‘- DATA-INTENSIVE

COMPUTING SYSTEMS

N LABORATORY

All-Flash Array Key-Value Cache for Large Objects

Jinhyung Koo, Jinwook Bae, Minjeong Yuk, Sungkyun Oh, Jungwoo Kim

Jung-soo Park!, Eunji Lee?, Bryan S. Kim3, and Sungjin Lee

DGIST 'WineSoft 2Soongsil University 3Syracuse University

Operating System Support for Next Generation Large Scale NVRAM (NVRAMOS’23)
(Presented at 18th ACM European Conference on Computer Systems)

2023.10.20

Today’s Presentation

Clients
. (Datacenter
- 3. Kevin Applications)
SQL File System KVS Block
gppllcatlon INSERT fwrite) get() read()
ervers SQL Adapter FS Adapter Blk Adapter
I. LightStore
v Yooy 2. PinK
KV requests hashed to
different nodes by adapters w/ Datacenter Network K lue St Devi
Consistent Hashing _ €y-va'ue Storage evice
Big Cache o | | Host Interface
4. BngV > PinK Software
v = v v KV Protocol Server
NIC NIC NIC LSM-tree Algorithm
] 5] St i
Li ghtSt ore 5 KV Store KV Store KV Store PinK Controller
Cluster e Flash Flash Flash [Hardware Accelerator]
2 v —| [Flash Controller]
0
(Storage Pool) g 2 | Exp.Net | LightStore Node
© ; ; a) a a) a
S5 2 LFlash (SSD-sized Drive) Z
N pa z z z

Limitations of Using DRAM as a Key-value Cache

» KV (Key-Value) cache

Reduce user-perceived latency and backend loads

» DRAM as a KV cache

Fit for caching small objects, but too costly for large objects!

Backend

Ratio of object size
S o o o
(W]

SN

[E—

Image server

Document server

1 8 64 512

1 8 64 512

1 8 64 512

Object size (KB) (log scale)

Need for Caching Large Objects

Distributed caching for large objects

Asked 10 years, 8 months ago Modified 9 years, 3 months ago Viewed 6k times

| want to share a very large object e.g. in orders of megabytes or even several gigabytes, between a

V'S

set of machines. The object will be written once but may be read many times. Maybe a naive
11 approach is to use a ceneteralized storage like redis. However, it may become a single point of

failure and too many requests may make a DOS attack on redis. Then, a distributed solution is
4 much more promising. But, the main concern is replicating the structure to all machines. If the

1 Answer Sorted by: Highest score (default) s
o Caching large objects in NoSQL stores is generally not a good idea, because it is expensive in term Redis for CaChIng Image files?
of memory and network bandwidth. | don't think NoSQL solutions shine when it comes to storing Asked 7 years, 4 months ago Modified 7 years, 4 months ago Viewed 17k times % Part of AWS Collective
16 large objects. Redis, memcached, and most other key/value stores are clearly not designed for this.
- If you want to store large objects in NoSQL products, you need to cut them in small pieces, and - I am using Amazon S3 for storing and retrieving images for an image storing website. The trouble

store the pieces as independent objects. This is the approach retained by 10gen for gridfs (which is is that multiple users have to retrieve same image muiltiple times.

part of the standard MongoDB distribution): Is it suggested to use Redis or memcached for caching image files by storing them directly onto it.

1 Storing images in Redis seems like a terrible idea since it will quickly fill up
the available RAM on the Redis server. Also your statement that "S3 pricing
for data transfer is much higher than compared to serving images via Redis"
sounds incorrect to me. | think you are missing something there. The
standard way to cache images is to use a CDN such as CloudFront,

AFA (All-Flash Array) as an Alternative

» Flash-based SSD provides an order of magnitude higher GB/$ than DRAM
» Satisfy the demand for caching large objects at a lower cost

36x cost-effective

|6 1x higher
onan capaciy
—>

Backend Backend

Lack of Prior Studies for AFA KV caches

SSD KV cache

SSD

AFA KV cache

* Indexing
- Kangaroo (SOSP ’21)
- FlashShield (NSDI ’19)
- SlickCache (SoCC ’18)

* Cross-layer optimization
- uDepot (FAST ’19)
- DIDACache (FAST ’17)

* No prior studies

What is the Difference b/w SSD and AFA KV caches?

