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Today’s Presentation
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 KV (Key-Value) cache 

⚫ Reduce user-perceived latency and backend loads 

 DRAM as a KV cache 

⚫ Fit for caching small objects, but too costly for large objects! 

Limitations of Using DRAM as a Key-value Cache 

Backend

DRAM Small 

objects

Large objects

CDN Image Document

280 B 16 KB 64 KB 1 KB

Object mean size



Need for Caching Large Objects



 Flash-based SSD provides an order of magnitude higher GB/$ than DRAM

 Satisfy the demand for caching large objects at a lower cost

⚫ 36x cost-effective

AFA (All-Flash Array) as an Alternative

Backend

DRAM

Backend

AFA (Tens of SSDs)

161x higher 

capacity!



Lack of Prior Studies for AFA KV caches

• Indexing

- Kangaroo (SOSP ’21)

- FlashShield (NSDI ’19)

- SlickCache (SoCC ’18)

• Cross-layer optimization

- uDepot (FAST ’19)

- DIDACache (FAST ’17)

…

• Indexing

- Kangaroo (SOSP ’21)

- FlashShield (NSDI ’19)

- SlickCache (SoCC ’18)

• Cross-layer optimization

- uDepot (FAST ’19)

- DIDACache (FAST ’17)

…
AFA KV cache

…SSD SSD SSD

SSD KV cache

SSD

• No prior studies• No prior studies



What is the Difference b/w SSD and AFA KV caches?

SSD KV cache

A few SSDs

Enough DRAM

Enough resources to manage SSDs

Not enough DRAM

AFA KV cache

Many SSDs

+ High performance

+ Huge capacity

-- Small amount of DRAM

-- Many SSDs to manage



What is the Difference b/w SSD and AFA KV caches?

* Technology and Cost Trends at Advanced Nodes (2020)

DRAM bit density NAND Flash bit density

Capacity growth*: 1.38x (SSD) > 1.13x (DRAM)

# of SSD slots > # of DRAM slots



Key Challenges of Existing SSD KV caches

SSD KV cache

3. Fault-tolerance

2. Expiration

1. Indexing

Not enough DRAM

AFA KV cache

Many SSDs

+ High performance

+ Huge capacity

-- Small amount of DRAM

-- Many SSDs to manage

Perform

poorly!!!



 The huge hash table does not fit in the AFA’s DRAM

→ Must be stored both in DRAM and SSD

 Accesses to hash buckets and objects in SSD incur significant I/O overhead

Challenge #1: Performance Drop of Existing Hashing

Actual KV objects

Lots of 

SSD I/Os

Entire hash table

Cached buckets

DRAM

SSD

Baseline uDepot

(FAST '19)

SlickCache

(SoCC '18)
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51% performance drop

(Entire table in DRAM)



 Expired objects accumulate in the AFA space, resulting in the hit rate reduction

 Full-scanning for removal incurs a huge amount of I/Os

Challenge #2: Capacity & I/O Overhead for Expired Objects

Live Expired

Accumulated expired objects

→ should be eliminated

Hit rate reduction
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 RAID always protects data with parity blocks

 Unacceptable performance and capacity penalty in AFA using multiple SSDs

Challenge #3: Poor Scalability of RAID

25% capacity waste for parity
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G
B

/s

# of SSDs

Not scalable performance



Motivation Summary: Performance and Capacity Penalty!

1. Indexing: two-level hash table

2. Expiration: Do nothing or full-scanning

3. Fault-tolerance: RAID

Performance degradation

Hit rate reduction or costly scanning I/Os

Scalability problem

Not enough DRAM

AFA KV cache

Many SSDs

+ High performance

+ Huge capacity

-- Small amount of DRAM

-- Many SSDs to manage

Is there a common factor in the challenges?



Our Approach: Data Loss

 The existing techniques all take a loss-prohibited approach

 Loss-prohibited

- Maintain all objects without any data loss

 Loss-permitted

- May lose objects when processing a task



Admission control

Eviction

…

Loss-permitted

Replication

Erasure coding

…

Loss-prohibited

Loss → disaster

KV store

Is the Loss-prohibited Design Mandatory for KV Caches? NO!

Indexing              Expiration           Fault-tolerance

Loss-prohibited!

