White-Box Optimization Approaches for Ultra Large-Capacity NAND Flash-Based SSDs

NVRAMOS 2024

Prof. Jisung Park

2024.10.24

Outline

- Ultra Large-Capacity NAND Flash-Based SSDs
- RiF: Improving Read Performance of Modern SSDs Using an On-Die Early-Retry Engine
- AERO: Adaptive Erase Operation for Improving Lifetime and Performance of Modern NAND Flash-Based SSDs
- Conclusion

Demands for Unprecedented SSD Capacity

- SSD capacity exceeding several tens of terabytes
	- \circ e.g., Samsung's BM1743 and Solidigm's D5-P5336 (61.44 TB)
	- o Effective at reducing TCO of data centers
		- Need to meet explosive storage-capacity requirements from data-intensive applications (e.g., AI)
		- Higher density \rightarrow Fewer SSDs \rightarrow Fewer storage servers \rightarrow Lower power/area \rightarrow Lower cooling cost
	- Equipped w/ hundreds high-density NAND flash chips
		- \blacksquare ~200 wordline (WL) layers vertically stacked
		- Advanced multi-level cell (MLC) technology (e.g., QLC)

AI/ML > Samsung takes on Solidigm with 61.44 TB QLC SSD

AI/ML Flash

Samsung takes on Solidigm with 61.44 TB QLC SSD

Chris Mellor - July 2, 2024

Potential Problems in ULC-SSD Design

- Significant reliability issues in high-density NAND flash memory ○ Lifetime and performance degradation
- Limited SSD-internal I/O bandwidth ○ Due to limited number of channels
- Increasing power consumption ○ Inevitable to put more chips in a device w/ limited power budget
- Metadata overhead
	- Linearly increases with SSD capacity

White-Box Approaches for SSD Optimization

- Enables taking full advantage of the system's potential
	- Opposite to black-box approaches that optimize a single system layer w/o deep understanding of other layers' internal

Problem: Limited SSD Lifetime

White-Box Approaches for SSD Optimization

- Enables taking full advantage of the system's potential
	- Opposite to black-box approaches that optimize a single system layer w/o deep understanding of other layers' internal

Problem: Limited SSD Lifetime

White-Box Approaches for SSD Optimization

- Enables taking full advantage of the system's potential
	- Opposite to black-box approaches that optimize a single system layer w/o deep understanding of other layers' internal

White-box optimization approach across system layers **SSD** is the key to simultaneously meeting various requirements

Outline

- Ultra Large-Capacity NAND Flash-Based SSDs
- RiF: Improving Read Performance of Modern SSDs Using an On-Die Early-Retry Engine
- AERO: Adaptive Erase Operation for Improving Lifetime and Performance of Modern NAND Flash-Based SSDs
- Conclusion

RiF: Improving Read Performance of Modern SSDs Using an On-Die Early-Retry Engine

Myoungjun Chun^{*1}, Jaeyong Lee^{*1}, Myungsuk Kim², Jisung Park³, Jihong Kim¹ ¹Seoul National University, ²Kyungpook National University, ³POSTECH ¹{mjchun, jylee, jihong}@davinci.snu.ac.kr, ²ms.kim@knu.ac.kr, ³jisung.park@postech.ac.kr

2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

RiF: Outline

- Read-Retry in Modern SSDs
- Key Idea: Retry-in-Flash (RiF)
- Evaluation Results
- Summary

Errors in NAND Flash Memory

• NAND flash memory stores data by using cells' V_{TH} levels

Errors in NAND Flash Memory

- Various sources shift and widen programmed V_{TH} states
	- Retention loss, program interference, read disturbance, etc.

Error-Correcting Codes (ECC)

- Store redundant information (ECC parity)
	- To detect and correct row bit errors

Error-Correcting Codes (ECC)

- Store redundant information (ECC parity)
	- To detect and correct row bit errors

Errors in Modern NAND Flash Memory

• High row bit-error rates (RBER) in MLC NAND flash memory

 \circ Narrow margin b/w adjacent V_{TH} states

Errors in Modern NAND Flash Memory

- High row bit-error rates (RBER) in MLC NAND flash memory
	- \circ Narrow margin b/w adjacent V_{TH} states

Strong ECC: Corrects ~80 bit errors per 1-KiB data Not Scalable: Area, power, latency, … What if RBER > ECC Capability?