+ High performance
+ Huge capacity

— Small amount of DRAM
Enough resources to manage SSDs - Many SSDs to manage
Enough DRAM Not enough DRAM

A few SSDs METONANIDN

SSD KV cache AFA KV cache

What is the Difference b/w SSD and AFA KV caches?

Capacity growth™: |.38x (SSD) > |.13x (DRAM)
of SSD slots > # of DRAM slots

Density (Gb/mm?)

1.0000 ¢

01000

0.0100 ¢

0.0010

1.35x/yr

Midron Act
Mi%on FCST
SK Hynix Act
SK Mynix FCST
Samsung Act
Sanpsung FCST
——pPrekious trend
--- Ne{/ trend

............................ | I
1990 2000 2010 2020 2030
Year

DRAM bit density

Bit denisty (Gb/mm?)

100.000 ¢

10.000 ¢

1.000 ¢

0.100 ¢

0.010 ¢

0.001

SLC/MLC/TLC
1.78x/yr

MLC/TLC/QLC

1.43x/yr

8!

TLC/QLC/PLC/HLE]
1.38x/yr - :
. 1

1 [+

Blue = Intel

Red = Micron

Purple = Intel-Micron
Grey = SKHynix

i Green = Samsung

| Orange = Kioxia

2000 2005

2010

2015

Year

2020 2025 2030

NAND Flash bit density

* Technology and Cost Trends at Advanced Nodes (2020)

Key Challenges of Existing SSD KV caches

|. Indexing

2. Expiration

3. Fault-tolerance

SSD KV cache

Perform
poorly!!!

+ High performance

+ Huge capacity

— Small amount of DRAM
- Many SSDs to manage

Not enough DRAM

METONANIDN

AFA KV cache

Challenge #1: Performance Drop of Existing Hashing

» The huge hash table does not fit in the AFA’'s DRAM
—> Must be stored both in DRAM and SSD

» Accesses to hash buckets and objects in SSD incur significant I/O overhead

Lots of 51% performance drop
Cached buckets ssbilos 0 __—_—— l_ _____________ l__.

.

Actual KV objects Baseline uDepot SlickCache
(Entire table in DRAM) (FAST '19) (SoCC '18)

DRAM

SSD

Entire hash table

PERFORMANCE

Challenge #2: Capacity & /O Overhead for Expired Objects

» Expired objects accumulate in the AFA space, resulting in the hit rate reduction

» Full-scanning for removal incurs a huge amount of I/Os

Live Expired Hit rate reduction
H I 94
ﬁ 00 | e e e e e e g e
D <%
T 88
H I N o4

Accumulated expired objects
- should be eliminated

Full scanning No expiration

Challenge #3: Poor Scalability of RAID

» RAID always protects data with parity blocks

» Unacceptable performance and capacity penalty in AFA using multiple SSDs

Not scalable performance 25% capacity waste for parity

GB/s
w

I 2 4 8
of SSDs

Motivation Summary: Performance and Capacity Penalty!

. -+ High performance
|. Indexing: two-level hash table 1, Hfgepcagacity

m) Performance degradation -— Small amount of DRAM
oﬂ-- Many SSDs to manage

2. Expiration: Do nothing or full-scanning

m) Hit rate reduction or costly scanning I/Os Not enough DRAM

METONANIDN

AFA KV cache

3. Fault-tolerance: RAID
m) Scalability problem

Is there a common factor in the challenges!?]

I

Our Approach: Data Loss

» The existing techniques all take a loss-prohibited approach

» Loss-prohibited
- Maintain all objects without any data loss

» Loss-permitted
- May lose objects when processing a task

Is the Loss-prohibited Desigh Mandatory for KV Caches? NO!

Loss => disaster Loss = cache miss

KV store KV cache
Loss-prohibited Loss-permitted
() ()

Replication Admission control

Erasure coding Eviction

.) .)
Too heavy
Loss-prohibited! for KV caches

[Indexing Expiration Fault-tolerance J

Loss = disaster
KV store

Loss-prohibited
[)

Replication
Erasure coding

Loss-prohibited
[)

Indexing
Expiration
Fault-tolerance

Loss = cache miss

.)

