
White-Box Optimization Approaches for Ultra 
Large-Capacity NAND Flash-Based SSDs

NVRAMOS 2024

Prof. Jisung Park

2024.10.24



● Ultra Large-Capacity NAND Flash-Based SSDs

● RiF: Improving Read Performance of Modern SSDs Using an On-Die Early-Retry 

Engine

● AERO: Adaptive Erase Operation for Improving Lifetime and Performance of 

Modern NAND Flash-Based SSDs

● Conclusion

Outline

White-Box Optimization Approaches for Ultra Large-Capacity NAND Flash-Based SSDs 1



● SSD capacity exceeding several tens of terabytes  

○ e.g., Samsung’s BM1743 and Solidigm’s D5-P5336 (61.44 TB)

○ Effective at reducing TCO of data centers

■ Need to meet explosive storage-capacity requirements

from data-intensive applications (e.g., AI)

■ Higher density → Fewer SSDs → Fewer storage servers

→ Lower power/area → Lower cooling cost

○ Equipped w/ hundreds high-density NAND flash chips

■ ~200 wordline (WL) layers vertically stacked

■ Advanced multi-level cell (MLC) technology (e.g., QLC)

Demands for Unprecedented SSD Capacity 
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● Significant reliability issues in high-density NAND flash memory

○ Lifetime and performance degradation

● Limited SSD-internal I/O bandwidth

○ Due to limited number of channels

● Increasing power consumption

○ Inevitable to put more chips in a device w/ limited power budget

● Metadata overhead

○ Linearly increases with SSD capacity

Potential Problems in ULC-SSD Design
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● Enables taking full advantage of the system’s potential

○ Opposite to black-box approaches that optimize a single system layer w/o deep 

understanding of other layers’ internal

White-Box Approaches for SSD Optimization
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RiF: Retry-in-Flash

2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)
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● Read-Retry in Modern SSDs

● Key Idea: Retry-in-Flash (RiF)

● Evaluation Results

● Summary

RiF: Outline
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● NAND flash memory stores data by using cells’ VTH levels
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● Various sources shift and widen programmed VTH states

○ Retention loss, program interference, read disturbance, etc.
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● Store redundant information (ECC parity) 

○ To detect and correct row bit errors
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● High row bit-error rates (RBER) in MLC NAND flash memory

○ Narrow margin b/w adjacent VTH states
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● Reads the page again with adjusted VREF values
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● Reads the page again with adjusted VREF values
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Read-Retry: Performance Overhead

NERR = 32 < ECC capability CECC = 72READ A

tREAD

tR: Page sensing

tDMA: Data transfer

tECC: ECC decoding
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Read-Retry: Performance Overhead

tR tECC
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Read-retry increases the read latency
almost linearly with the number of retry steps



Existing Mitigations
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● Reducing # of retry steps

○ e.g., Process-similarity-aware optimization [MICRO’19], Sentinel [MICRO’21], and 

SwiftRead [ISSCC’22]

○ Quickly identify the near-optimal read-reference voltage levels

■ Based on the error characteristics of NAND flash memory

■ Enables skipping unnecessary retry steps

● Reducing the latency of each retry step

○ Adaptive read-retry [ASPLOS’22]

○ Reduce tR to be just enough to reliably read data in the final retry step

■ Leveraging high error-correction capability margin in modern SSDs 



Impact of Read Retry on SSD Performance

● Motivational experiments using MQSim-E [IEEE CAL 2022]

○ SSDreal w/ optimal Swift-Read (up to one retry step)

○ SSDideal w/ no read-retry
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Read-retry still significantly affects SSD performance
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Root Cause Analysis

● Significant waste of time for uncorrectable page reads due to contentions at

○ Channel: A limited number of channels shared by a lot more chips

■ Complex ECC (e.g., LDPC) due to high raw bit-error rate (RBER): Hindering on-die ECC

○ ECC engine: The higher the RBER, the longer the decoding latency
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Key Idea: Retry-in-Flash (RiF)

● Performs read-retry inside a NAND flash chip

○ Directly eliminates channel contention

○ Removes ECC decoding for uncorrectable reads off the critical path as well
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Key Challenge and Optimizations

● Challenge: Hard constraints on in-flash RiF module

○ Limited area to put RiF module inside a chip

○ Power can also be another issue 

● Optimization 1: Prediction-centric module

○ Insight: Read-retry only requires identification of read-failure

■ But not completion of error correction

○ Proposal: Syndrome weight-based prediction

● Optimization 2: Subpage-based prediction

○ Hypothesis: Raw-bit errors are likely to be evenly distributed within a page

■ All stored data must be randomized in modern NAND flash memory

○ Proposal: Reduce input size for prediction → Further area reduction
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Syndrome Weight-Based Prediction