Read-Retry Operation

• Reads the page again with adjusted V_{RFF} values

Read-Retry Operation

• Reads the page again with adjusted V_{RFF} values

Read-retry: Adjusting V_{REF} values

Read using properly-adjusted V_{REF} values →**Decreases # of raw bit errors to be lower than the ECC capability**

Read-Retry: Performance Overhead

Read-Retry: Performance Overhead

Read-retry increases the read latency almost linearly with the number of retry steps

Existing Mitigations

- Reducing $#$ of retry steps
	- e.g., Process-similarity-aware optimization [MICRO'19], Sentinel [MICRO'21], and SwiftRead [ISSCC'22]
	- Quickly identify the near-optimal read-reference voltage levels
		- Based on the error characteristics of NAND flash memory
		- Enables skipping unnecessary retry steps
- Reducing the latency of each retry step
	- Adaptive read-retry [ASPLOS'22]
	- Reduce **tR** to be just enough to reliably read data in the final retry step
		- Leveraging high error-correction capability margin in modern SSDs

Impact of Read Retry on SSD Performance

- Motivational experiments using MQSim-E [IEEE CAL 2022]
	- \circ SSD_{real} w/ optimal Swift-Read (up to one retry step)
	- \circ SSD_{ideal} w/ no read-retry

Root Cause Analysis

- Significant waste of time for uncorrectable page reads due to contentions at
	- Channel: A limited number of channels shared by a lot more chips
		- Complex ECC (e.g., LDPC) due to high raw bit-error rate (RBER): Hindering on-die ECC
	- ECC engine: The higher the RBER, the longer the decoding latency

Key Idea: Retry-in-Flash (RiF)

- Performs read-retry inside a NAND flash chip
	- Directly eliminates channel contention
	- Removes ECC decoding for uncorrectable reads off the critical path as well

Key Idea: Retry-in-Flash (RiF)

- Performs read-retry inside a NAND flash chip
	- Directly eliminates channel contention
	- Removes ECC decoding for uncorrectable reads off the critical path as well

Key Challenge and Optimizations

- Challenge: Hard constraints on in-flash RiF module
	- Limited area to put RiF module inside a chip
	- Power can also be another issue
- Optimization 1: Prediction-centric module
	- Insight: Read-retry only requires identification of read-failure
		- But not completion of error correction
	- Proposal: Syndrome weight-based prediction
- Optimization 2: Subpage-based prediction
	- Hypothesis: Raw-bit errors are likely to be evenly distributed within a page
		- All stored data must be randomized in modern NAND flash memory
	- Proposal: Reduce input size for prediction \rightarrow Further area reduction

Syndrome Weight-Based Prediction

• Key insight: Read-retry does not require entire ECC decoding, but only identification of whether the page is correctable

H = a parity check matrix, *c* = a codeword = $(c_0, c_1 ... c_{N-1})$, *S* = a syndrome vector = $(s_0, s_1, s_2, ... s_{M-1})$

$$
H = \frac{1}{\sum_{\substack{s=1 \text{odd } s}}^{n} \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}} \quad S^T = Hc^T = \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = \begin{bmatrix} c_1 \oplus c_3 \oplus c_4 \oplus c_7 \\ c_0 \oplus c_1 \oplus c_2 \oplus c_5 \\ c_2 \oplus c_5 \oplus c_6 \oplus c_7 \\ c_0 \oplus c_3 \oplus c_4 \oplus c_6 \end{bmatrix}
$$

\n1's represent the bit
\nposition of a codeword
\n*South no errors in c0, c3, c4, c6*
\n**Symdrome Weight** *SW*
\n
$$
(s_0 + s_1 + s_2 + s_4)
$$
\n
$$
SW > Thr
$$
\n
$$
SW > Thr
$$
\n
$$
S^T = Hc^T = \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{bmatrix} = \begin{bmatrix} c_1 \oplus c_3 \oplus c_4 \oplus c_7 \\ c_0 \oplus c_1 \oplus c_2 \oplus c_5 \\ c_2 \oplus c_5 \oplus c_6 \oplus c_7 \\ c_1 \oplus c_2 \oplus c_4 \oplus c_6 \end{bmatrix}
$$

Subpage-Based Prediction

• Hypothesis: Errors are likely to be evenly distributed within a page, which allows SW-based prediction w/ part of the data