BigKV
Loss-permitted
4)

Admission control
Eviction
. .)
Loss-permitted
4)
Indexing
Expiration

Fault-tolerance

BigKV “Drawing the Line: Clearing Up the Differences”

Fully utilize
AFA’s SSDs

BigKV Design Overview

|. Collision-oblivious two-level hashing

Collision-oblivious object update

2. TTL-aware space management
TTL-aware grouping

3. Reactive fault-tolerance

Reactive fault-tolerance with sharding

BigKV Design Overview

All-flash-array System

NIC #I

NIC #2

KV-Master | Core #|

A

Core #2 KV-Master

A

Core #3

A 4

Core #4

A 4

KV-Shard

KV-Shard

Core #N

\4

KV-Shard

RAID-0 -

Fault-Tolerance:
Reactive fault-tolerance

S
.
.
S
.

Indexing:
Collision-oblivious
two-level hashing

Expiration:
TTL-aware
space management

Performance Problem of Existing Indexing

» Level | in DRAM: recently-accessed hash buckets
» Level 2 in SSD: entire hash table
» Each hash buckets point to actual KV objects

Cached buckets
(Level I)
___ DRAM

SSD
Entire hash table

(Level 2)

KV objects

Performance Problem of Existing Indexing

Execution time = Hit time + Miss rate X Miss time

Cached
Buckets

SSD

KV objects

Performance Problem of Existing Indexing

Execution time = Hit time + Miss rate X Miss time

L

Cached
Buckets
DRAM

SSD

SSD I1/0

KV objects

Performance Problem of Existing Indexing

Execution time = Hit time + Miss rate X
- several probing 1/Os

Cached]:I
Buckets
DRAM

---------------------- SSD-HOsfor probing -------------"N-r-rmmoommmmoe

KV objects

Performance Problem of Existing Indexing

Execution time = Hit time + Miss rate X

— FP collision 1/Os - several probing 1/Os
FP:10 — FP collision 1/0s
for Obj B

Fingerprint (FP) collision overhead

FP:10 L

for Obj A

DRAM

SSD

SSD I1/0 SSD 110
SSD 110 SSD 110

KV objects

Fingerprint Collision

» Fingerprint (FP) Write Req: ‘B’ FP“10’
Integer obtained by hashing an object’s full-key

Probmg @

» FP collision

Same FP, different full-keys Buckets

@ Read @ Read/Write
(= B) == B)

Fingerprint Collision

» Fingerprint (FP) Write Req: ‘B’ FP“10’

Integer obtained by hashing an object’s full-key

Probmg @

» FP collision

Same FP, different full-keys Buckets

Incur additional object reads

@ Read/Write

Overhead!
, @ Read
e g (=E)
» Loss-prohibited indexing A 5
Store all objects, ignoring FP collisions ———

FP collision

Collision-oblivious Hashing of BigKV

» No FP collisions Write Req:‘B’, FP“10’
When writing an object,
simply overwrite the FP-matched bucket @)|Probing
No additional object reads
FP:
Buckets 10
FP-collided object @ Write

- Not reachable! == B)

A B

Collision-oblivious Hashing of BigKV

» No FP collisions Write Req:‘B’, FP ‘10’
When writing an object,
simply overwrite the FP-matched bucket @|Probing
No additional object reads
FP:
Buckets 10
» Loss-permitted indexing
T oct
Lose the old FP-collided objec FP-collided object > Wiie
- Not reachable! == B)
» Data loss penalty!? A B
Minimized by optimizations
Loss!

Large FP size, hash table organization
5 misses out of 400M requests

Minimal drop in cache hit ratio

BigKV: Eliminate I/O Overhead!

Execution time = Hit time + Miss rate X

- FP collision 1/Os — several probing 1/0s
- FP collision 1/0s

]:IJ DRAM

SSD

SSD I1/0
SSD 110

SSD 110
SSD 110

KV objects

BigKV: Eliminate I/O Overhead!