● Key insight: Read-retry does not require entire ECC decoding,

but only identification of whether the page is correctable

H = a parity check matrix, c = a codeword = (𝒄𝟎,𝒄𝟏…𝒄𝑵−𝟏), S = a syndrome vector = (𝒔𝟎,𝒔𝟏, 𝒔𝟐, . . 𝒔𝑴−𝟏)

S3 is 0 with no errors in c0, c3, c4, c61’s represent the bit 
position of a codeword

Syndrome Weight SW
(s0 + s1 + s2 + s4)

In-flash read-retrySW > Thr
yes

no
Dout (1 with any bit error)
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Subpage-Based Prediction

● Hypothesis: Errors are likely to be evenly distributed within a page,

which allows SW-based prediction w/ part of the data 
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RiF: Validation
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● RiF module achieves 98.7% prediction accuracy 
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Evaluation Methodology

● Simulator: MQSim-E [IEEE CAL’22]

○ Extend NAND flash models w/ real-device characterization results

● Workloads: 8 real-world traces

○ 6 from AliCloud traces

○ 2 from Systor trace

● Comparisons with

○ SSDideal: No read-retry

○ SENC: w/ Sentinel [MICRO’21]

○ SWR: Swift-Read [ISSCC’22]

○ RiFSSD: Our proposal
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Result: I/O Bandwidth

● RiF significantly improves I/O bandwidth by 71.2% and 61.2% on average over 

SENC and SWR, respectively
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Result: Channel Usage Breakdown

● RiF significantly reduces wasted channel bandwidth due to UNCOR and ECCWAIT

compared to SENC and SWR
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● Problem: Significant performance degradation due to read retry

○ Even w/ SotA mitigation techniques

○ Due to wastes for uncorrectable reads

● Key idea: Retry-in-Flash (RiF)

○ Performs read-retry inside a NAND flash chip

○ Syndrome weight-based prediction of read failure

● Results: Significant performance improvement (average 72.1% at 2K P/E cycles) 

compared to SotA

RiF: Summary
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AERO: Adaptive Erase Operation

The 29th ACM International Conference on 
Architectural Support for Programming Languages and Operating Systems (ASPLOS)
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● Erase Operation in Modern NAND Flash-Based SSDs

● Key Idea: Adaptive Erase Operation (AERO)

● Evaluation Results

● Summary

AERO: Outline
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● NAND flash memory is hierarchically organized

36

NAND Flash Organization

Wordline0 

WL1

Flash block

NAND string

Flash cell

BL0 BL1 BL2Bitline3
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● Program operation writes data in a WL granularity

37

Program and Erase Operations
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Program
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Program
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● Erase operation erases data in a block granularity

38

Program and Erase Operations
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Block erasure
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● Erase operation erases data in a block granularity

39

Program and Erase Operations

Block erasure
(e.g., > 20 V)

Flash block

Flash cell

NAND string

BL0 BL1 BL2 BL3

Erase (program) operation only ejects (injects) electrons:
Erase-before-write property (data cannot be overwritten)
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40

Erase Operation: More Details
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● Erase operation consists of two steps

○ Erase pulse (EP)

○ Verify read (VR)
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Erase Operation: More Details
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● Erase operation consists of two steps

○ Erase pulse (EP): Applies high voltage for fixed latency (3.5 𝑚𝑠)

○ Verify read (VR)
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Erase Operation: More Details
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● Erase operation consists of two steps

○ Erase pulse (EP): Applies high voltage for fixed latency (3.5 𝑚𝑠)

○ Verify read (VR): Checks if a block is completely erased
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Erase Operation: More Details
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● Erase operation consists of two steps

○ Erase pulse (EP): Applies high voltage for fixed latency (3.5 𝑚𝑠)

○ Verify read (VR): Checks if a block is completely erasedLong latency and high voltage in erase operations

Lifetime: A block becomes unusable after experiencing 
a certain number of program and erase cycles (P/E cycles)
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Erase Operation: More Details
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● Erase operation consists of two steps

○ Erase pulse (EP): Applies high voltage for fixed latency (3.5 𝑚𝑠)

○ Verify read (VR): Checks if a block is completely erasedLong latency and high voltage in erase operations

Lifetime: A block becomes unusable after experiencing 
a certain number of program and erase cycles (P/E cycles)

Performance: An erase operation can delay user requests
for a long time, significantly increasing read tail latency 

White-Box Optimization Approaches for Ultra Large-Capacity NAND Flash-Based SSDs 44



Erase Failure
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● As P/E cycle increases, erasing a block becomes more difficult
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Incremental Step Pulse Erasure (ISPE)
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● As P/E cycle increases, erasing a block becomes more difficult