RBER dist. of 4-KiB chunks in a 16-KiB page

RiF: Validation

• RiF module achieves 98.7% prediction accuracy

Evaluation Methodology

- Simulator: MQSim-E [IEEE CAL'22]
	- Extend NAND flash models w/ real-device characterization results
- Workloads: 8 real-world traces
	- 6 from AliCloud traces
	- 2 from Systor trace
- Comparisons with
	- o SSD_{ideal}: No read-retry
	- SENC: w/ Sentinel [MICRO'21]
	- SWR: Swift-Read [ISSCC'22]
	- RiFSSD: Our proposal

Result: I/O Bandwidth

• RiF significantly improves I/O bandwidth by 71.2% and 61.2% on average over SENC and SWR, respectively

Result: Channel Usage Breakdown

• RiF significantly reduces wasted channel bandwidth due to UNCOR and ECCWAIT compared to SENC and SWR

RiF: Summary

- Problem: Significant performance degradation due to read retry
	- Even w/ SotA mitigation techniques
	- Due to wastes for uncorrectable reads
- Key idea: Retry-in-Flash (RiF)
	- Performs read-retry inside a NAND flash chip
	- Syndrome weight-based prediction of read failure
- Results: Significant performance improvement (average 72.1% at 2K P/E cycles) compared to SotA

Outline

- Ultra Large-Capacity NAND Flash-Based SSDs
- RiF: Improving Read Performance of Modern SSDs Using an On-Die Early-Retry Engine
- AERO: Adaptive Erase Operation for Improving Lifetime and Performance of Modern NAND Flash-Based SSDs
- Conclusion

AERO: Adaptive Erase Operation

AERO: Adaptive Erase Operation for Improving Lifetime and Performance of Modern NAND Flash-Based SSDs

Sungjun Cho allencho1222@postech.ac.kr **POSTECH**

Republic of Korea

Gyeongseob Seo

syhbong9@knu.ac.kr Kyungpook National University Republic of Korea

Beomjun Kim

beomjun0816@knu.ac.kr Kyungpook National University Republic of Korea

Onur Mutlu

omutlu@gmail.com ETH Zürich Switzerland

Hyunuk Cho

gusdnr9779@postech.ac.kr **POSTECH** Republic of Korea

Myungsuk Kim

ms.kim@knu.ac.kr Kyungpook National University Republic of Korea

Jisung Park jisung.park@postech.ac.kr **POSTECH** Republic of Korea

The 29th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS)

AERO: Outline

- Erase Operation in Modern NAND Flash-Based SSDs
- Key Idea: Adaptive Erase Operation (AERO)
- Evaluation Results
- Summary
NAND Flash Organization

• NAND flash memory is hierarchically organized

Program and Erase Operations

• Program operation writes data in a WL granularity

Program and Erase Operations

● Erase operation erases data in a **block granularity**

Program and Erase Operations

● Erase operation erases data in a **block granularity**

Erase (program) operation only ejects (injects) electrons: Erase-before-write property (data cannot be overwritten)

Flash block

- Erase operation consists of two steps
	- Erase pulse (EP)
	- Verify read (VR)

Time

- Erase operation consists of two steps
	- \circ Erase pulse (EP): Applies high voltage for fixed latency (3.5 ms)
	- Verify read (VR)

- Erase operation consists of two steps
	- \circ Erase pulse (EP): Applies high voltage for fixed latency (3.5 ms)
	- Verify read (VR): Checks if a block is completely erased

• Erase operation consists of two steps

○ Erase pulse (EP): Applies high voltage for fixed latency (3.5) Long latency and high voltage in erase operations

BL
BL
BL
BL
BL
BL Lifetime: A block becomes unusable after experiencing a certain number of program and erase cycles (P/E cycles)

• Erase operation consists of two steps

○ Erase pulse (EP): Applies high voltage for fixed latency (3.5) Long latency and high voltage in erase operations

BL
BL
BL
BL
BL
BL Lifetime: A block becomes unusable after experiencing a certain number of program and erase cycles (P/E cycles)

or
nc **H** Performance: An erase operation can delay user requests for a long time, significantly increasing read tail latency

tEP = 3.5

(fixed)

White-Box Optimization Approaches for Ultra Large-Capacity NAND Flash-Based SSDs 44

Time

Erase Failure

• As P/E cycle increases, erasing a block becomes more difficult

Incremental Step Pulse Erasure (ISPE)

- As P/E cycle increases, erasing a block becomes more difficult
	- o ISPE: Performs additional erase pulse with higher voltage

