ptr - Next_write_ptr P

K
_ J

Nand Flash

\ PO AN
! : o
Memory | : ﬁ\\\\ E
: EANNE |
E . E : | M
! FlashAlloc-ed Blocks 3 By) Normal Blocks

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
FlashAlloc: Core operations

Flash Storage

Host Interface Read (LBAy,) Discard (LBA,) Write (LBA,,)
FIiL FlashAlloc Instances) L2P Mapping Table
Instance 1 Instance N

- LBArange {LBA4,LBA,,} |. | —LBArange :g‘b P;

- Block Groups {B;, By} ~ Block Groups {Bp, B4} P

- Next_write_ptr - Next_write_ptr P

K
_ J

Nand Flash

\ PO AN
! : o
Memory | : ® E
TRIM i ANNE
E . E : | M
! FlashAlloc-ed Blocks 3 By) Normal Blocks

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

FlashAlloc: Garbage Collection

e Pages from normal blocks are not mixed with those from FA blocks

* GC-by-Block-types
— New FlashAlloc-ed block must be secured to total-clean block (@, @)
— Adaptive space allocation — Depending on victim block type (FA vs. Normal blocks)

GC Zero-copyback

Nand Flash o r)

Memory i i N ////
| ; NN
|
T Merge @ Free block

\ J\)
) 4 Y
FlashAlloc-ed Blocks (FA) Normal Blocks

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
FDP : Flexible Data Placement

e Data placement is a prevalent problem across NAND consumer & industries

— Impact: WAF, TCO, Predictability (latencies), and overall performance

* Several approaches in the past few years account for innovation in this area
— Well explored design space a good understanding of the trade-offs

€ Less Host Intervention More Host Intervention 2>
Block Interface (CNS) Streams / Directives Flexible Data Plac. (FDP) Zoned Namespaces (ZNS) Open-Channel SSDs
Description & Trade-offs Description & Trade-offs Description & Trade-offs Description & Trade-offs Description & Trade-offs
 Traditional block device + Extension to block device with « Extension to block device with * Departs from block device * Full host-based FTL

* Most innovation in-device backwards compatibility backwards compatibility + No backwards compatibility * Most innovation in host

* Mature host software stack * Use of write hints « Capacity-based placement + LBA-based placement with « Drastic changes to Host SW
* WAF ~1: No assurances * DSM deallocation mechanism without seq. write requirement strict seq. write requirement * WAF ~1: Assured

Stat * Minor changes to Host SW » Use of write tags » Explicit host deallocation &

us * WAF ~1: Initialize & trust « DSM deallocation mechanism state machine management Status
. dCorpmonplace for storage Status * Minor changes to Host SW : yvaAjgr f1hanges tg Host SW « Not standardized
« Little industry traction Status Status

* Vendor-driven technology

» Fragmentation across vendors
» Tech validation for +3 years

1970s 2014 4

2022 2018 2015
©2023 Flash Memory Summit. All Rights Reserved ' f 2

NAND Data Placement Landscape, Trade-Offs, and Direction, Javier Gonzalez , FMS 2023

» Customer-driver technology
* Blooming adoption & Eco

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

N
FDP : Flexible Data Placement

* Data placement is a prevalent problem across NAND consumer & industries

— Stream writes by object
- No additional translation layer in host

FlashAlloc

< Less Host Intervention More Host Intervention 2>
Block Interface (CNS) Streams / Directives Flexible Data Plac. (FDP) Zoned Namespaces (ZNS) Open-Channel SSDs
Description & Trade-offs Description & Trade-offs Description & Trade-offs Description & Trade-offs Description & Trade-offs

+ Traditional block device + Extension to block device with « Extension to block device with * Departs from block device * Full host-based FTL

* Most innovation in-device backwards compatibility backwards compatibility * No backwards compatibility * Most innovation in host

* Mature host software stack + Use of write hints + Capacity-based placement + LBA-based placement with « Drastic changes to Host SW
* WAF ~1: No assurances * DSM deallocation mechanism without seq. write requirement strict seq. write requirement * WAF ~1: Assured

Status * Minor changes to Host SW » Use of write tags » Explicit host deallocation &

u * WAF ~1: Initialize & trust « DSM deallocation mechanism state machine management Status
. dCorpmonplace for storage Status * Minor changes to Host SW : cﬂvaAjgr f1hanges tg Host SW « Not standardized
« Little industry traction Status Status

