

FlashAlloc: Dedicating Flash Blocks By Objects

Jonghyeok Park*, Soyee Choi**, Gihwan Oh+, Soojun Im**, Moon-Wook Oh**, Sang-Won Lee*

Hankuk University of Foreign Studies*, Samsung Electronics** Sungkyunkwan University⁺

Background

- Most data stores manages data by logical objects
 - **SSTable** in RocksDB
 - **Double write buffer (DWB)** in MySQL
 - **Segment** in F2FS

Background

- Most data stores manages data by logical objects
 - **SSTable** in RocksDB
 - **Double write buffer (DWB)** in MySQL
 - **Segment** in F2FS
- Each objects is the unit of logical space allocation
 - Host: fallocate()
 - Flash Device: stream-write-by-time

Background

- Most data stores manages data by logical objects
 - **SSTable** in RocksDB
 - **Double write buffer (DWB)** in MySQL
 - **Segment** in F2FS
- Each objects is the **unit** of logical space allocation
 - Host: fallocate()
 - Flash Device: stream-write-by-time
- Page deathtime
 - Host: TRIM command
 - Flash Device: multiplexed with different deathtimes

Multiplexing

- Flash blocks are multiplexed with pages with different deathtimes
 - Stream-write-by-time policy
 - Copyback overhead in GC \Rightarrow write amplification \uparrow

Multiplexing

- Flash blocks are multiplexed with pages with different deathtimes
 - Stream-write-by-time policy
 - Copyback overhead in GC ⇒ write amplification ↑

Flash devices are **object-oblivious**:

Host semantic about the object's logical address range CAN NOT cross the storage Interface WALL

The Myth of Flash-Friendly Writes

- Flash-friendly sequential writes are no less harmful than random writes in terms of write amplification
 - Split into smaller write requests due to file system fragmentation and kernel IO scheduling
 - Pages from multiple SSTables with distinct deathtime tend to be stored together in the same flash blocks.
- Object-oblivious and stream-writes-by-time policy

How about the Object-aware SSD? – MS-SSD and ZNS

- Static binding of limited stream-id
- Stream-id conflicts in multi-tenant
- No stream-aware GC
- Suffer from write amplification

Farewell, Multi-Stream SSD

```
linux-block.vger.kernel.org archive mirror
                      search help / color / mirror / Atom feed
From: Christoph Hellwig <hch@lst.de>
To: axboe@kernel.dk
Cc: sagi@grimberg.me, kbusch@kernel.org, song@kernel.org,
       linux-block@vger.kernel.org, linux-raid@vger.kernel.org,
       linux-nvme@lists.infradead.org, linux-fsdevel@vger.kernel.org
Subject: [PATCH 1/2] nvme: remove support or stream based temperature hint
Date: Fri, 4 Mar 2022 18:55:55 +0100 [thread overview]
Message-ID: <20220304175556.407719-1-hch@lst.de> (raw)
This support was added for RocksDB, but RocksDB ended up not using it.
At the same time drives on the open marked (vs those build for OEMs
for non-Linux support) that actually support streams are extremly
      Don't bloat the nvme driver for it.
rare.
```

How about the Object-aware SSD? – MS-SSD and ZNS

- Static binding of limited stream-id
- Stream-id conflicts in multi-tenant
- No stream-aware GC
- Suffer from write amplification

- Strict write-ordering rule
- Non-transparent write streaming
- Yet-more expensive tax for logstructured writes

FlashAlloc

- Enlighten flash device to stream writes by objects
 - Offload the host semantic about object's **LBA ranges** to the storage
 - De-multiplex concurrent writes from multiple objects with **distinct deathtimes** into per-object dedicated blocks
- Clusters data from the same object into same flash blocks
 - Logically fragmented → Physically de-fragmented into same flash block
- Enables per-object fine-grained write streaming
- Minimal changes on applications and FTL
 - No need for additional translation layer or mapping information in **host-side**

- Logical objects with distinct deathtime
- Sequentially append and cyclically reused

- Small and random overwrites
- Tiny object
- Append-only writes of unknown size

- Logical objects with distinct deathtime
- Sequentially append and cyclically reused

