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Today’s Presentation
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Limitations of Using DRAM as a Key-value Cache

» KV (Key-Value) cache

Reduce user-perceived latency and backend loads

» DRAM as a KV cache

Fit for caching small objects, but too costly for large objects!
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Need for Caching Large Objects

Distributed caching for large objects

Asked 10 years, 8 months ago  Modified 9 years, 3 months ago  Viewed 6k times

| want to share a very large object e.g. in orders of megabytes or even several gigabytes, between a

V'S

set of machines. The object will be written once but may be read many times. Maybe a naive
11 approach is to use a ceneteralized storage like redis. However, it may become a single point of

failure and too many requests may make a DOS attack on redis. Then, a distributed solution is
4 much more promising. But, the main concern is replicating the structure to all machines. If the

1 Answer Sorted by:  Highest score (default) s
o Caching large objects in NoSQL stores is generally not a good idea, because it is expensive in term Redis for CaChIng Image files?
of memory and network bandwidth. | don't think NoSQL solutions shine when it comes to storing Asked 7 years, 4 months ago  Modified 7 years, 4 months ago  Viewed 17k times % Part of AWS Collective
16 large objects. Redis, memcached, and most other key/value stores are clearly not designed for this.
- If you want to store large objects in NoSQL products, you need to cut them in small pieces, and - I am using Amazon S3 for storing and retrieving images for an image storing website. The trouble

store the pieces as independent objects. This is the approach retained by 10gen for gridfs (which is is that multiple users have to retrieve same image muiltiple times.

part of the standard MongoDB distribution): Is it suggested to use Redis or memcached for caching image files by storing them directly onto it.

1 Storing images in Redis seems like a terrible idea since it will quickly fill up
the available RAM on the Redis server. Also your statement that "S3 pricing
for data transfer is much higher than compared to serving images via Redis"
sounds incorrect to me. | think you are missing something there. The
standard way to cache images is to use a CDN such as CloudFront,




AFA (All-Flash Array) as an Alternative

» Flash-based SSD provides an order of magnitude higher GB/$ than DRAM
» Satisfy the demand for caching large objects at a lower cost

36x cost-effective

|6 1x higher
onan capaciy
—>

Backend Backend




Lack of Prior Studies for AFA KV caches

SSD KV cache

SSD

AFA KV cache

* Indexing
- Kangaroo (SOSP ’21)
- FlashShield (NSDI ’19)
- SlickCache (SoCC ’18)

* Cross-layer optimization
- uDepot (FAST ’19)
- DIDACache (FAST ’17)

* No prior studies




What is the Difference b/w SSD and AFA KV caches?

+ High performance
+ Huge capacity

— Small amount of DRAM
Enough resources to manage SSDs - Many SSDs to manage
Enough DRAM Not enough DRAM

A few SSDs METONANIDN

SSD KV cache AFA KV cache



What is the Difference b/w SSD and AFA KV caches?

Capacity growth™: |.38x (SSD) > |.13x (DRAM)
# of SSD slots > # of DRAM slots
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Key Challenges of Existing SSD KV caches

|. Indexing

2. Expiration

3. Fault-tolerance

SSD KV cache

Perform
poorly!!!

+ High performance

+ Huge capacity

— Small amount of DRAM
- Many SSDs to manage

Not enough DRAM

METONANIDN

AFA KV cache




Challenge #1: Performance Drop of Existing Hashing

» The huge hash table does not fit in the AFA’'s DRAM
—> Must be stored both in DRAM and SSD

» Accesses to hash buckets and objects in SSD incur significant I/O overhead

Lots of 51% performance drop
Cached buckets ssbilos 0 __—_—— l_ _____________ l__.

.

Actual KV objects Baseline uDepot SlickCache
(Entire table in DRAM)  (FAST '19) (SoCC '18)

DRAM

SSD

Entire hash table

PERFORMANCE




Challenge #2: Capacity & /O Overhead for Expired Objects

» Expired objects accumulate in the AFA space, resulting in the hit rate reduction

» Full-scanning for removal incurs a huge amount of I/Os

Live Expired Hit rate reduction
H I 94
ﬁ 00 | e e e e e e g e
D <%
T 88
H I N o4

Accumulated expired objects
- should be eliminated

Full scanning No expiration



Challenge #3: Poor Scalability of RAID

» RAID always protects data with parity blocks

» Unacceptable performance and capacity penalty in AFA using multiple SSDs

Not scalable performance 25% capacity waste for parity

GB/s
w

I 2 4 8
# of SSDs



Motivation Summary: Performance and Capacity Penalty!