High Latency of Erase Operation

• Erase failure frequently occurs as P/E cycle increases

High Latency of Erase Operation

• Erase failure frequently occurs as P/E cycle increases

High Latency of Erase Operation

• Erase failure frequently occurs as P/E cycle increases

Erase Latency Variation

• Actual erase latency significantly varies across flash blocks

Erase Latency Variation

• Actual erase latency significantly varies across flash blocks

• Actual erase latency significantly varies across flash blocks

• Fixed latency of erase operation causes over-erase

• Fixed latency of erase operation causes over-erase

20 over-erased unnecessary damages and delays Key problem: The state of t **3.5 ms 7.0 ms 10.5 ms14.0 ms17.5 ms Total erase latency (∑ tEP): # of EP steps:** Fixed latency of erase operation causes

• Fixed latency of erase operation causes over-erase

15 20 over-erased unnecessary damages and delays Key problem: The state of t **3.5 ms 7.0 ms 10.5 ms14.0 ms17.5 ms Total erase latency (∑ tEP): # of EP steps:** Fixed latency of erase operation causes

0 5 g
|:
| n **P/E cycle count**
 P/E cycle count Goal: Minimize erase latency to improve lifetime and I/O performance

0K 1K 2K 3K 4K 5K

0

8 8.5 9 9.5 10 10.5 Total erase latency [ms]

• Fixed latency of erase operation causes over-erase

• Fixed latency of erase operation causes over-erase

• Fixed latency of erase operation causes over-erase

● Dynamic latency can minimize damages and delays

• Dynamic latency can minimize damages and delays

Figure Latency Significativy valies **BS HASH DIOCKS EVEH AL LIIE SAHIE F/L CYCIE** Challenge: Erase latency significantly varies across flash blocks even at the same P/E cycle

● FELP predicts latency based on the fail-bit count

- FELP predicts latency based on the fail-bit count
	- o Verify read counts the number of un-erased bitlines (i.e., fail bits)

- FELP predicts latency based on the fail-bit count
	- o Verify read counts the number of un-erased bitlines (i.e., fail bits)
	- Intuition: The lower the fail-bit count, the lower the latency

- FELP predicts latency based on the fail-bit count
	- o Verify read counts the number of un-erased bitlines (i.e., fail bits)
	- Intuition: The lower the fail-bit count, the lower the latency

- FELP predicts latency based on the fail-bit count
	- o Verify read counts the number of un-erased bitlines (i.e., fail bits)
	- Intuition: The lower the fail-bit count, the lower the latency

Observations for Optimization

• Many blocks only require single erase pulse in early lifetime

of EP steps: **0 1** 0 2 0 3 0 4 0 5 **3.5 ms 7.0 ms 10.5 ms14.0 ms17.5 ms Total erase latency (∑ tEP):**

Observations for Optimization

• Many blocks only require single erase pulse in early lifetime

- Split the first erase pulse into two parts
	- 1. Shallow erasure
	- 2. Remainder erasure

- Split the first erase pulse into two parts
	- 1. Shallow erasure: Short erasure with fixed latency (1 ms)
	- 2. Remainder erasure

- Split the first erase pulse into two parts
	- 1. Shallow erasure: Short erasure with fixed latency (1 ms)
	- 2. Remainder erasure: Erasure based on FELP (0 $ms \sim 2.5$ ms)

- Split the first erase pulse into two parts
	- 1. Shallow erasure: Short erasure with fixed latency (1 ms)
	- 2. Remainder erasure: Erasure based on FELP (0 $ms \sim 2.5$ ms)

• Allows incomplete erasure to further reduce erase latency

AERO w/o aggressive tEP reduction

White-Box Optimization Approaches for Ultra Large-Capacity NAND Flash-Based SSDs 72

• Allows incomplete erasure to further reduce erase latency

AERO w/o aggressive tEP reduction

• Allows incomplete erasure to further reduce erase latency

- Allows incomplete erasure to further reduce erase latency
	- Inevitably causes more errors

- Allows incomplete erasure to further reduce erase latency
	- o Inevitably causes more errors: Still can be corrected by ECC

Feasibility Validation in the Paper

- Using 160 real 3D TLC NAND flash chips, we study
	- Impact of erase pulse latency on the fail-bit count
	- Feasibility and parameter exploration of shallow erasure
	- Reliability characteristics of incompletely erased block
	- Applicability of AERO for other types of chips
		- 2D TLC and 3D MLC