- Small and random overwrites
- Tiny object
- Append-only writes of unknown size

- Logical objects with distinct deathtime
- Sequentially append and cyclically reused

- Small and random overwrites
- Tiny object
- Append-only writes of unknown size

- Logical objects with distinct deathtime
- Sequentially append and cyclically reused

- Small and random overwrites
- Tiny object
- Append-only writes of unknown size

- Logical objects with distinct deathtime
- Sequentially append and cyclically reused

- Small and random overwrites
- Tiny object
- Append-only writes of unknown size

FlashAlloc: Core operations

FlashAlloc: Core operations

FlashAlloc: Garbage Collection

- Pages from normal blocks are **not mixed** with those from FA blocks
- GC-by-Block-types
 - New FlashAlloc-ed block must be secured to total-clean block ((1), (2))
 - Adaptive space allocation Depending on victim block type (FA vs. Normal blocks)

FDP: Flexible Data Placement

- Data placement is a prevalent problem across NAND consumer & industries
 - Impact: WAF, TCO, Predictability (latencies), and overall performance
- Several approaches in the past few years account for innovation in this area
 - Well explored design space a good understanding of the trade-offs

← Less Host Intervention

Block Interface (CNS)

Description & Trade-offs

- Traditional block device
- Most innovation in-device
- Mature host software stack
- WAF ~1: No assurances

Status

· Commonplace for storage devices

Streams / Directives

Description & Trade-offs

- Extension to block device with backwards compatibility
- Use of write hints
- · DSM deallocation mechanism
- Minor changes to Host SW
- WAF ~1: Initialize & trust

Status

Little industry traction

2014

©2023 Flash Memory Summit. All Rights Reserved

1970s

Flexible Data Plac. (FDP)

Description & Trade-offs

- Extension to block device with backwards compatibility
- · Capacity-based placement without seq. write requirement
- · Use of write tags
- DSM deallocation mechanism
- Minor changes to Host SW
- WAF ~1: Iterative guery/check

Status

- Customer-driver technology
- Blooming adoption & Eco

2022

Status

· Vendor-driven technology

WAF ~1: assured

· Fragmentation across vendors

Zoned Namespaces (ZNS)

Description & Trade-offs

· Departs from block device

· No backwards compatibility

LBA-based placement with

Explicit host deallocation &

Major changes to Host SW

strict seq. write requirement

state machine management

· Tech validation for +3 years 2018

More Host Intervention →

Open-Channel SSDs

Description & Trade-offs

- · Full host-based FTL
- Most innovation in host
- · Drastic changes to Host SW
- WAF ~1: Assured

Status

- Not standardized
- Dropped by the industry

2015

NAND Data Placement Landscape, Trade-Offs, and Direction, Javier González, FMS 2023

FDP: Flexible Data Placement

Data placement is a prevalent problem across NAND consumer & industries

FlashAlloc

- Stream writes by object
- No additional translation layer in host

← Less Host Intervention

Block Interface (CNS)

Description & Trade-offs

- Traditional block device
- Most innovation in-device
- Mature host software stack
- WAF ~1: No assurances

Status

· Commonplace for storage devices

Streams / Directives

Description & Trade-offs

- · Extension to block device with backwards compatibility
- Use of write hints
- · DSM deallocation mechanism
- Minor changes to Host SW
- WAF ~1: Initialize & trust

Status

Little industry traction

2014

©2023 Flash Memory Summit. All Rights Reserved

1970s

Flexible Data Plac. (FDP)

Description & Trade-offs

- · Extension to block device with backwards compatibility
- · Capacity-based placement without seq. write requirement
- · Use of write tags
- DSM deallocation mechanism
- Minor changes to Host SW
- WAF ~1: Iterative query/check

Status

- Customer-driver technology
- Blooming adoption & Eco

2022

Zoned Namespaces (ZNS)

Description & Trade-offs

- · Departs from block device
- No backwards compatibility
- · LBA-based placement with strict seq. write requirement
- Explicit host deallocation & state machine management
- Major changes to Host SW
- WAF ~1: assured

Status

- · Vendor-driven technology
- · Fragmentation across vendors
- · Tech validation for +3 years