. -+ High performance
|. Indexing: two-level hash table 1, Hfgepcagacity

m) Performance degradation -— Small amount of DRAM
oﬂ-- Many SSDs to manage

2. Expiration: Do nothing or full-scanning

m) Hit rate reduction or costly scanning I/Os Not enough DRAM

METONANIDN

AFA KV cache

3. Fault-tolerance: RAID
m) Scalability problem

Is there a common factor in the challenges!? ]

I



Our Approach: Data Loss

» The existing techniques all take a loss-prohibited approach

» Loss-prohibited
- Maintain all objects without any data loss

» Loss-permitted
- May lose objects when processing a task



Is the Loss-prohibited Desigh Mandatory for KV Caches? NO!

Loss => disaster Loss = cache miss

KV store KV cache
Loss-prohibited Loss-permitted
( ) ( )

Replication Admission control

Erasure coding Eviction

. ) . )
Too heavy
Loss-prohibited! for KV caches

[ Indexing Expiration Fault-tolerance J




Loss = disaster
KV store

Loss-prohibited
[ )

Replication
Erasure coding

Loss-prohibited
[ )

Indexing
Expiration
Fault-tolerance

Loss = cache miss

. )

BigKV
Loss-permitted
4 )

Admission control
Eviction
. . )
Loss-permitted
4 )
Indexing
Expiration

Fault-tolerance

BigKV “Drawing the Line: Clearing Up the Differences”

Fully utilize
AFA’s SSDs



BigKV Design Overview

|. Collision-oblivious two-level hashing

Collision-oblivious object update

2. TTL-aware space management
TTL-aware grouping

3. Reactive fault-tolerance

Reactive fault-tolerance with sharding



BigKV Design Overview

All-flash-array System

NIC #I

NIC #2

KV-Master | Core #|

A

Core #2 KV-Master

A

Core #3

A 4

Core #4

A 4

KV-Shard

KV-Shard

Core #N

\4

KV-Shard

RAID-0 -

Fault-Tolerance:
Reactive fault-tolerance

S
.
.
S
.

Indexing:
Collision-oblivious
two-level hashing

Expiration:
TTL-aware
space management




Performance Problem of Existing Indexing

» Level | in DRAM: recently-accessed hash buckets
» Level 2 in SSD: entire hash table
» Each hash buckets point to actual KV objects

Cached buckets
(Level I)
_________________________________________________________________________________ DRAM

SSD
Entire hash table

(Level 2)

KV objects




Performance Problem of Existing Indexing

Execution time = Hit time + Miss rate X Miss time

Cached
Buckets

SSD

KV objects




Performance Problem of Existing Indexing

Execution time = Hit time + Miss rate X Miss time

L

Cached
Buckets
DRAM

SSD

SSD I1/0

KV objects




Performance Problem of Existing Indexing

Execution time = Hit time + Miss rate X
- several probing 1/Os

Cached ]:I
Buckets
DRAM

---------------------- SSD-HOsfor probing -------------"N-r-rmmoommmmoe

KV objects




Performance Problem of Existing Indexing

Execution time = Hit time + Miss rate X

— FP collision 1/Os - several probing 1/Os
FP:10 — FP collision 1/0s
for Obj B

Fingerprint (FP) collision overhead

FP:10 L

for Obj A

DRAM

SSD

SSD I1/0 SSD 110
SSD 110 SSD 110

KV objects




Fingerprint Collision

» Fingerprint (FP) Write Req: ‘B’ FP“10’
Integer obtained by hashing an object’s full-key

Probmg @

» FP collision

Same FP, different full-keys Buckets

@ Read @ Read/Write
(= B) == B)




Fingerprint Collision

» Fingerprint (FP) Write Req: ‘B’ FP“10’

Integer obtained by hashing an object’s full-key

Probmg @

» FP collision

Same FP, different full-keys Buckets

Incur additional object reads

@ Read/Write

Overhead!
, @ Read
e g (=E)
» Loss-prohibited indexing A 5
Store all objects, ignoring FP collisions ———

FP collision



Collision-oblivious Hashing of BigKV

» No FP collisions Write Req:‘B’, FP“10’
When writing an object,
simply overwrite the FP-matched bucket @)|Probing
No additional object reads
FP:
Buckets 10
FP-collided object @ Write

- Not reachable! == B)

A B




Collision-oblivious Hashing of BigKV

» No FP collisions Write Req:‘B’, FP ‘10’
When writing an object,
simply overwrite the FP-matched bucket @|Probing
No additional object reads
FP:
Buckets 10
» Loss-permitted indexing
T oct
Lose the old FP-collided objec FP-collided object > Wiie
- Not reachable! == B)
» Data loss penalty!? A B
Minimized by optimizations
Loss!