* Vendor-driven technology

* Fragmentation across vendors
» Tech validation for +3 years

1970s 2014 4

2022 2018 2015
©2023 Flash Memory Summit. All Rights Reserved f f 2

NAND Data Placement Landscape, Trade-Offs, and Direction, Javier Gonzalez , FMS 2023

» Customer-driver technology
* Blooming adoption & Eco

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
Experimental Setup

e System Setup
— Intel Core i7-6700 CPU 3.40GHz 8 cores

— 50GB DRAM
— 256GB Samsung 850 Pro SSD

* Cosmos OpenSSD
— Xilinx Zyng-7000 with dual Core ARM Cortex-A9
— 256KB SRAM, 1GB DDR3DRAM
— 16GB MLC Nand flash memory (Over-Provision: 10%)

* Database Setup
— MySQL : 32 threads + TPC-C 80 warehouse (8GB)
— RocksDB : 4 clients, 64MB SSTables + db_bench fillrandom

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
Evaluation #1. Synthetic FIO workloads

* The considerable gain of the FlashAlloc version is direct reflection of
reductions in the garbage collection overhead.

 Under more concurrent write threads, a flash block in the Cosmos
board will be multiplexed by more files with more deviating lifetimes.

- - - = FlashALLOC_WAF VANILLA_WAF
—+&— FlashALLOC_BW —#— VANILLA_BW

4 300 4 300
0 0
3 - Q 3 0
/ 1 2002 200 =
L c LL c
100 2 100 2
1 2 1 2
O O
m m
0 0 0 0
Write Sequence Write Sequence
(a) 8 Threads (b) 32 Threads

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
Evaluation #2. RocksDB (SSTables) & F2FS (Segments)

e De-multiplexing SSTables/Segments into different flash blocks
— Enables RocksDB/F2FS to achieve near ideal WAF (i.e., 1)

* FlashAlloc can be fundamental solution for log-on-log problem

3 80 4 80
S 3.5 - o
2.5 - 60 © -1 60 S
— 3 - v,
L X L -~
<;f 2 740 o <;f 2.5 - -1 40 9 - - - - FlashALLOC_WAF
x2.7 o > L o© FlashALLOC_OPS
1.5 = - 20 - 20 O
| S 15 N / I . 2 —=— FlashALLOC_TPS
1 /_ 0 1 / 0 —— VANILLA WAF
Write Sequence Write Sequence VANILLA_OPS
(@) EXT4 (4 db_bench Tenants) (b) F2FS (4 db_bench Tenants) VANILLA_TPS

Hankuk University of Foreign Studies | Jonghyeok Park

FlashAlloc: Deallocating Flash Blocks By Objects

NI
Evaluation #3. MySQL (DWB) & Multi-tenancy

* Always to beneficial to apply FlashAlloc to appropriate objects and
isolate them to dedicate blocks

— Separating DWB object with cyclic and sequential writes from main databases
(i.e., FA writes 50% and non-FA writes 50% case)

* For multi-tenancy (RocksDB+MySQL), FlashAlloc makes tenants
altruistic to neighbor tenants

3 80 3 80
W
[a
60 60 ~
< 40 & < 40 3 FlashALLOC_WAF
o - - - -
= = = S as -
X FlashALLOC_OPS
20 20 g —=— FlashALLOC_TPS
0 0 — VANILLA_WAF
Write Sequence Write Sequence VANILLA OPS
(c) TPC-C (MySQL) (d) Multi-tenants DB (db_bench+TPC-C) —®— VANILLA_TPS

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
Evaluation #3. MySQL (DWB) & Multi-tenancy

* Always to beneficial to apply FlashAlloc to appropriate objects and
isolate them to dedicate blocks

— Separating DWB object with cyclic and sequential writes from main databases
(i.e., FA writes 50% and non-FA writes 50% case)

* For multi-tenancy (RocksDB+MySQL), FlashAlloc makes tenants
altruistic to neighbor tenants

3 80 3 80
W
[a
60 60 ~
< 40 & < 40 3 FlashALLOC_WAF
o - - - -
= = = S as -
X FlashALLOC_OPS
20 20 g —=— FlashALLOC_TPS
0 0 — VANILLA_WAF
Write Sequence Write Sequence VANILLA OPS
(c) TPC-C (MySQL) (d) Multi-tenants DB (db_bench+TPC-C) —®— VANILLA_TPS

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
Evaluation #4. Quantitative Comparison with MS-SSD

e MS-SSD still suffers from write amplification

— # of physical streams << # of SSTable files
— No stream-aware GC —pages with different lifetime streams mixing in the same flash block

