
ScaleCache:
A Scalable Page Cache
for Multiple Solid-State Drives

Yongseok Son
Department of Computer Science and Engineering,

Chung-Ang University



slide 2

Motivation

 Emerging High-performance storage devices

 NVMe-based SSDs with GB/s-level I/O bandwidth are
widely adopted to satisfy increasing performance
requirements

Random read: 2GB/s
Random write: 2GB/s

Random read: 3.1 GB/s
Random write: 3.9 GB/s

Seagate FireCUDA 530 Intel Optane SSD 900P

Random read: 6.6GB/s
Random write: 1.4GB/s

Samsung PM1743



slide 3

Motivation
 Data-intensive Applications on Multiple SSDs (RAID)

 Recent trends advocate using many SSDs for higher throughput in

• Supercomputing [Patel et al., FAST’20]

• Big data and graph processing [Wang et al., ATC’20]

• Enterprise storage and Cloud services [Tong et al., ATC’21]

• High-performance large-scale file server [Maneas et al., FAST’22]

 RAID configurations are attractive as they increases I/O
performance, reliability and capacity



slide 4

Motivational Evaluation

Write-intensive performance of diverse file systems

 Unlike direct I/O, buffered I/O performance mostly does not
scale well with the number of SSDs or even decreases

• FIO workload: 64 threads, 3GB file size per thread, 4KB
request size (commonly used in most OS and applications)

• RAID Setup: RAID-0 with 8 SSDs, 512KB stripe size

0

2

4

6

8

10

1 2 4 8

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

The number of SSDs

EXT4 (buffered I/O)

XFS (buffered I/O)

F2FS (buffered I/O)

BTRFS (buffered I/O)

ZFS (buffered I/O)

EXT4 (direct I/O)

XFS (direct I/O)

F2FS (direct I/O)

BTRFS (direct I/O)

ZFS (direct I/O)

RAW



slide 5

Background: Buffered I/O benefit

 Linux kernel adopts Buffered I/O by default

 Page cache on the memory keeps data of files

 Buffered I/O offers several benefits

 It minimizes I/O operations and provide low latency

• In realistic scenarios

 I/O fluctuations between heavy and non-heavy I/O activities

 Better to maintain the advantages of buffered I/O while achieving
performance comparable to direct I/O

 It can be helpful to SSD lifespan by reducing the number of I/O

 It does not require applications to align their I/O size



slide 6

XArray

 Linux I/O Flow

Background: Buffered I/O Flow

Applications
User space

Kernel space

Virtual
File System Buffered I/O

File System

Volume Manager

Block Layer

Device Driver

Direct I/O

Page Cache

SSD1 SSD2 SSD3 SSDN…

Root Node

[63]...[2][1][0]

Page

Inner Node

[63]...[2][1][0]

Inner Node

[63]...[2][1][0]

Inner Node

[63]...[2][1][0]

Leaf Node

[63]...[2][1][0]

Leaf Node

[63]...[2][1][0]

Leaf Node

[63]...[2][1][0]

Page Page Page Page



slide 7

Background: XArray Definition

 What is XArray? eXtensible Arrays

 XArray in the Linux kernel is a data structure which behaves like a
very large array of pointers

 Dynamic-sized Array

• Unlike regular arrays, XArray does not have a fixed size.

• It dynamically adjusts its size, making it suitable for managing large sets
of objects or data within the kernel.

 Flexible Indexing

• XArray uses zero-based integer indexing to store and retrieve data
quickly at specific locations.

• The flexible nature of indexing ensures that inserting or accessing data
at a particular index is efficient.

• XArray uses "entries" to store data, which can be pointers, integers, or
unique values, making it versatile for various data types.

 Minimized Locking

• Uses RCU and an internal spinlock to synchronize access



slide 8

XArray0 (File0)
File0

Background: Page, File, XArray

 Relationship between page index, file, XArray

Page0

Page1

Leaf node (Index range: 0 ~ 63)

slots[63]...slots[2]slots[1]slots[0]

Page0

xa_head

Page1

.
.
.