Execution time = Hit time + Miss rate X

_
[T
(LTI

SSD I1/0

— several probing 1/0s

DRAM
SSD

SSD 110

KV objects

BigKV: Eliminate I/O Overhead!

Execution time = Hit time + Miss rate X

+ Only one probing 1/0

Limit the probing distance
by adjusting the hash table organization

SSD I1/0 SSD 110

KV objects

BigKV: Eliminate I/O Overhead!

Execution time = Hit time + Miss rate X

+ Hot bucket caching

Only caching hot buckets + Only one probing 1/10
- reduce the bucket miss rate

SSD I1/0 SSD 110

KV objects

ay System

All-flash-arr.

Hashing

BigKV: Two-level Metadata Indexing (Detail)

(2) Select a bucket

128-bit

logz(s)

log,(b)

FP: 0x33

(1) Select

a target shard

NIC #I
|

Core #3 l

e #|

Core #4 1 v

| KV-Shard |

[Kv-Shard |

¥
+ *

SSD SSD

+

H SSD

(3 Lookup

[o)

Bucket (64B) *k

DRAM [.
(Metadata) o \
_____ ' Hash entry
SetCache (16B)
(4) Linear probin >
Flash : St
(Metadata area) 9
/ HTable (16KB)
Header

Flash

(Data area)

Time-to-live (TTL)
» TTL - object’s lifetime

» Expired object

Unnecessarily occupy the space
Should be eliminated ASAP for the high hit rate

Unnecessarily occupy
the space!

(D) Afcer TTL

Live object Expired object

Loss-prohibited Expiration is Too Costly!

» Loss-prohibited expiration

— EAGER — LAZY
95 15
Remove only expired objects exactly S W]
£ 90 | 10
5 5
] W N Ve Vi V22
Short «-----------n-m-mo-o- > Long 110 120 110 120
Hit ratio Expired objects
AFA s pace (b) Cache hit ratio and % of expired objects

Expired object

Maintaining TTL for every object is memory
consuming (4-8B per object)

Loss-prohibited Expiration is Too Costly!

» Loss-prohibited expiration

— EAGER — LAZY
Remove only expired objects exactly

15

W]0/_

G

\O
(9]

Percentage (%)
O
(e}

g i N Vo VAR V4V
Short «----------nn-m-mo-- > Long 110 120 110 120
Hit ratio Expired objects
AFA s P ace (b) Cache hit ratio and % of expired objects

Lots of scanning I/Os
for the loss-prohibited expiration

T TL-aware object grouping of BigKV

» Group and expire objects which have similar TTLs together
» Loss-permitted expiration

May remove still-alive objects

T'TL ranges

Medium Long

Similar TTLs

into a few bits
(e.g., 5 bits)

J

> Approximate 4-8BTTL

[

Same TTL, expired together

T TL-aware object grouping of BigKV

» Group and expire objects which have similar TTLs together
» Loss-permitted expiration

May remove still-alive objects

T'TL ranges

Medium Long

Similar TTLs

[i i‘ Iﬁ, Expire earlier

Same TTL, expired together

TTL-aware Space Management

» Proactively remove expired objects with near-zero overhead

T'TL ranges
Long
AFA space
TTLg: 0~60s
TTLy: 60~360s

TTL,:360s~0° Long

TTL-aware Space Management

» Proactively remove expired objects with near-zero overhead

TTL: 3605~

T'TL ranges
Medium Long
AFA space
i - ‘
TTLg: 0~60s fes ol || | —
TTLy: 60~360s > —

TTL-aware Space Management

» Proactively remove expired objects with near-zero overhead

TTL: 3605~

T'TL ranges
Check the oldest groups Medium Long
- Remove expired group with)
current time >Tc +TTL, AFA space
Tc Tc
TTLg: 0~60s -1
TTLy: 60~360s < —

TTL-aware Space Management

» Proactively remove expired objects with near-zero overhead

T'TL ranges
Check the oldest groups Medium Long
- Remove expired group with
current time >Tc +TTL, AFA space
Jis N ‘
TTLg: 0~60s ol | | —
TTLy: 60~360s > —
TTL - 360s~00 ‘ y All expired over a long time
L: 3BV] A - No data loss penalty
Removed ‘ Expired Live]

No Expired Group?