Large FP size, hash table organization
5 misses out of 400M requests

Minimal drop in cache hit ratio



BigKV: Eliminate I/O Overhead!

Execution time = Hit time + Miss rate X

- FP collision 1/Os — several probing 1/0s
- FP collision 1/0s

]:IJ DRAM

SSD

SSD I1/0
SSD 110

SSD 110
SSD 110

KV objects




BigKV: Eliminate I/O Overhead!

Execution time = Hit time + Miss rate X

_
[T
(LTI

SSD I1/0

— several probing 1/0s

DRAM
SSD

SSD 110

KV objects




BigKV: Eliminate I/O Overhead!

Execution time = Hit time + Miss rate X

+ Only one probing 1/0

Limit the probing distance
by adjusting the hash table organization

SSD I1/0 SSD 110

KV objects




BigKV: Eliminate I/O Overhead!

Execution time = Hit time + Miss rate X

+ Hot bucket caching

Only caching hot buckets + Only one probing 1/10
- reduce the bucket miss rate

SSD I1/0 SSD 110

KV objects




ay System

All-flash-arr.

Hashing

BigKV: Two-level Metadata Indexing (Detail)

(2) Select a bucket

128-bit

logz(s)

log,(b)

FP: 0x33

(1) Select

a target shard

NIC #I
|

Core #3 l

e #|

Core #4 1 v

| KV-Shard |

[ Kv-Shard |

¥
+ *

SSD SSD
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H SSD

(3 Lookup

[ o)

Bucket (64B) *k

DRAM [ .
(Metadata) o \
_____ ' Hash entry
SetCache (16B)
(4) Linear probin >
Flash : St
(Metadata area) 9
/ HTable (16KB)
Header

Flash

(Data area)




Time-to-live (TTL)
» TTL - object’s lifetime

» Expired object

Unnecessarily occupy the space
Should be eliminated ASAP for the high hit rate

Unnecessarily occupy
the space!

(D) Afcer TTL

Live object Expired object



Loss-prohibited Expiration is Too Costly!

» Loss-prohibited expiration

— EAGER — LAZY
95 15
Remove only expired objects exactly S W ]
£ 90 | 10
5 5
] W N Ve Vi V22
Short «-----------n-m-mo-o- > Long 110 120 110 120
Hit ratio Expired objects
AFA s pace (b) Cache hit ratio and % of expired objects

Expired object

Maintaining TTL for every object is memory
consuming (4-8B per object)



Loss-prohibited Expiration is Too Costly!

» Loss-prohibited expiration

— EAGER — LAZY
Remove only expired objects exactly

15

W ]0/_

G

\O
(9]

Percentage (%)
O
(e}

g i N Vo VAR V4V
Short «----------nn-m-mo-- > Long 110 120 110 120
Hit ratio Expired objects
AFA s P ace (b) Cache hit ratio and % of expired objects

Lots of scanning I/Os
for the loss-prohibited expiration



T TL-aware object grouping of BigKV

» Group and expire objects which have similar TTLs together
» Loss-permitted expiration

May remove still-alive objects

T'TL ranges

Medium Long

Similar TTLs

into a few bits
(e.g., 5 bits)

J

> Approximate 4-8BTTL

[

Same TTL, expired together




T TL-aware object grouping of BigKV

» Group and expire objects which have similar TTLs together
» Loss-permitted expiration

May remove still-alive objects

T'TL ranges

Medium Long

Similar TTLs

[i i‘ Iﬁ, Expire earlier

Same TTL, expired together




TTL-aware Space Management

» Proactively remove expired objects with near-zero overhead

T'TL ranges
Long
AFA space
TTLg: 0~60s
TTLy: 60~360s

TTL,:360s~0° Long




TTL-aware Space Management

» Proactively remove expired objects with near-zero overhead

TTL: 3605~

T'TL ranges
Medium Long
AFA space
i - ‘
TTLg: 0~60s fes ol || | —
TTLy: 60~360s > —




TTL-aware Space Management

» Proactively remove expired objects with near-zero overhead

TTL: 3605~

T'TL ranges
Check the oldest groups Medium Long
- Remove expired group with )
current time >Tc +TTL, AFA space
Tc Tc
TTLg: 0~60s -1
TTLy: 60~360s < —




TTL-aware Space Management

» Proactively remove expired objects with near-zero overhead

T'TL ranges
Check the oldest groups Medium Long
- Remove expired group with
current time >Tc +TTL, AFA space
Jis N ‘
TTLg: 0~60s ol | | —
TTLy: 60~360s > —
TTL - 360s~00 ‘ y All expired over a long time
L: 3BV ] A - No data loss penalty
Removed ‘ Expired Live ]




No Expired Group?