○ ISPE: Performs additional erase pulse with higher voltage
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High Latency of Erase Operation
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High Latency of Erase Operation
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High Latency of Erase Operation
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● Erase failure frequently occurs as P/E cycle increases

The negative impacts of erase operation
become much higher as P/E cycle increases 
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Erase Latency Variation
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● Actual erase latency significantly varies across flash blocks
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Erase Latency Variation
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● Actual erase latency significantly varies across flash blocks

Erase Latency Variation: Key Problem
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Erase Latency Variation: Key Problem
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● Fixed latency of erase operation causes over-erase
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Erase Latency Variation: Key Problem
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● Fixed latency of erase operation causes over-erase

Key problem:
Fixed latency of erase operation causes

unnecessary damages and delays
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Erase Latency Variation: Key Problem
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Total erase latency (∑ tEP):

● Fixed latency of erase operation causes over-erase

Key problem:
Fixed latency of erase operation causes

unnecessary damages and delays

Goal:
Minimize erase latency to improve

lifetime and I/O performance
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Adaptive Erase Operation (AERO)
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● Fixed latency of erase operation causes over-erase
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Adaptive Erase Operation (AERO)
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● Fixed latency of erase operation causes over-erase
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Adaptive Erase Operation (AERO)
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● Dynamic latency can minimize damages and delays
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Adaptive Erase Operation (AERO)
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(dynamic)

Reduced

● Dynamic latency can minimize damages and delays

Challenge: Erase latency significantly varies 
across flash blocks even at the same P/E cycle

→ How to accurately predict erase latency?
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Fail-Bit-Count-Based ER. Latency Prediction
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● FELP predicts latency based on the fail-bit count
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BL1 BL3

● FELP predicts latency based on the fail-bit count

○ Verify read counts the number of un-erased bitlines (i.e., fail bits)

Fail-Bit-Count-Based ER. Latency Prediction
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● FELP predicts latency based on the fail-bit count

○ Verify read counts the number of un-erased bitlines (i.e., fail bits)

○ Intuition: The lower the fail-bit count, the lower the latency

Fail-Bit-Count-Based ER. Latency Prediction
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● FELP predicts latency based on the fail-bit count

○ Verify read counts the number of un-erased bitlines (i.e., fail bits)

○ Intuition: The lower the fail-bit count, the lower the latency

Fail-Bit-Count-Based ER. Latency Prediction
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● FELP predicts latency based on the fail-bit count

○ Verify read counts the number of un-erased bitlines (i.e., fail bits)

○ Intuition: The lower the fail-bit count, the lower the latency

Fail-Bit-Count-Based ER. Latency Prediction
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Observations for Optimization
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Total erase latency (∑ tEP):

● Many blocks only require single erase pulse in early lifetime
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Optimization: Shallow Erasure
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● Split the first erase pulse into two parts

1. Shallow erasure

2. Remainder erasure
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Optimization: Shallow Erasure
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● Split the first erase pulse into two parts

1. Shallow erasure: Short erasure with fixed latency (1 𝑚𝑠)

2. Remainder erasure
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Optimization: Shallow Erasure
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● Split the first erase pulse into two parts

1. Shallow erasure: Short erasure with fixed latency (1 𝑚𝑠)

2. Remainder erasure: Erasure based on FELP (0 𝑚𝑠 ~ 2.5 𝑚𝑠)
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Optimization: Shallow Erasure

1V
o

lt
a

g
e

Time
1 𝒎𝒔

(fixed)

2

0 𝒎𝒔 ~ 2.5 𝒎𝒔
(dynamic)

V
o

lt
a

g
e

Time
3.5 𝒎𝒔
(fixed)

2 Reduced

~80 𝝁𝒔

● Split the first erase pulse into two parts

1. Shallow erasure: Short erasure with fixed latency (1 𝑚𝑠)

2. Remainder erasure: Erasure based on FELP (0 𝑚𝑠 ~ 2.5 𝑚𝑠)
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Optimization: Aggressive tEP Reduction

AERO w/o aggressive tEP reduction
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● Allows incomplete erasure to further reduce erase latency
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● Allows incomplete erasure to further reduce erase latency

Optimization: Aggressive tEP Reduction
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● Allows incomplete erasure to further reduce erase latency

Optimization: Aggressive tEP Reduction
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● Allows incomplete erasure to further reduce erase latency

○ Inevitably causes more errors

Optimization: Aggressive tEP Reduction
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● Allows incomplete erasure to further reduce erase latency

○ Inevitably causes more errors: Still can be corrected by ECC

Optimization: Aggressive tEP Reduction
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Feasibility Validation in the Paper

