DLRM Acceleration with

CMM-HTM (CXL Memory Module – Hybrid)

(a.k.a Memory-Semantic SSDTM)

Jeong-Uk Kang

References

https://storagedeveloper.org/conference/agenda/sessions/ssd-cxl-interfaces-brilliantly-stupid-or-stupidly-brilliant

Memory Hierarchy

Keep hot data close to CPU using data locality

Memory Hierarchy

Traditional Workload

Needs (1): Secondary Memory

High overhead of virtual memory implementation

edia.kingston.com/pdfs/MemoryandStorageBestPracticesforDesktopVirtualization_lr.pdf

https://redis.com/wp-content/uploads/2023/08/redis-enterprise-auto-tiering-datasheet.pd

Needs (2): Fast Small IO

High overhead of IOs smaller than 4KB

Source: Meta

CXL (Compute Express Link)

Asynchronous blocking memory interface with optional coherency

CXL Device Types

Device types based on protocols, not functions

CMM-HTM (CXL Memory Module – Hybrid)

a.k.a Memory-Semantic SSD™

A Hybrid device of DRAM and NAND with CXL interfaces

A new SSD that provides a *memory-like interface* based on CXL as a way to access NAND flash at the same time with the legacy block interface

- Byte-addressable
- Storage area mapped to physical address

Concepts of CMM-HTM

Memory Solutions with CXL

Memory Expander CXL Type 3 device CXL device with high bandwidth and low latency without a long Data path .mem CXL Memory

CMM-HTM (CXL Memory Module - Hybrid) s/

SAMSUNG

Expanding Capacity and Utilization of Memory for Al

Larger capacity memory device at lower TCO
Best suited for Tiered Memory Solutions

Small Granularity Access

64-byte cache-granular fine grained access to meet modern AI/ML workload needs

Speed comparable to DRAM with NAND storage backed and external battery power supply

CMM-HTM Architecture

Optimized for Al Workload

CXL Protocol for Al

• Low latency enabled by CXL. mem protocol

Built-in DRAM Cache for Al

- DRAM cache to move **small-sized** data chunks suitable for AI/ML Applications
- Improve data store efficiency by writing data at the DRAM speed

Secondary Memory Options

Example of Memory Configuration with TM Mode

- No page migration between storage and DRAM
- No extra I/O traffic for small size access

- Cacheable, H/W cache coherence protocol supported
- Supporting user-level prefetching

<2TB Main Memory (Case-1)>

<1-Tier Host-managed Device Memory (Case-2)>

<2-Tier Host-managed Device Memory (Case-3)>

Fine-grain Access to Storage Data

Writes a file via NVMe interface (CXL.io), and performs *mmap()*

Reads the data via memory interface (CXL.mem)

Tiered Memory

Secondary Memory Option 1 Performance

Key Features & Benefits

- Small granularity data access enable performance scales with cache hits
- Direct memory access advantage; no software cache overhead
- Large memory capacity at lower TCO

^{**}Compared to PCIe Gen4 NVMe SSD

Efficient Al Recommendation system

DLRM Performance with Fast Small IOs

^{*} Results based on publicly available $\underline{\text{DLRM workload traces from Meta}} \text{ and FPGA based PoC CMM-H}^{\text{\tiny{IM}}}$

^{**} DLRM: Deep Learning Recommendation Model

DRAM Utilization

Comparison for Large Al Workload

Movie Recommendation System Demo

SAMSUNG

End-to-End Performance

Managing in-device DRAM is the key!

Key Features & Benefits

- Close to DRAM end-to-end performance at a lower TCO*
- Up to ~10x better end-to-end performance
 with FPGA-based PoC**

^{*} When 100% hit ratio

Thank You