XArray1 (File1)
File1

Page0

Page1

Leaf node (Index range: 0 ~ 63)

slots[63]...slots[2]slots[1]slots[0]

Page0

xa_head

Page1

.
.
.



slide 9

Background: XArray Overview

Inner node (Index range: 0 ~ 4,096)

slots[63]...slots[2]slots[1]slots[0]

Leaf node (Index range: 0 ~ 63)

slots[63]...slots[55]...slots[2]slots[1]slots[0]

Leaf node (Index range: 64 ~ 127)

slots[63]...slots[3]...slots[0]

page2
Page67 page155 page187

xa_head

page55

Leaf node (Index range: 128 ~ 191)

slots[63]...slots[59]...slots[27]...slots[0]

xa_lock



slide 10

Background: XArray node

 XArray node

 64bit Architecture

 576 bytes per one xa_node structure

• 576 % 8 = 0; 8-byte aligned

 4KB page can have up to 7 nodes

• (576bytes * 7 nodes = 4,032bytes) < 4KB page

• S: shift, O: offset, C: count, N: nr_values

24bytes16bytes512bytes8bytes8bytes4bytes1B1B1B1B

tags[..][..]private_list
*slots[..]*array*parentNCOS

marks[..][..]rcu_head

struct xa_node(Structure
Alignment)

shift: the bit in each node (6)
offset: the slot offset in parent
count: the count of element in the slots
nr_values: the count of a value entry
array: the xarray that the nodes belong to
slots: an array saving children nodes or elements

 The number of slots is 64 by default



slide 11

Background: XArray node slot

 XArray node slots contains entries

 XArray has 64 slots by default

 There are 3 types of entries in Xarray

• Pointer entry

• Internal entry

• Value entry

Pointer
entry

Value
entry

Pointer
entry

Pointer
entry

struct xa_node {
...
void __rcu *slots[CC_XA_CHUNK_SIZE];
...

};

Node0 (Leaf node @ 0xABC)

Page0

slots[0] slots[1] slots[2] ... slots[63]

26 Page2 Page63

Pointer
entry

Node1 (Inner node)

slots[0] slots[1] slots[2] ... slots[63]

Internal entry

Value
entry

Pointer
entry

Pointer
entry



slide 12

Background: Pointer entry

 The last two bits of the entry determine how the
XArray interprets the contents

 0b00: Pointer entry

Node0 (Leaf node)

slots[0] slots[1] slots[2] ... slots[63]

Page0

Pointer entry

@0b...00

Page2 Page63

Pointer entry Pointer entry

0x0000
(0b0000)

64bit
machine

32bit
machine

0x0004
(0b0100)

4byte

0x0000
(0b0000)

0x0008
(0b1000)

8byte



slide 13

Background: Internal entry

 The last two bits of the entry determine how the
XArray interprets the contents

 0b10: Internal entry

Node1 (Inner node)

slots[0] slots[1] slots[2] ... slots[63]
Internal entry

(Node0)

Node0 Address

static inline struct cc_xa_node *cc_xa_to_node(const void *entry)
{

return (struct cc_xa_node *)((unsigned long)entry - 2);
}

static inline void *cc_xa_mk_node(const struct cc_xa_node *node)
{

return (void *)((unsigned long)node | 2);
}

0b101010111110

0b101010111100

To node
(to original)

Make node

static inline bool cc_xa_is_internal(const void *entry)
{

return ((unsigned long)entry & 3) == 2;
}

The last two bits should be 0b10



slide 14

Background: Value entry

 The last two bits of the entry determine how the
XArray interprets the contents

 0bx1: Value entry

static inline unsigned long cc_xa_to_value(const void *entry)
{

return (unsigned long)entry >> 1;
}

static inline void *cc_xa_mk_value(unsigned long v)
{

WARN_ON((long)v < 0);
return (void *)((v << 1) | 1);

}

static inline bool cc_xa_is_value(const void *entry)
{

return (unsigned long)entry & 1;
}

Node0 (Leaf node)

slots[0] slots[1] slots[2] ... slots[63]

0b00110101

Value entry

0b00011010

Value

To value
(to original)

Make value

(=26)



slide 15

Background: XArray node insertion (1)

slots[63]...slots[2]slots[1]slots[0]

xa_head

Page1Page0

Node0

(index range: 0~63)

shift: 0, offset: 0, count 64, parent: NULL

Page2 Page63

slots[63]...slots[2]slots[1]slots[0]

xa_head

Page1Page0

shift: 0, offset: 0, count: 64, parent: Node1

Page2 Page63

Node1

(index range: 0 ~ 4095)

slots[63]...slots[2]slots[1]slots[0]

shift: 6, offset: 0, count 2, parent: NULL

Node0

(index range: 0 ~ 63)