» If there is no expired group, choose the oldest group

T'TL ranges
Medium Long
AFA space
New ; .
TTLg: 0~60s - >
1L 60~360s | (][] =t
— — ¥
TTL:360s~0 | ([ ][] -
1Ofdest

FIFO Queue



Problem of RAID for Fault-tolerance

» Loss-prohibited RAID
» Always protect data

» Performance/capacity overheads due to parity blocks

Hash table Parity
KV objects blocks

RAID-parity



BigKV: Reactive Fault-tolerance with Sharding

» Loss-permitted fault-tolerance
» High scalability, but losing objects

» Sharding rather than striping

o Isolating loss penalty

High scalability but losing all data!

e

RAID-stripe?



BigKV: Reactive Fault-tolerance with Sharding

» Loss-permitted fault-tolerance
» High scalability, but losing objects

» Sharding rather than striping

o Isolating loss penalty

Isolate the loss penalty

Hash table
KV objects

Shards



BigKV: Reactive Fault-tolerance with Sharding (cont.)

» Reactive fault-tolerance on SSD failures mitigate the loss penalty
» Request forwarding — prevent further cache misses
» Fast recovery — migrate objects to the replaced shard

Requests

Forwarding

‘
Reduce
Hash table repeated misses!
KV objects

Shards



BigKV: Reactive Fault-tolerance with Sharding (cont.)

» Reactive fault-tolerance on SSD failures mitigate the loss penalty
» Request forwarding — prevent further cache misses
» Fast recovery — migrate objects to the replaced shard

Requests

Migration

Hash table Fast recover
KV objects 4

Shards




Experimental Setup

» Implemented on an AFA machine
64GB DRAM / 8x 3.84TB SSD

» Evaluation

Overall performance
Hit rate

Fault-tolerance

» Benchmarks
YCSB

Cache traces



Results: Performance withYCSB

» Baseline: entire table in DRAM / the others: two-level hash table
» Outperform the existing SSD KV caches by removing |/O overheads

3.1 x improvement

Outperform the baseline by ignoring FP collisions 68% shorter latency
EBASELINE BuDepot DSlickCache OBigKV BASELINE SlickCache BigKV
60 9%
— el

50 - 99 88 183 201 (49% shorter)
g 40 »
S 30 — /f 99.9 118 247 1,655 167
> . II ' ’ (73% shorter)

|
10 H H H 208
. M ] _\ 99.99 208 115 1993 865 shorten)
A B C D F GEOMEAN

Throughput Lookup tail latency (us)



Results: Hit Rate with Traces

» Achieve the target hit rate with 2x smaller space with near-zero I/O overhead

Proactively remove expired objects

2x larger effective-capacity

(1TB BigKkV == 2TB uDepot) Near-zero 1/0 overhead
=®-Scanning =®-uDepot BigkV 100
0.94 100
092 | O — A 80
09 F 3 60
0.88 |
40
0.86 |
0.84 | 2 0 @
0.82 : ' 0 -
768GB ITB 1.5TB 2TB Scanning uDepot BigKV

Hit rates over various capacities 1/O overhead for reclaiming free space



Results: Fault-tolerance

» Hit rate & performance improvement without parity overhead

HIT RATE

Improved hit rate in normal cases High scalability
Hit rate recovery 5.4x higher throughput with 8 SSDs
—RAID BigKV (No fault) BigKV (Fault) -e-BigKV-RAID - BigKV
0.9 800
0.85 600
4
0.8 g 400
- ¥
0.75 200
%
07 fault Replacement 0
| TIME | 2 4 8
# OF SSDS

Hit rate Performance scalability



Results: Comparison with Memcached and Fatcache

» Memcached & Fatcache stop working after metadata cannot be kept in DRAM
» Swap versions still work, but provide terrible throughput
» BigKV provides consistent throughput, regardless of input data set sizes

©Memcached #-Fatcache = BigKV
>¢Memcached-Swap = Fatcache-Swap
12088

_____________________________________________________________

o0
-

J

____________________________________________________________

N
o

Throughput (Kops/s)

O , , , = g —>¢ =
NP D PGP (G eGP (TP

Data set size




Conclusion

» Current: An AFA is a cost-effective alternative for caching large objects
» Motivation: Existing loss-prohibited techniques cannot fully leverage the AFA

» Solution: BigKV efficiently utilizes the AFA with loss-permitted techniques
|. Collision-oblivious two-level hashing
2. TTL-aware space management
3. Reactive fault-tolerance

» Results
3.1x higher throughput, 68% shorter latency
2x larger effective-capacity

High scalability



Thank You !

Sungjin Lee (sungjin.lee@dgist.ac.kr)
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