2018

More Host Intervention →

Open-Channel SSDs

Description & Trade-offs

- · Full host-based FTL
- Most innovation in host
- · Drastic changes to Host SW
- WAF ~1: Assured

Status

- Not standardized
- · Dropped by the industry

2015

NAND Data Placement Landscape, Trade-Offs, and Direction, Javier González, FMS 2023

Experimental Setup

System Setup

- Intel Core i7-6700 CPU 3.40GHz 8 cores
- 50GB DRAM
- 256GB Samsung 850 Pro SSD

Cosmos OpenSSD

- Xilinx Zynq-7000 with dual Core ARM Cortex-A9
- 256KB SRAM, 1GB DDR3DRAM
- 16GB MLC Nand flash memory (Over-Provision: 10%)

Database Setup

- MySQL: 32 threads + **TPC-C** 80 warehouse (8GB)
- RocksDB: 4 clients, 64MB SSTables + **db_bench** fillrandom

Evaluation #1. Synthetic FIO workloads

- The considerable gain of the FlashAlloc version is direct reflection of reductions in the garbage collection overhead.
- Under more concurrent write threads, a flash block in the Cosmos board will be multiplexed by more files with more deviating lifetimes.

Evaluation #2. RocksDB (SSTables) & F2FS (Segments)

- De-multiplexing SSTables/Segments into different flash blocks
 - Enables RocksDB/F2FS to achieve near ideal WAF (i.e., 1)
- FlashAlloc can be fundamental solution for log-on-log problem

Evaluation #3. MySQL (DWB) & Multi-tenancy

- Always to beneficial to apply FlashAlloc to appropriate objects and isolate them to dedicate blocks
 - Separating DWB object with cyclic and sequential writes from main databases (i.e., FA writes 50% and non-FA writes 50% case)
- For multi-tenancy (RocksDB+MySQL), FlashAlloc makes tenants altruistic to neighbor tenants

Evaluation #3. MySQL (DWB) & Multi-tenancy

- Always to beneficial to apply FlashAlloc to appropriate objects and isolate them to dedicate blocks
 - Separating DWB object with cyclic and sequential writes from main databases (i.e., FA writes 50% and non-FA writes 50% case)
- For multi-tenancy (RocksDB+MySQL), FlashAlloc makes tenants altruistic to neighbor tenants

Evaluation #4. Quantitative Comparison with MS-SSD

- MS-SSD still suffers from write amplification
 - # of physical streams << # of SSTable files
 - No stream-aware GC —pages with different lifetime streams mixing in the same flash block

Evaluation #4. Quantitative Comparison with MS-SSD

- MS-SSD still suffers from write amplification
 - # of physical streams << # of SSTable files
 - No stream-aware GC —pages with different lifetime streams mixing in the same flash block

Evaluation #5. Latency

- Vanilla suffers from high latency spike during GC victim blocks have pages with different lifetime, resulting in copyback overhead
- FlashAlloc reduces latency and narrows latency distribution
 - Eliminates copyback overhead

(unit: us)	DB-Bench Operations			Block I/Os Latency
	Avg.	99th	99.9th	Avg. Read
Vanilla	140.2	20.9	5694.2	34.89
FlashAlloc	94.4	18.3	3401.2	18.95

Summary

- We present FlashAlloc, a novel interface, which enables flash devices to **stream writes by logical objects** into different physical flash blocks.
- **FlashAlloc** supports *per-object fine-grained* write streaming and be the great alternative to existing solution — MS-SSD and ZNS.
- Benefits of **FlashAlloc**
 - Zero-copyback overhead
 - Reduce write amplification overhead
 - Mitigate WAF interference among multiple tenants

Thank you

FlashAlloc: Dedicating Flash Blocks By Objects

Jonghyeok Park*, Soyee Choi**, Gihwan Oh+, Soojun Im**, Moon-Wook Oh**, Sang-Won Lee*

Hankuk University of Foreign Studies*, Samsung Electronics** Sungkyunkwan University⁺

E-mail: jonghyeok.park@hufs.ac.kr

Github: https://github.com/JonghyeokPark/Flashalloc-Cosmos

Check out more details in our paper!

FlashAlloc Architecture