Expand XArray

Root node

Root node

1. Expanding



slide 16

Background: XArray node insertion (2)

slots[63]...slots[2]slots[1]slots[0]

xa_head

Page1Page0

shift: 0, offset: 0, count: 64, parent: Node1

Page2 Page63

Node1

(index range: 0 ~ 4095)

slots[63]...slots[2]slots[1]slots[0]

shift: 6, offset: 0, count 2, parent: NULL

slots[63]...slots[2]slots[1]slots[0]

Page64

shift: 0, offset: 1, count: 1, parent: Node1

Node0

(index range: 0 ~ 63)
Node2

(index range: 0 ~ 63)

Root node

2. Descending and node
creation and page insertion



slide 17

Ex1) When getting an offset in Node1 for the page index,
1) 000001 000000 >> 6
2) 000000 000001 & 000000 111111

000001(1) (last 6 bits)

Ex2) When getting an offset in Node2 for the page index,
1) 000001 000000 >> 0
2) 000001 000000 & 000000 111111

000000(0) (last 6 bits)

Background: Searching a page

index

Node1 (shift = 6)

Node2 (shift = 0)

6
3

6
2

6
1

6
0

…43210

6
3

6
2

6
1

6
0

…43210

Page (index 64)

Ex) Descending and Searching for a page index: 64 (000001 000000)

shifts

static unsigned int get_offset(unsigned long index, struct xa_node *node)
return (index >> node->shift) & XA_CHUNK_MASK;

lib/xarray.c

6 bits

XA_CHUNK_MASK

XA_CHUNK_MASK

000000 (0)000001 (1)



slide 18

Background: Searching a page

slots[63]slots[62]...slots[2]slots[1]slots[0]

xa_head

shift: 12, offset: 2, count: 1, parent: Node3

Node3

(index range: 0 ~ 16,777,215)

slots[63]...slots[2]slots[1]slots[0]

shift: 18, offset: 0, count 1, parent: NULL

Node0

(index range: 0 ~ 63)

slots[63]...slots[37]...slots[1]slots[0]

shift: 6, offset: 62, count: 1, parent: Node2

slots[63]...slots[4]...slots[1]slots[0]

shift: 0, offset: 37, count: 64, parent: Node1

Page (index 780612)

Node1

(index range: 0 ~ 4095)

Node2

(index range: 0 ~ 262,143)

Root node



slide 19

Background: XArray node deletion

slots[63]...slots[2]slots[1]slots[0]

xa_head

Page1Page0

Node0

(index range: 0~63)

shift: 0, offset: 0, count 64, parent: NULL

Page2 Page63

slots[63]...slots[2]slots[1]slots[0]

xa_head

Page1Page0

shift: 0, offset: 0, count: 64, parent: Node1

Page2 Page63

Node1

(index range: 0 ~ 4096)

slots[63]...slots[2]slots[1]slots[0]

shift: 6, offset: 0, count 2, parent: NULL

slots[63]...slots[2]slots[1]slots[0]

Page64

shift: 0, offset: 1, count: 1, parent: Node1

Node0

(index range: 0 ~ 63)
Node2

(index range: 0 ~ 63)

Delete Page64 Shrink XArray



slide 20

Background: XArray and File system

 Page cache is managed based on Per-inode (Per-file)

 XArray is Per-file data structure

...

file0

xa_head

node0

page2page1

XArray0

spinlock0

inode
rwsem0

file1

xa_head

node0

page2page1

XArray1

spinlock1

inode
rwsem1

file2

xa_head

node0

page2page1

XArray2

spinlock2

inode
rwsem2

filen

xa_head

node0

page2page1

XArrayn

spinlockn

inode
rwsemn



slide 21

Background: XArray and File system

 Page cache is managed based on Per-inode (Per-file)

 XArray is Per-file data structure

 When a page is evicted to flush, the page is evicted based on
LRU

file0

head

node0

page2page1

XArray0
spinlock0

inode
rwsem0

page1 page2 …

LRU list

…

T1: Insert or update page

T2: Delete a page
(evict)

T3:: Delete a page
(evict)



slide 22

 Simplified Page Cache operations

 Search operation: RCU lookup

• Supports multiple readers with a single writer

 Insert or Delete operation: Spinlock (xa_lock)

• Resolves conflicts between multiple writers

Background: Linux Buffered I/O Flow

Page exists?

