
ZNS SSDs (Zoned NameSpace SSDs):
Characteristics and Implications

October 19, 2023
Jongmoo Choi

http://embedded.dankook.ac.kr/~choijm

Contents

01
Introduction

02
Observations

03
ZNS Emulator: ConfZNS

05
Discussion

04
RocksDB on ZNS: ZenFS+

2

Introduction (1/5)

What are Next-generation SSDs?
ü ZNS SSDs: one of Next-Generation SSDs
ü Some news related to Next-Generation SSDs

3

Introduction (2/5)

What are Next-generation SSDs?
ü From NVMe Specification

(Traditional SSD) (Streamed SSD) (ZNS SSD) (KV SSD) (FDP SSD)

NAND
(channel, way, …)

Block IF
(Flash Translation Layer)

NAND
(channel, way, …)

NAND
(channel, way, …)

Zone IF

NAND
(channel, way, …)

KV IF FDP

(Source: Revised from NVMe 2.0 Spec Preview, SDC, Sep. 2020)

4

NAND
(channel, way, …)

Stream IF

Introduction (3/5)

Why Next-Generation SSDs?
ü Block Interface Tax

§ Unawareness, Semantic Gap
§ Unexpected performance drop, High cost (due to OP/DRAM), …

ü Redundant Functionalities
§ FTL, FS, KV DB (or other applications)
§ Journal of Journal, Increased WAF, Lose optimization opportunities, …

5

(Source: FlashKV, ACM TECS'17) (Source: Avoiding BI Tax, ATC’21)

Introduction (4/5)

Common Goal of Next-Generation SSDs
ü Reconsidering Storage SW Stack

§ How to manage flash memory at the host level?
§ How to realize ISP (such Key-Value Store) at the device level?

ZNS SSD, SmartFTL Tr. SSD KVSSD, Comp. SSD

6

Introduction (5/5)

ZNS SSD 101
ü Storage is divided into zones and each zone is written sequentially

§ Ratified technical proposal (TP 4053) for the NVMeTM1.4a
ü Potentials

§ Workload separation è reduce WAF and be predictable
§ Resource reduction in SSD (DRAM, OP) è decrease TCO

ü Challenges
§ Sequential write constraint and Host-level management (e.g. zone

reset, limited active zone, …)
§ How to use? (in terms of parallelism and isolation)

7

(Source: www.cdrinfo.com/d7/content/sk-hynix-demonstrated-zoned-namespaces-ssd-solution-datacenters)

Observations (1/9)

Internal architecture of ZNS SSDs
ü Parallel Unit (PU) in SSDs

§ Channel, Way, Die, Plane, Multicores, Dual registers, …
ü How to map a zone to parallel units?

§ A spectrum from 1-to-1 relation to 1-to-all relation
§ This slide considers channels only (can be easily extended)

8

A Spectrum of ZNS SSDs: Zone-to-Channel

zone zone zone

Observations (2/9)

SSDs used for experiments
ü 3 SSD prototypes

ü Specification
§ ZSSD1: 1-to-1 relation (also called as small-zone or SU-zone)
§ ZSSD2: 1-to-all relation (also called as large-zone or FU-zone)
§ TrSSD: same hardware of ZSSD1 but different firmware

9

(ZSSD1: U.3) (ZSSD2: M.2)(TrSSD)

Observations (3/9)

From what viewpoints?