[Please refer to the paper!](https://arxiv.org/pdf/2404.10355.pdf)

• Extend flash translation layer (FTL) w/ two data structures

- Extend flash translation layer (FTL) w/ two data structures
	- o Shallow erasure flags (SEF): Check if shallow erasure is required

- Extend flash translation layer (FTL) w/ two data structures
	- Shallow erasure flags (SEF): Check if shallow erasure is required
	- Erase-timing parameter table (EPT): Contains erase pulse latency

• Uses two existing commands to adjust erase latency

- Uses two existing commands to adjust erase latency
	- **GET FEATURE**: Gets fail-bit counts from a flash chip

- Uses two existing commands to adjust erase latency
	- **GET FEATURE**: Gets fail-bit counts from a flash chip
	- **SET FEATURE**: Sets latency of erase pulse

- Step 1: Check the necessity of shallow erasure w/ SEF
	- \circ True: Performs shallow erasure for short latency (1 ms)
	- \circ False: Performs the first erase pulse for fixed latency (3.5 ms)

- Step 1: Check the necessity of shallow erasure w/ SEF
	- \circ True: Performs shallow erasure for short latency (1 ms)
	- \circ False: Performs the first erase pulse for fixed latency (3.5 ms)

- Step 2: Queries the minimum erase-pulse latency by using
	- The current number of erase pulse and fail-bit count

• Step 3: Sets the latency to perform the next erase pulse

- Step 4: Modifies SEF to false if
	- \circ shallow erasure (1 ms) + remainder erasure (2.5 ms) = 3.5 ms

Evaluation Methodology

- SSD lifetime (Max. P/E-cycle count)
	- Real-device characterization of 160 3D TLC NAND flash chips
- I/O Performance (read tail latency)
	- Simulator: MQSim [FAST'19]
	- Workloads: 11 real-world I/O workloads
		- 5 from Alibaba traces
		- 6 from Micro Research Cambridge (MSRC) traces
- Compared erase schemes
	- Baseline: Conventional erase scheme w/ fixed erase-pulse latency (tEP)
	- \circ AERO_{CONS}: Dynamic tEP w/o aggressive reduction using ECC margin
	- AERO: Dynamic tEP w/ aggressive reduction using ECC margin

White-Box Optimization Approaches for Ultra Large-Capacity NAND Flash-Based SSDs 91

White-Box Optimization Approaches for Ultra Large-Capacity NAND Flash-Based SSDs 93

White-Box Optimization Approaches for Ultra Large-Capacity NAND Flash-Based SSDs 94

43% AERO significantly improves SSD lifetime

Shallow erasure effectively reduces read tail latency in early lifetime

Aggressive tEP reduction further reduces read tail latency at higher P/E cycles (i.e., under high erase latency variation)

Other Analyses in the Paper

- Limitations of exisiting techniques
- Implementation details
	- Handling misprediction
	- Impact of ECC-decoding latency
	- Multi-plane operations
- Evaluation
	- Comparison with other exisiting techniques
	- Impact of erase suspension
	- Sensitivy analysis for misprediction rate and correctable errors

[Please refer to the paper!](https://arxiv.org/pdf/2404.10355.pdf)

AERO: Summary

- Problem: Long and fixed latency of erase operation in modern SSDs degrade lifetime and I/O performance
- Key idea: AERO (Adaptive ERase Operation)
	- Fail-bit-count-based Erase-Latency Prediction (FELP): dynamically adjusts erase latency
	- Shallow erasure: enables reducing latency of the first erase pulse
	- Aggressive tEP reduction: enables further reducing erase latency by exploiting the ECC capability
- Results: AERO significantly improves SSD lifetime by 43% and read tail latency by 26% (P99.99)

Conclusion

- Problem: Long and fixed latency of erase operation in modern SSDs degrade lifetime and I/O performance
- Key idea: AERO (Adaptive ERase Operation)
	- Fail-bit-count-based Erase-Latency Prediction (FELP): dynamically adjusts erase latency
	- Shallow erasure: enables reducing latency of the first erase pulse
	- Aggressive tEP reduction: enables further reducing erase latency by exploiting the ECC capability
- Results: AERO significantly improves SSD lifetime by 43% and read tail latency by 26% (P99.99)

NVRAMOS 2024

Prof. Jisung Park

2024.10.24