Find page from
Page Cache

No

Yes

No

Page Cache
(XArray)

PN…P2P1

Allocate a new page

Get page

Fastpath

Get free page from the
buddy allocator

Free page
available?

Add to page cache

Slowpath

Isolate page from
page LRU list

Flush page
to make it clean

Remove page
from page cache

Add page into the
buddy allocator

Search

Insert
Delete

Spinlock

Yes

Start write begin path

End of write begin path

Application thread



slide 23

 Simplified Balancing dirty pages

Background: Linux Buffered I/O Flow

Balance dirty pages
Dirty page
ratio high?

Flusher thread
running?

Get page from Page Cache

Mark page as dirty

Update page content with user data

Blocked
Yes

Yes

Write iteration
done?

No

Finish write end path

No

Yes

Start delayed
writeback

Write pages

Submit BIO

Application threads

Flusher thread

Block Device

Balance dirty pages

START

Start write end path

No

END

Wake up the flusher thread



slide 24

Background: Linux Buffered I/O Flow

 Limited I/O parallelism

 A single flusher per block device

SSD0

Write File1

Page
Cache
(File1)

Write File2 Write FileN

Application Thread1 Application Thread2 Application ThreadN

Multiple Producers

Single Consumer
(per block device)

Page
Cache
(File2)

Page
Cache
(FileN)

…

Dirty page flusher thread

SSD1 SSDn

…
SSD2

RAID (/dev/md)



slide 25

Challenges

 Two Challenges in Page Cache Management

 Limited concurrency

• Application threads frequently insert/update/delete page cache
under non-scalable spinlock

• This spinlock serializes multiple writers, resulting in high lock
contention

 Limited I/O parallelism

• A single flusher performs I/O operation even if multiple SSDs are
used

• This limits the I/O parallelism offered by the multiple SSDs



slide 26

Our Goal

 Achieving higher SSD scalability on multi-cores

 Scaling buffered I/O performance close to Direct I/O

• Reducing the lock contention in the page cache

• Maximizing I/O parallelism in the page cache



slide 27

Overall Architecture
 Concurrent and I/O parallelized page cache

 A concurrent XArray – ccXArray

• Application threads can update page cache concurrently without being spin-
locked and serialized

• Concurrent Multiple Writers

 A direct dirty page flush – dflush

• Application threads directly balance dirty pages in the system instead of
being blocked and wait for a single flusher thread

• Multiple Producers with Multiple Consumers



slide 28

Strategy of ScaleCache

 Four main key strategies to design ccXArray:

 Strategy 1: Winner strategy

 Strategy 2: Per-thread node access tracking

 Strategy 3: Efficient design of ccXArray node

 Strategy 4: Lazy node deletion and reuse

 One main key strategy to design dflush

 Strategy: one(thread)-to-one(inode) model



slide 29

How to make concurrent data structure

 Combination of Atomic instructions

 GCC built-in functions for atomic memory access

• __sync_fetch_and_add (type *ptr, type value)

• __sync_lock_test_and_set (type *ptr, type value)

• __sync_val_compare_and_swap (type *ptr, type oldval, type newval)

• etc

 We can use this GCC built-in atomic functions when we use GCC
compiler



slide 30

How to make concurrent data structure

 Simple Example

new_node = alloc();
entry = CAS(current_node.slots[offset], NULL, new_node)
If(entry =! NULL){

free(new_node)
current_node = getnode();

}
else

current_node = new_node



slide 31

Concurrent creation and insertion

 Node creation and page insertion (Winner Strategy)

 Using Compare-And-Swap: Elect a winner among threads
concurrently running on ccXArray

 Allow the winner to insert/delete a page within the node or
create/insert a node in ccXArray

Winner strategy: Concurrent page insertion and node creation



slide 32

Concurrent node creation

1) If a target node (e.g., inner or leaf
node) does not exist, each thread
creates and gets its own node and tries
to insert its own node at the slot using a
CAS operation.
2) Only the CAS-succeeded thread can
insert its created node to the slot

The CAS-failed threads cannot insert
their node, free the created nodes, and
use the node of the CAS-succeeded
thread to descend

1) If a node already exists at the slot,
they get the existing node and check if
this node is tried to be deleted logically
according to our lazy node deletion
strategy.
2) If so, they wait for the logical node
deletion procedure to be finished.