Too heavy 

for KV caches

Loss → cache miss

KV cache



Admission control

Eviction

…

Loss-permitted

Replication

Erasure coding

…

Loss-prohibited

Loss → disaster

KV store

Are the Lossless Designs Mandatory for KV cache? NO!

Indexing              Expiration           Fault-tolerance

Loss-prohibited!

Loss → cache miss

KV cache

BigKV “Drawing the Line: Clearing Up the Differences”

Too heavy 

for KV caches

Admission control

Eviction

…

Loss-permitted

Replication

Erasure coding

…

Loss-prohibited

Loss → disaster

KV store

Loss → cache miss

BigKV

Indexing

Expiration

Fault-tolerance

Loss-prohibited

Indexing

Expiration

Fault-tolerance

Loss-permitted

Fully utilize

AFA’s SSDs



1. Collision-oblivious two-level hashing

⚫ Collision-oblivious object update

⚫ Bounded object lookup

⚫ Metadata eviction

2. TTL-aware space management

⚫ TTL-aware grouping

⚫ TTL approximation

⚫ Zombie object eviction

3. Reactive fault-tolerance

⚫ Reactive fault-tolerance with sharding

⚫ Metadata persistence

BigKV Design Overview



BigKV Design Overview
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KV-Shard
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KV-Shard
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KV-Shard
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Indexing: 

Collision-oblivious 

two-level hashing
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TTL-aware

space management
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Reactive fault-tolerance



 Level 1 in DRAM: recently-accessed hash buckets

 Level 2 in SSD: entire hash table

 Each hash buckets point to actual KV objects

Entire hash table

(Level 2)

KV objects

DRAM

SSD

Cached buckets

(Level 1)

Performance Problem of Existing Indexing



KV objects

Performance Problem of Existing Indexing

Execution time  =  Hit time  +  Miss rate  × Miss time 

Buckets

Cached 

Buckets
DRAM

SSD



KV objects

Performance Problem of Existing Indexing

Execution time  =  Hit time +  Miss rate  × Miss time 

SSD I/O
Buckets

Cached 

Buckets
DRAM

SSD



Buckets

Cached 

Buckets
DRAM

SSD

KV objects

Performance Problem of Existing Indexing

Execution time  =  Hit time +  Miss rate  × Miss time 

SSD I/Os for probing

-- several probing I/Os

SSD I/O



DRAM

SSD

KV objects

Performance Problem of Existing Indexing

Execution time  =  Hit time +  Miss rate  × Miss time 

SSD I/O SSD I/O

-- several probing I/Os

SSD I/O SSD I/O

-- FP collision I/Os

-- FP collision I/Os

Fingerprint (FP) collision overhead FP:10

for Obj A

FP:10

for Obj B



FP:

10

FP:

10

 Fingerprint (FP)

⚫ Integer obtained by hashing an object’s full-key

 FP collision

⚫ Same FP, different full-keys

Fingerprint Collision

④ Read/Write

(== B)

B

Buckets

③

Write Req: ‘B’, FP ‘10’

① Probing

AA

② Read

(!= B)



FP:

10

FP:

10

 Fingerprint (FP)

⚫ Integer obtained by hashing an object’s full-key

 FP collision

⚫ Same FP, different full-keys

⚫ Incur additional object reads

 Loss-prohibited indexing

⚫ Store all objects, ignoring FP collisions

Fingerprint Collision

④ Read/Write

(== B)

B

Buckets

③

Write Req: ‘B’, FP ‘10’

① Probing

AA

② Read

(!= B)

FP collision

Overhead!



FP:

10

 No FP collisions

⚫ When writing an object,

simply overwrite the FP-matched bucket

⚫ No additional object reads

Collision-oblivious Hashing of BigKV

② Write

(== B)

B

Buckets

Write Req: ‘B’, FP ‘10’

① Probing

AA

FP-collided object

→ Not reachable!



 No FP collisions

⚫ When writing an object,

simply overwrite the FP-matched bucket

⚫ No additional object reads

 Loss-permitted indexing

⚫ Lose the old FP-collided object

 Data loss penalty?

⚫ Minimized by optimizations

• Large FP size, hash table organization

→ 5 misses out of 400M requests

→Minimal drop in cache hit ratio

Collision-oblivious Hashing of BigKV

FP:

10

② Write

(== B)

B

Buckets

Write Req: ‘B’, FP ‘10’

① Probing

AA

FP-collided object

→ Not reachable!