10

Isolation

Performance

Workload

Observations (4/9)

Isolation
ü Definition

§ How much performance is degraded when multiple zones are
accessed concurrently, compared to performance of a single zone

ü Workload
§ Each thread runs on a different zone (write)

ü Observation 1
§ ZSSD1 (small-zone): Good isolation
§ ZSSD2 (large-zone): Bad isolation (also TrSSD)

11

Observations (5/9)

Both Isolation and Performance
ü Workload

§ Four threads that start at different times
ü Observation 2

§ Tradeoff: Isolation vs. Performance
• TrSSD: Bad isolation, but high performance
• ZSSD1 (small zone): Good isolation at the cost of low performance
• ZSSD2 (large zone): shows similar trends to TrSSD

12

Observations (6/9)

Performance with SW parallelism
ü Workload

§ Intra-zone parallelism
§ Write a file and read the file using multiple threads (sync mode)

ü Observation 3
§ ZSSD1 (small-zone): Not scalable
§ ZSSD2 (large-zone): Somewhat scalable (3X)

13

Zone 0 Zone 1 …Zone 2

(Intra-zone parallelism)

Observations (7/9)

Performance with SW parallelism
ü Workload

§ Inter-zone parallelism
§ Distribute a file into multiple zones and read the file using multiple

threads.
ü Observation 4

§ ZSSD1 (small-zone): Good scalable (8X)
§ ZSSD2 (large-zone): Somewhat scalable (3X)

14

Zone 0 Zone 1 …Zone 2

(Inter-zone parallelism)

Observations (8/9)

Workload sensitivity
ü Sync vs. Async or IO Depth, Request size, …
ü 1) Sync vs. Async with inter-zone parallelism (128KB request size)

§ 1-to-1 relation: 8X as threads increase, same under sync. & async.
§ 1-to-all relation: 3X as threads increase under sync. vs. max at the 1

thread under async.
ü 2) Request size: quite important factor

§ “Request size > page size x PU” : max even at 1 thread on 1-to-all (sync)

15

(Observation 4) (Synchronous) (Asynchronous)

Observations (9/9)

Summary
ü 1-to-all relation

§ Good performance (even for a single thread), but bad isolation
§ Similar to TrSSD è not heavy traditional SW modification

ü 1-to-1 relation
§ Good isolation, but bad performance
§ Need inter-zone parallelism (zone-aware data placement) for

enhanced performance

16

A Spectrum of ZNS SSDs: Zone-to-Channel

☞ How about 1-to-N (or hybrid)? How about real applications (e.g. RocksDB)? Best use case? …

ZNS SSD Emulator (1/8)

Requirement of ZNS SSD emulation
ü Explore various design space

§ How a zone can be mapped into PUs?
§ How ZNS SSD internals affect host SW?

ü Based on FEMU (Flash Emulator using Qemu)
§ Support CASE: Cheap, Accurate, Scalable, Extensible (Full stack)

(Source: FEMU, FAST, 2018)
17

ZNS SSD Emulator (2/8)

ConfZNS: FEMU ZNS SSD extension
ü 1) Support spectrum: diverse Zone-to-PU mappings

§ SU (Single Unit)-zone: 1 zone to 1 unit (stride addressing)
§ MU (Multiple Unit)-zone: 1 zone to multiple units (linear + stride

addressing)
§ FU (Full Unit)-zone: 1 zone to full units (linear addressing)
§ E.g.: SSD: 4-channels 2 ways

ü 2) Support accuracy

(Spectrum of internal architecture supported by ConfZNS)

18

ZNS SSD Emulator (3/8)

ConfZNS: FEMU ZNS SSD extension
ü 1) Support spectrum: diverse Zone-to-PU mappings
ü 2) Support accuracy

§ Modeling on diverse configurations and parameters
• Consider contention among PUs

(Modeling)
19

ZNS SSD Emulator (4/8)

ConfZNS: FEMU ZNS SSD extension
ü 1) Support spectrum: diverse Zone-to-PU mappings
ü 2) Support accuracy

§ Algorithm: make use of multiple clocks
• gclock, lclock_ch, lclock_way, …
• gclock ticks at each time
• lclock_ch advances when it is requested

n if (busy)
lclock_ch = lclock_ch + TXFER

else /* idle */
lclock_ch = gclock + TXFER

n Consider unit dependency
lclock_ch = max(lclock_all) + TXFER

• Completion condition
n lclock_ch == gclock

• Busy/Idle condition
n if (lclock_ch > gclock)

busy
else

idle (Algorithm)
20

ZNS SSD Emulator (5/8)