If the target node is already logically
deleted, according to our reuse strategy,
the node can be reused again via CAS
operation

Winner strategy

Lazy deletion

Reuse



slide 33

Concurrent expand operation

 Expanding XArray

 In spite of during expanding nodes, ccXArray does not
block the insert or delete operations



slide 34

Per-thread node access tracking

 To avoid read/write and write/write conflicts

 Whenever the threads access or update to ccXArray nodes,
we track the access of all the nodes by inserting the node
into the per-thread list in an access order.

 Always Increase from top to bottom



slide 35

Lazy node deletion and reuse

 Logically and physically deletion and reuse

 Atomically mark the node as logically deleted when no
pages in the ccXArray node

 Reuse node if it is requested before being deleted
physically

 Delete the node physically in a certain situation where any
page cannot be inserted / searched in the page cache

Logical Node deletion and reuse
Physical Node deletion



slide 36

Efficient design of ccXArray node

 To support our deletion and tracking

 Three new indicators at the unused area in the node:

• Del flag: indicates a logically deleted node

• LD flag: a node is undergoing logical deletion

• Ref count: tracks number of threads referencing the node

 Original XArray node design is intact for fully utilizing
cache-line memory efficiency and the compatibility

• In 64-bit systems, an XArray node is 576bytes

Up to 7 nodes in a 4KB page
24bytes16bytes512bytes8bytes8bytes1B1B1B1B1B1B1B1B

tags[..][..]private_list
*slots[..]*array*parentNCOS

marks[..][..]rcu_head

Original Xarray node Structure(Structure
Alignment)

24bytes16bytes512bytes8bytes8bytes2bytes1B1B1B1B1B1B

tags[..][..]private_list
*slots[..]*array*parentRFLDNCOS

marks[..][..]rcu_head

ccXarray node Structure

S: shift, O: offset, C: count, N: nr_values, D: delete flag, L: ldflag, RF: reference count



slide 37

Logical node deletion

 Simplified procedure of logical node deletion

Recheck for any potential page insertion

Informs other upcoming threads the target
node will be tried to be deleted logically

Check the target node reference count
If refcnf > 1, stop logical deletion since
other threads can access the target node

The target node can be deleted logically
only if the conditions are satisfied

The logical deletion for the target node is finalized

The number of nodes of the target node’s
parent decreases



slide 38

Node and page search

 Simplified search procedure

This ensures that the searching thread
does not proceed further until the deleting
thread finishes its work.

Only after the node is not occupied by the
deleting thread, the searching threads check if
the node is logically deleted

Increase reference count of nodes
from root node to leaf

Leaf node is found



slide 39

Direct flush

 Throttling and balancing mechanism

 To flush the pages to HDD, the Linux kernel adopts a
throttling mechanism with a page flusher which adjusts the
number of I/Os, collects the I/Os, and submits them by
considering the dirty page ratio in the page cache.

 This leads to many benefits for single-channel HDD.

• Specially, the throttling mechanism makes serialized I/O and
sequential I/O patterns and reduces the amount of I/Os to
HDD as much as possible.

• In addition, the mechanism blocks the application threads for
the flushing operations. There are two reasons for the
blocking operation as follows.

 (1) It prevents application threads from generating dirty pages

anymore to get free pages.

 (2) Multiple flushing operations with multiple flushers can

negatively affect the performance of a single-channel device.



slide 40

Direct flush

 There are three potential negative effects of throttling
mechanism on multiple SSDs as follows.

 The existing blocking operation which blocks the application
threads hinders the opportunity to flush more dirty pages per
unit time.

 The blocking time which blocks application threads can be
longer than the time required for I/O operation in the case of
low-latency SSDs.

 Dflush

 dflush opportunistically allows the application threads to
perform the flush operation directly and parallelize the I/O
operations instead of being blocked and waiting for I/O
completion



slide 41

Direct flush

 A direct dirty page flush – dflush
 One(thread)-to-one(inode) model

(a) Existing flushing operation

(b) Flushing operations of dflush (direct flush)

Multiple Producers and
Single Consumer

Multiple Producers and
Multiple Consumers



slide 42

 Experimental Setup

Workloads

 Micro-benchmark: FIO benchmark

 Macro-benchmarks

• Filebench workloads: Fileserver, Varmail and Videoserver

• FFSB

 Real-world Application: YCSB on RocksDB

Evaluation

Ubuntu 20.04 LTSOS

Linux 5.4.147Base kernel

4 x Intel Xeon Gold 6242
(totally 64 physical cores, HT disabled)