Loss!



DRAM

SSD

KV objects

BigKV: Eliminate I/O Overhead!

Execution time  =  Hit time +  Miss rate  × Miss time 

SSD I/O

SSD I/Os

SSD I/O

-- several probing I/Os

SSD I/O SSD I/O

-- FP collision I/Os

-- FP collision I/Os

SSD I/Os



DRAM

SSD

KV objects

BigKV: Eliminate I/O Overhead!

Execution time  =  Hit time +  Miss rate  × Miss time 

SSD I/O

SSD I/Os

SSD I/O

-- several probing I/Os

-- FP collision I/Os

-- FP collision I/Os

SSD I/Os



DRAM

SSD

KV objects

BigKV: Eliminate I/O Overhead!

Execution time  =  Hit time +  Miss rate  × Miss time 

SSD I/O SSD I/O

-- several probing I/Os

-- FP collision I/Os

-- FP collision I/Os

Limit the probing distance 

by adjusting the hash table organization 

+ Only one probing I/O



DRAM

SSD

KV objects

BigKV: Eliminate I/O Overhead!

Execution time  =  Hit time +  Miss rate  × Miss time 

SSD I/O SSD I/O

-- several probing I/Os

-- FP collision I/Os

-- FP collision I/Os

Only caching hot buckets 

→ reduce the bucket miss rate

+ Only one probing I/O

+ Hot bucket caching



BigKV:  Two-level Metadata Indexing (Detail)

b
k

SetCache

Header

Hash entry 

(16B)

DRAM

(Metadata)

Flash

(Metadata area)

HTable (16KB)

Bucket (64B)

Object A
Flash

(Data area) Object B

Obj A

Hashing

128-bit
FP: 0x33log2(𝒃)log2(𝒔)

① Select 

a target shard

② Select a bucket

③ Lookup

④ Linear probing



 TTL → object’s lifetime

 Expired object

⚫ Unnecessarily occupy the space

⚫ Should be eliminated ASAP for the high hit rate

After TTL

Time-to-live (TTL)

Live object Expired object

Unnecessarily occupy

the space!



Loss-prohibited Expiration is Too Costly!

Short Long

AFA space

TTL

 Loss-prohibited expiration

⚫ Remove only expired objects exactly

Expired object

Maintaining TTL for every object is memory 

consuming (4-8B per object)



Loss-prohibited Expiration is Too Costly!

Short Long

AFA space

TTL

 Loss-prohibited expiration

⚫ Remove only expired objects exactly

Lots of scanning I/Os

for the loss-prohibited expiration



TTL-aware object grouping of BigKV

 Group and expire objects which have similar TTLs together

 Loss-permitted expiration

⚫ May remove still-alive objects

Short Medium Long

TTL ranges

…

Similar TTLs

…

Same TTL, expired together

Approximate 4-8B TTL

into a few bits

(e.g., 5 bits)



TTL-aware object grouping of BigKV

 Group and expire objects which have similar TTLs together

 Loss-permitted expiration

⚫ May remove still-alive objects

TTL ranges

…

Similar TTLs

…

Same TTL, expired together

Expire earlier

Short Medium Long



TTL-aware Space Management

 Proactively remove expired objects with near-zero overhead

TTL ranges

AFA space

Short

Medium

Long

Short Medium Long

TTLS: 0~60s

TTLM: 60~360s

TTLL: 360s~∞



TTL-aware Space Management

 Proactively remove expired objects with near-zero overhead

TTL ranges

AFA space

…

…

…

Short Medium Long

TTLS: 0~60s

TTLM: 60~360s

TTLL: 360s~∞

…

…

…

Tc Tc



TTL-aware Space Management

 Proactively remove expired objects with near-zero overhead

TTL ranges

Check the oldest groups

→ Remove expired group with

current time > Tc + TTLi

Short Medium Long

AFA space

…

…

…TTLS: 0~60s

TTLM: 60~360s

TTLL: 360s~∞

…

…

…

Tc Tc



TTL-aware Space Management

 Proactively remove expired objects with near-zero overhead

TTL ranges

All expired over a long time

→ No data loss penalty

LiveExpired

Long time to become the first group

Removed

Short Medium LongCheck the oldest groups

→ Remove expired group with

current time > Tc + TTLi
AFA space

…

…

…
Tc

TTLS: 0~60s

TTLM: 60~360s

TTLL: 360s~∞

…

…

…

Tc



No Expired Group?