Validation 1
ü 1) Two real ZNS SSDs, ConfZNS with two configurations

ü 2) Accuracy: 8% error on average

(Validation: intra-zone) (Validation: inter-zone)
21

ZNS SSD Emulator (6/8)

Validation 2
ü 1) Data from previous study

§ Bae et al., “What You Can't Forget: Exploiting Parallelism for
Zoned Namespaces”, HotStorage’22

ü 2) Accuracy: show similar trends (black-box approach)

22

ZNS SSD Emulator (7/8)

Host SW analysis
ü F2FS on ConfZNS

§ Fio benchmark
• Sync, iodepth=1, iosize=64MB, blocksize=128KB, numjobs=thread
• FU-zone: scalable as threads increase
• SU-zone: less scale (F2FS seems to utilize intra-zone parallelism for write

(1X) and inter/intra-zone parallelism for read (3X))
§ Hadoop benchmark

• Create 128MB files concurrently: distribute files into different zones
• SU-zone comparable to FU-zone è need zone-awareness for SU-zone

(Hadoop Benchmark) (Fio Benchmark)
23

ZNS SSD Emulator (8/8)

Host SW analysis
ü RocksDB on ConfZNS

§ Using ZenFS (ATC’21 paper)
§ Can compare different configurations under different policies

• Workload, thread (flush/compaction), compaction policy, ZNS configuration

ü Multi-tenants workload on ConfZNS
§ Require different QoSs: 200MB/s, 400MB/s, and 1000MB/s
§ Allocate different number of zones according to QoS

(Multi-tenants workload) (RocksDB)
24

RocksDB on ZNS SSDs (1/9)

Key Value Store + ZNS SSD
ü Well matched (gganbu)

ZNS SSD
• Large sequential writes
• Workload separation
• Isolation

KVS
• Based on LSM-tree
• Level differences
• Interference problem

(Source: Wisckey paper in FAST’16 and SILK papers in ATC’19)

25

RocksDB on ZNS SSDs (2/9)

ZenFS (from ATC’21)
ü A new storage backend for RocksDB

§ Extent, Journal, Log (look like a simple version of Ext4)
§ Based on Large-zone ZNS SSDs

ü Evaluation
§ 4 setup: 1) XFS on TrSSD, 2) F2FS on TrSSD, 3) F2FS (ZNS), 4) ZenFS

26

(Source: Avoiding BI Tax, ATC’21)

è How about small-zone ZNS SSDs?

RocksDB on ZNS SSDs (3/9)

Motivation: RocksDB workload analysis
ü 1) Sequential pattern

§ Good: go well with ZNS
§ Issues: 1) mainly intra-zone(which is bad on small-zone), 2) level mixed

ü 2) Interference of compaction to flush
ü 3) Hotness among levels

(Sequential and Interleaved)

27

RocksDB on ZNS SSDs (4/9)

Motivation: RocksDB workload analysis
ü 1) Sequential pattern
ü 2) Interference of compaction to flush

§ Compaction: read, merge, and write è time consuming job
§ Delayed flush incurs latency spike of user requests

ü 3) Hotness among levels
§ Hotter as lower level

(Interference) (Lifetime on different levels)

28

RocksDB on ZNS SSDs (5/9)

RocksDB optimization for Small-zone: ZenFS+
ü Idea 1: Flush and compaction isolation

§ Identify IZs (Independent zones) and allocate in an isolated manner
§ Dynamic vs Static

ü Idea 2: Table striping
§ exploit inter-zone parallelism

ü Idea 3: Separate higher levels from lower levels
§ For efficient zone reclaiming (minor/major reclaim)

29

RocksDB on ZNS SSDs (6/9)

RocksDB optimization for Small-zone: ZenFS+
ü Idea 4: Independent Zone Identification Technique

§ What is the Independent Zone?
• Zones that are not interfered with
• Important for isolation and striping

§ How to?
• Based on Latency (or Power consumption)
• Pivot: stay a zone, Needle: move zones è Both read at the same time

§ Identification
• Latency jump è dependent zone
• This technique can be used to explore internals of other ZNS SSDs.