● Using 160 real 3D TLC NAND flash chips, we study

○ Impact of erase pulse latency on the fail-bit count

○ Feasibility and parameter exploration of shallow erasure

○ Reliability characteristics of incompletely erased block

○ Applicability of AERO for other types of chips

■ 2D TLC and 3D MLC

Please refer to the paper!
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Implementation of AERO

● Extend flash translation layer (FTL) w/ two data structures
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● Extend flash translation layer (FTL) w/ two data structures

○ Shallow erasure flags (SEF): Check if shallow erasure is required

Implementation of AERO
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… …

𝒏 - 1 T

Shallow Erasure
Flags (SEF)

FTL
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● Extend flash translation layer (FTL) w/ two data structures

○ Shallow erasure flags (SEF): Check if shallow erasure is required

○ Erase-timing parameter table (EPT): Contains erase pulse latency

Implementation of AERO
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● Uses two existing commands to adjust erase latency

Implementation of AERO
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● Uses two existing commands to adjust erase latency

○ GET FEATURE: Gets fail-bit counts from a flash chip

Implementation of AERO
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● Uses two existing commands to adjust erase latency

○ GET FEATURE: Gets fail-bit counts from a flash chip

○ SET FEATURE: Sets latency of erase pulse

Implementation of AERO
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Implementation of AERO

# fail-bits latency
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● Step 1: Check the necessity of shallow erasure w/ SEF

○ True: Performs shallow erasure for short latency (1 𝑚𝑠)

○ False: Performs the first erase pulse for fixed latency (3.5 𝑚𝑠)
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● Step 1: Check the necessity of shallow erasure w/ SEF

○ True: Performs shallow erasure for short latency (1 𝑚𝑠)

○ False: Performs the first erase pulse for fixed latency (3.5 𝑚𝑠)

Implementation of AERO
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● Step 2: Queries the minimum erase-pulse latency by using

○ The current number of erase pulse and fail-bit count

Implementation of AERO
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● Step 3: Sets the latency to perform the next erase pulse

Implementation of AERO
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Implementation of AERO

# fail-bits latency
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● Step 4: Modifies SEF to false if

○ shallow erasure (1 𝑚𝑠) + remainder erasure (2.5 𝑚𝑠) = 3.5 𝑚𝑠
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● SSD lifetime (Max. P/E-cycle count)

○ Real-device characterization of 160 3D TLC NAND flash chips

● I/O Performance (read tail latency)

○ Simulator: MQSim [FAST’19]

○ Workloads: 11 real-world I/O workloads

■ 5 from Alibaba traces

■ 6 from Micro Research Cambridge (MSRC) traces

● Compared erase schemes

○ Baseline: Conventional erase scheme w/ fixed erase-pulse latency (tEP)

○ AEROCONS: Dynamic tEP w/o aggressive reduction using ECC margin

○ AERO: Dynamic tEP w/ aggressive reduction using ECC margin

Evaluation Methodology
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Result: SSD Lifetime
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Result: SSD Lifetime
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Result: SSD Lifetime
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Result: SSD Lifetime
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AERO significantly improves SSD lifetime
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Result: Read Tail Latency (P99.99, 0.5K PEC)
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Result: Read Tail Latency (P99.99, 0.5K PEC)
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Result: Read Tail Latency (P99.99, 0.5K PEC)
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Shallow erasure effectively
reduces read tail latency in early lifetime
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Result: Read Tail Latency (P99.99, 2.5K PEC)
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Result: Read Tail Latency (P99.99, 2.5K PEC)
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Result: Read Tail Latency (P99.99, 2.5K PEC)
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Aggressive tEP reduction further reduces
read tail latency at higher P/E cycles

(i.e., under high erase latency variation)
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Other Analyses in the Paper

Please refer to the paper!

● Limitations of exisiting techniques

● Implementation details

○ Handling misprediction

○ Impact of ECC-decoding latency

○ Multi-plane operations

● Evaluation

○ Comparison with other exisiting techniques

○ Impact of erase suspension

○ Sensitivy analysis for misprediction rate and correctable errors
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● Problem: Long and fixed latency of erase operation in modern SSDs degrade 

lifetime and I/O performance

● Key idea: AERO (Adaptive ERase Operation)

○ Fail-bit-count-based Erase-Latency Prediction (FELP): dynamically adjusts erase latency

○ Shallow erasure: enables reducing latency of the first erase pulse

○ Aggressive tEP reduction: enables further reducing erase latency by exploiting the ECC 

capability

● Results: AERO significantly improves SSD lifetime by 43% and read tail latency by 

26% (P99.99)

AERO: Summary
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