» If there is no expired group, choose the oldest group

T'TL ranges
Medium Long
AFA space
New ; .
TTLg: 0~60s - >
1L 60~360s | (][] =t
— — ¥
TTL:360s~0 | ([][] -
1Ofdest

FIFO Queue

Problem of RAID for Fault-tolerance

» Loss-prohibited RAID
» Always protect data

» Performance/capacity overheads due to parity blocks

Hash table Parity
KV objects blocks

RAID-parity

BigKV: Reactive Fault-tolerance with Sharding

» Loss-permitted fault-tolerance
» High scalability, but losing objects

» Sharding rather than striping

o Isolating loss penalty

High scalability but losing all data!

e

RAID-stripe?

BigKV: Reactive Fault-tolerance with Sharding

» Loss-permitted fault-tolerance
» High scalability, but losing objects

» Sharding rather than striping

o Isolating loss penalty

Isolate the loss penalty

Hash table
KV objects

Shards

BigKV: Reactive Fault-tolerance with Sharding (cont.)

» Reactive fault-tolerance on SSD failures mitigate the loss penalty
» Request forwarding — prevent further cache misses
» Fast recovery — migrate objects to the replaced shard

Requests

Forwarding

‘
Reduce
Hash table repeated misses!
KV objects

Shards

BigKV: Reactive Fault-tolerance with Sharding (cont.)

» Reactive fault-tolerance on SSD failures mitigate the loss penalty
» Request forwarding — prevent further cache misses
» Fast recovery — migrate objects to the replaced shard

Requests

Migration

Hash table Fast recover
KV objects 4

Shards

Experimental Setup

» Implemented on an AFA machine
64GB DRAM / 8x 3.84TB SSD

» Evaluation

Overall performance
Hit rate

Fault-tolerance

» Benchmarks
YCSB

Cache traces

Results: Performance withYCSB

» Baseline: entire table in DRAM / the others: two-level hash table
» Outperform the existing SSD KV caches by removing |/O overheads

3.1 x improvement

Outperform the baseline by ignoring FP collisions 68% shorter latency
EBASELINE BuDepot DSlickCache OBigKV BASELINE SlickCache BigKV
60 9%
— el

50 - 99 88 183 201 (49% shorter)
g 40 »
S 30 — /f 99.9 118 247 1,655 167
> . II ' ’ (73% shorter)

|
10 H H H 208
. M] _\ 99.99 208 115 1993 865 shorten)
A B C D F GEOMEAN

Throughput Lookup tail latency (us)

Results: Hit Rate with Traces

» Achieve the target hit rate with 2x smaller space with near-zero I/O overhead

Proactively remove expired objects

2x larger effective-capacity

(1TB BigKkV == 2TB uDepot) Near-zero 1/0 overhead
=®-Scanning =®-uDepot BigkV 100
0.94 100
092 | O — A 80
09 F 3 60
0.88 |
40
0.86 |
0.84 | 2 0 @
0.82 : ' 0 -
768GB ITB 1.5TB 2TB Scanning uDepot BigKV

Hit rates over various capacities 1/O overhead for reclaiming free space

Results: Fault-tolerance

» Hit rate & performance improvement without parity overhead

HIT RATE

Improved hit rate in normal cases High scalability
Hit rate recovery 5.4x higher throughput with 8 SSDs
—RAID BigKV (No fault) BigKV (Fault) -e-BigKV-RAID - BigKV
0.9 800
0.85 600
4
0.8 g 400
- ¥
0.75 200
%
07 fault Replacement 0
| TIME | 2 4 8
OF SSDS

Hit rate Performance scalability

Results: Comparison with Memcached and Fatcache

» Memcached & Fatcache stop working after metadata cannot be kept in DRAM
» Swap versions still work, but provide terrible throughput
» BigKV provides consistent throughput, regardless of input data set sizes

©Memcached #-Fatcache = BigKV
>¢Memcached-Swap = Fatcache-Swap
12088

o0
-

J

__

N
o

Throughput (Kops/s)

O , , , = g —>¢ =
NP D PGP (G eGP (TP

Data set size

Conclusion

» Current: An AFA is a cost-effective alternative for caching large objects
» Motivation: Existing loss-prohibited techniques cannot fully leverage the AFA

» Solution: BigKV efficiently utilizes the AFA with loss-permitted techniques
|. Collision-oblivious two-level hashing
2. TTL-aware space management
3. Reactive fault-tolerance

» Results
3.1x higher throughput, 68% shorter latency
2x larger effective-capacity

High scalability

Thank You !