(Proposal) (Evaluation)

30

RocksDB on ZNS SSDs (7/9)

Evaluation
ü Throughput

§ ZenFS+ vs ZenFS: better performance for diverse workloads
• Less sensitive to aged/initial

§ ZenFS+ vs TrSSD: depend on BI tax

(ZenFS vs. ZenFS+) (TrSSD vs. ZenFS+)

31

RocksDB on ZNS SSDs (8/9)

Evaluation
ü YCSB results

§ Not only write-heavy (A, F), but also read-heavy (others)
ü Isolation capability

§ More predictable bandwidth

(YCSB results) (Isolation capability)

32

RocksDB on ZNS SSDs (9/9)

Evaluation
ü Latency

§ ZenFS: latency spikes due to 1) utilize single zone and 2) compaction
interfere flush

§ ZenFS+: 1) striping and 2) isolation è can reduce latency spikes

(Put latency under ZenFS and ZenFS+)

33

Discussion (1/3)

ZNS SSDs
ü Expose a new consideration of parallelism

§ TrSSD: SSD-level parallelism vs OCSSD: Host-level parallelism
§ ZNS SSD: Both SSD-level parallelism and Host-level parallelism

• Zone-to-PU mapping (HW-level) vs Thread-to-Zone mapping (SW-level)

ü Affect both performance and isolation (from ConfZNS)
§ TrSSD: utilize HW parallelism aggressively, less sensitive to SW

parallelism at the cost of isolation
§ OCSSD: depend on SW parallelism too much
§ ZNS SSD: can provide a knob to exploit both (yet less flexible)

34

Discussion (2/3)

How about WAF?
ü SmartFTL

§ WAF reduction from 2.5 to 1.25 è Reduce OP è Save 18% Capex
ü Reconsider striping (parallelism)

§ Zhang et al., “Excessive parallelism considered harmful”, HotStorage’23

35

(Source: SmartFTL, OCP’21, https://www.youtube.com/watch?v=3O3zDrpt3uM)

Discussion (3/3)
Related works
ü Min et al., "eZNS: An Elastic Zoned Namespace for Commodity ZNS SSDs", OSDI'23.
ü Kim et al., "RAIZN: Redundant Array of Independent Zoned Namespaces",

ASPLOS'23.
ü Yeom et al., "zCeph: Achieving High Performance On Storage System Using Small

Zoned ZNS SSD", ACM SAC'23.
ü Han et al., "Achieving Performance Isolation in Docker Environments with ZNS

SSDs", IEEE NVMSA'23.
ü Bae et al., "What You Can't Forget: Exploiting Parallelism for Zoned Namespaces",

HotStorage'22.
ü Lee et al., "Compaction-Aware Zone Allocation for LSM based Key-Value Store on

ZNS SSDs", HotStorage'22.
ü Oh et al., "Accelerating RocksDB for Small-Zone ZNS SSDs by Parallel I/O

Mechanism", ACM MIDDLEWARE’22.
ü Han et al., “ZNS+: Advanced Zoned Namespace Interface for Supporting In-Storage

Zone Compaction”, OSDI’21.
ü T. Stavrinos et al., “Don’t Be a Blockhead: Zoned Namespaces Make Work on

Conventional SSDs Obsolete”, HotOS’21.
ü M. Bjørling et al., “ZNS: Avoiding the Block Interface Tax for Flash-based SSDs“,

ATC’21.
ü Song et al., "ConfZNS: A Novel Emulator for Exploring Design Space of ZNS SSDs",

ACM Systor'23.
ü Oh et al., "ZenFS+: Nurturing Performance and Isolation to ZenFS” IEEE

ACCESS’23.
ü …

36

Discussion

37