CPU

DDR4 64GBMemory

8 x Intel Optane 900P (NVMe, 2GB/s stable read/write)SSD



slide 43

EXT4 (direct I/O) XFS (direct I/O) EXT4 XFS ScaleCache-EXT4 ScaleCache-XFS

Evaluation: Micro-benchmark

 Random and sequential writes w/ various # of SSDs

 FIO workload: 64 threads, 3GB file size per thread, 4KB request size,
QD=1

 RAID Setup: RAID-0, 512KB stripe size, # of SSDs varies

 Improvement: 3.87x and 3.30x compared with EXT4 and XFS

0

2

4

6

8

10

1 2 4 8

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

The number of SSDs

(a) Random write

0

2

4

6

8

10

12

1 2 4 8

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

The number of SSDs

(b) Sequential write



slide 44

EXT4 (direct I/O) XFS (direct I/O) EXT4 XFS ScaleCache-EXT4 ScaleCache-XFS

Evaluation: Macro-benchmark

 With various number of SSDs

 Benchmarks:

• Filebench (fileserver, varmail, and videoserver workloads)

• Flexible filesystem benchmark (FFSB)

 Workload: 64 threads, 64 files, 3GB file size, 4KB request

 RAID Setup: RAID-0, 512KB stripe size, #SSDs varies

 Improvement: 6.81x (fileserver), 1.92x (varmail), 2.85x (videoserver),

2.04x (FFSB)

0

0.2

0.4

0.6

0.8

1 2 4 8

IO
P

S
(M

o
p

s
/s

)

The number of SSDs

0

0.4

0.8

1.2

1 2 4 8

IO
P

S
(M

o
p

s
/s

)

The number of SSDs

0

0.5

1

1.5

2

1 2 4 8

IO
P

S
(M

o
p

s
/s

)

The number of SSDs

0

1

2

3

1 2 4 8

T
P

S
(M

tx
/s

)

The number of SSDs

(a) Fileserver (b) Varmail (c) Videoserver (d) FFSB



slide 45

 Various RAID level configurations

 Fileserver workload: 64 threads, 64 files, 3GB file size,
4KB request size

 RAID Setup: RAID-5 and RAID-10, 512KB stripe size
each, # of SSDs varies

EXT4 XFS ScaleCache-EXT4 ScaleCache-XFS

Evaluation: Macro-benchmark

0

30

60

90

3 4 8

IO
P

S
(K

o
p

s
/s

)

The number of SSDs

0

0.2

0.4

0.6

4 8

IO
P

S
(M

o
p

s
/s

)

The number of SSDs

(a) RAID-5 (b) RAID-10



slide 46

 Various number of CPU cores
 FIO Workload: 64 threads, 3GB file size per thread, 4KB

request size, random write, QD=1

 Fileserver workload: 64 threads, 64 files, 3GB file size, 4KB
request size

 RAID Setup: RAID-0 with 8 SSDs, 512KB stripe size

Evaluation: Core Scalability

0

2

4

6

8

10

1 2 4 8 16 24 32 40 48 56 64

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

The number of cores

0

0.2

0.4

0.6

1 2 4 8 16 24 32 40 48 56 64

IO
P

S
(M

o
p

s
/s

)

The number of cores
(a) FIO results (b) Fileserver results

EXT4 XFS ScaleCache-EXT4 ScaleCache-XFS



slide 47

Evaluation: Comparing with a Scalable Scheme

 Falcon (ATC’17)

 A scalable block layer scheme for multiple SSDs

• Falcon parallelizes I/O operations in the block layer for multiple SSDs using
per-drive I/O processing

 Only one flusher thread in the page cache when balancing dirty pages

 The lock-based XArray limits the concurrency of the page cache

 Improvement: 2.59x (FIO), 4.5x (fileserver)



slide 48

Conclusion

 ScaleCache consists of two synergistic components:

 ccXArray: enables concurrent access to the data structure
of the page cache

 dflush: presents a direct page flush in a parallel and
opportunistic manner

 ScaleCache outperforms

 Linux page cache by up to 6.81×

 Existing scalable scheme by up to 4.50×

 Please refer to the paper for further details

 https://dl.acm.org/doi/abs/10.1145/3627703.3629588

 ScaleCache is open source now:

 https://github.com/syslab-cau/ScaleCache



Q&A
Thank you for your attention