Sungjin Lee (sungjin.lee@dgist.ac.kr)

	슬라이드 1: All-Flash Array Key-Value Cache for Large Objects
	슬라이드 2: Today’s Presentation
	슬라이드 3: Limitations of Using DRAM as a Key-value Cache
	슬라이드 4: Need for Caching Large Objects
	슬라이드 5: AFA (All-Flash Array) as an Alternative
	슬라이드 6: Lack of Prior Studies for AFA KV caches
	슬라이드 7: What is the Difference b/w SSD and AFA KV caches?
	슬라이드 8: What is the Difference b/w SSD and AFA KV caches?
	슬라이드 9: Key Challenges of Existing SSD KV caches
	슬라이드 10: Challenge #1: Performance Drop of Existing Hashing
	슬라이드 11: Challenge #2: Capacity & I/O Overhead for Expired Objects
	슬라이드 12: Challenge #3: Poor Scalability of RAID
	슬라이드 13: Motivation Summary: Performance and Capacity Penalty!
	슬라이드 14: Our Approach: Data Loss
	슬라이드 15: Is the Loss-prohibited Design Mandatory for KV Caches? NO!
	슬라이드 16: Are the Lossless Designs Mandatory for KV cache? NO!
	슬라이드 17: BigKV Design Overview
	슬라이드 18: BigKV Design Overview
	슬라이드 19: Performance Problem of Existing Indexing
	슬라이드 20: Performance Problem of Existing Indexing
	슬라이드 21: Performance Problem of Existing Indexing
	슬라이드 22: Performance Problem of Existing Indexing
	슬라이드 23: Performance Problem of Existing Indexing
	슬라이드 24: Fingerprint Collision
	슬라이드 25: Fingerprint Collision
	슬라이드 26: Collision-oblivious Hashing of BigKV
	슬라이드 27: Collision-oblivious Hashing of BigKV
	슬라이드 28: BigKV: Eliminate I/O Overhead!
	슬라이드 29: BigKV: Eliminate I/O Overhead!
	슬라이드 30: BigKV: Eliminate I/O Overhead!
	슬라이드 31: BigKV: Eliminate I/O Overhead!
	슬라이드 32: BigKV: Two-level Metadata Indexing (Detail)
	슬라이드 33: Time-to-live (TTL)
	슬라이드 34: Loss-prohibited Expiration is Too Costly!
	슬라이드 35: Loss-prohibited Expiration is Too Costly!
	슬라이드 36: TTL-aware object grouping of BigKV
	슬라이드 37: TTL-aware object grouping of BigKV
	슬라이드 38: TTL-aware Space Management
	슬라이드 39: TTL-aware Space Management
	슬라이드 40: TTL-aware Space Management
	슬라이드 41: TTL-aware Space Management
	슬라이드 42: No Expired Group?
	슬라이드 43: Problem of RAID for Fault-tolerance
	슬라이드 44: BigKV: Reactive Fault-tolerance with Sharding
	슬라이드 45: BigKV: Reactive Fault-tolerance with Sharding
	슬라이드 46: BigKV: Reactive Fault-tolerance with Sharding (cont.)
	슬라이드 47: BigKV: Reactive Fault-tolerance with Sharding (cont.)
	슬라이드 48: Experimental Setup
	슬라이드 49: Results: Performance with YCSB
	슬라이드 50: Results: Hit Rate with Traces
	슬라이드 51: Results: Fault-tolerance
	슬라이드 52: Results: Comparison with Memcached and Fatcache
	슬라이드 53: Conclusion
	슬라이드 54: Thank You !