- - - - FlashALLOC WAF —=— FlashALLOC_OPS FlashALLOC TPS
--------- MSSSD_WAF --4-- MSSSD OPS --4-- MSSSD TPS
—— VANILLA_WAF —#— VANILLA OPS —=— VANILLA_TPS
3 200 3 80
) et U
2 - S 2 =
: >y - : 8
; 100 g ; NN . A aemmmmmm T T T = 40 %
1 & 1 z{
S o
SR D .;&
0 0 0 0
Write Sequence Write Sequence
(a) RocksDB (1 db_bench Tenant) (b) Multi-tenants DB (db_bench+TPC-C)

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI
Evaluation #4. Quantitative Comparison with MS-SSD

e MS-SSD still suffers from write amplification

— # of physical streams << # of SSTable files
— No stream-aware GC —pages with different lifetime streams mixing in the same flash block

- - - - FlashALLOC WAF —=— FlashALLOC_OPS FlashALLOC TPS
--------- MSSSD_WAF --4-- MSSSD OPS --4-- MSSSD TPS
—— VANILLA_WAF —#— VANILLA OPS —=— VANILLA_TPS
3 200 3 80
) et U
2 - S 2 =
: >y - : 8
; 100 g ; NN . A aemmmmmm T T T = 40 %
1 & 1 z{
S o
SR D .;&
0 0 0 0
Write Sequence Write Sequence
(a) RocksDB (1 db_bench Tenant) (b) Multi-tenants DB (db_bench+TPC-C)

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

NI

Evaluation #5. Latency

* Vanilla suffers from high latency spike during GC — victim blocks have
pages with different lifetime, resulting in copyback overhead

* FlashAlloc reduces latency and narrows latency distribution

— Eliminates copyback overhead

: DB-Bench Operations Block I/Os Latency
(unit: us)
Avg. 99th 99.9th Avg. Read
Vanilla 140.2 20.9 5694.2 34.89
FlashAlloc 944 18.3 3401.2 18.95

FlashAlloc: Deallocating Flash Blocks By Objects

Hankuk University of Foreign Studies | Jonghyeok Park

NI

Summary

* We present FlashAlloc, a novel interface, which enables flash devices
to stream writes by logical objects into different physical flash blocks.

* FlashAlloc supports per-object fine-grained write streaming and be
the great alternative to existing solution — MS-SSD and ZNS.

* Benefits of FlashAlloc

— Zero-copyback overhead
— Reduce write amplification overhead
— Mitigate WAF interference among multiple tenants

FlashAlloc: Deallocating Flash Blocks By Objects

Hankuk University of Foreign Studies | Jonghyeok Park

NVRAMOS 2023

Workshop on Operating System Support for

I hank yo u g . Next Generation Large Scale NVRAM
o) 2

Oct 19-21, 2023, Jeju, Korea

FlashAlloc: Dedicating Flash Blocks By Objects

Jonghyeok Park”, Soyee Choi**, Gihwan Oh*, Soojun Im™”,
Moon-Wook Oh™", Sang-Won Lee*

Hankuk University of Foreign Studies®, Samsung Electronics™
Sungkyunkwan University*

E-mail: jonghyeok.park@hufs.ac.kr Check out more details
Github: https://github.com/JonghyeokPark/Flashalloc-Cosmos in our paper!

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

mailto:jonghyeok.park@hufs.ac.kr
https://github.com/JonghyeokPark/Flashalloc-Cosmos

D A
FlashAlloc Architecture

Applications
fallocate |
Filesystems | EXT4 NN | ZZ Y | | Fars |]
FlashAlloc (LBA,,LBA,)
Flash Storage Host Interface - Write (LBA,,) Read (LBA,,)

Flash Translation Layer

P < L2P Mapping Table
FlashAlloc Instances
Instance 1 Instance N BE—"2
-LBA range {LBA;, LBA,} | _|-LBArange Y
~Block Groups {B;, By} ~Block Groups {Bj, B} 2. Write p. 7/////
—Next_write_ptr —Next_write_ptr L

Py

\ J

NAND Flash Memory

v
S gl

NEZZ NN\ 77

: | 7 | :

%,

. __Bi | FlashAlloc-ed Blocks . Br] Normal Blocks

FlashAlloc: Deallocating Flash Blocks By Objects Hankuk University of Foreign Studies | Jonghyeok Park