 If there is no expired group, choose the oldest group

TTL ranges

Short Medium Long

AFA space

…

…

… …

…

…

TTLS: 0~60s

TTLM: 60~360s

TTLL: 360s~∞

FIFO Queue

Oldest

New



Problem of RAID for Fault-tolerance

 Loss-prohibited RAID

⚫ Always protect data

 Performance/capacity overheads due to parity blocks

KV objects

Hash table Parity

blocks

RAID-parity



BigKV: Reactive Fault-tolerance with Sharding

 Loss-permitted fault-tolerance

⚫ High scalability, but losing objects

 Sharding rather than striping

⚫ Isolating loss penalty

High scalability but losing all data!

KV objects

Hash table

RAID-stripe?



BigKV: Reactive Fault-tolerance with Sharding

 Loss-permitted fault-tolerance

⚫ High scalability, but losing objects

 Sharding rather than striping

⚫ Isolating loss penalty

KV objects

Hash table

Isolate the loss penalty

Shards



BigKV: Reactive Fault-tolerance with Sharding (cont.)

 Reactive fault-tolerance on SSD failures mitigate the loss penalty

⚫ Request forwarding – prevent further cache misses

⚫ Fast recovery – migrate objects to the replaced shard

KV objects

Hash table

Reduce 

repeated misses!

Shards

Requests

Forwarding



BigKV: Reactive Fault-tolerance with Sharding (cont.)

 Reactive fault-tolerance on SSD failures mitigate the loss penalty

⚫ Request forwarding – prevent further cache misses

⚫ Fast recovery – migrate objects to the replaced shard

KV objects

Hash table

Shards

Requests

Migration

Fast recovery



 Implemented on an AFA machine

⚫ 64GB DRAM / 8x 3.84TB SSD

 Evaluation

⚫ Overall performance

⚫ Hit rate

⚫ Fault-tolerance

 Benchmarks

⚫ YCSB

⚫ Cache traces

Experimental Setup



Results: Performance with YCSB

 Baseline: entire table in DRAM / the others: two-level hash table

 Outperform the existing SSD KV caches by removing I/O overheads

Outperform the baseline by ignoring FP collisions

Throughput
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BASELINE uDepot SlickCache BigKV

3.1x improvement

% BASELINE uDepot SlickCache BigKV

99 88 183 201
96 

(49% shorter)

99.9 118 247 1,655
167

(73% shorter)

99.99 208 1,115 1,993
208

(86% shorter)

68% shorter latency

Lookup tail latency (us)
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768GB 1TB 1.5TB 2TB

Scanning uDepot BigKV

 Achieve the target hit rate with 2x smaller space with near-zero I/O overhead

⚫ Proactively remove expired objects

Results: Hit Rate with Traces

2x larger effective-capacity

(1TB BigKV == 2TB uDepot)

Hit rates over various capacities
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Scanning uDepot BigKV

%

I/O overhead for reclaiming free space

Near-zero I/O overhead



Results: Fault-tolerance

 Hit rate & performance improvement without parity overhead

5.4x higher throughput with 8 SSDsHit rate recovery
Improved hit rate in normal cases

Hit rate
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1 2 4 8

K
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# OF SSDS

BigKV-RAID BigKV

High scalability

Replacementfault

Performance scalability



Results: Comparison with Memcached and Fatcache

 Memcached & Fatcache stop working after metadata cannot be kept in DRAM

 Swap versions still work, but provide terrible throughput

 BigKV provides consistent throughput, regardless of input data set sizes



Conclusion

 Current:  An AFA is a cost-effective alternative for caching large objects

 Motivation: Existing loss-prohibited techniques cannot fully leverage the AFA

 Solution: BigKV efficiently utilizes the AFA with loss-permitted techniques

1. Collision-oblivious two-level hashing

2. TTL-aware space management

3. Reactive fault-tolerance

 Results

⚫ 3.1x higher throughput, 68% shorter latency

⚫ 2x larger effective-capacity

⚫ High scalability



Thank You !

Sungjin Lee (sungjin.lee@dgist.ac.kr)
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