The Case for DRAM Translation Layer (DTL): Enhancing Datacenter Efficiency, Reliability, and Beyond

Jae W. Lee [\(jaewlee@snu.ac.kr\)](mailto:jaewlee@snu.ac.kr) Seoul National University 10/25/2024

A Quote

"*Any problem in computer science can be solved with another level of indirection.*"

- Butler Lampson (Turing Award Lecture, 1992) attributed to David J. Wheeler

Levels of Indirection in Virtualized System Stack

Department of CSE

Indirection layers are prevalent in today's virtualized system stack.

1. OS: Virtual memory Virtual address \rightarrow Physical address (PA)

- 2. Hypervisor: Memory virtualization Guest $PA \rightarrow Host PA$
- 3. SSD: Flash Translation Layer (FTL) Logical block address (LBA) \rightarrow NAND device physical address

Figure from "[Software-Defined Memory: Platform for Virtual Machines](https://memverge.com/software-defined-memory-platform-for-virtual-machines/)" @ memverge.com

Example: Flash Translation Layer (FTL)

- A software layer in SSD to make NAND Flash emulate traditional block devices
	- Address Translation
		- Map logical address to physical address
	- Block Management
		- Garbage collection
		- Wear leveling
- **NAND Characteristics**
	- Erase-Before-Overwrite: No in-place update!
	- Asymmetric units
		- Write & Read: Page (e.g., 8-16 KiB)
		- **Example 1** Erase: Block (e.g., $1-16$ MiB)

Example: Flash Translation Layer (FTL)

CXL and CXL DRAM

- Compute Express Link (CXL) is an open industry interconnect standard enhancing CPU-to-device and CPU-to-memory communication
- CXL utilizes the PCI Express® physical layer for connectivity
- Three protocols on top of that
	- CXL.io: provides discovery, configuration, register access, interrupts, etc.
	- CXL.cache: provides the CXL device access to the processor memory
	- **CXL.mem**: provides the processor access to the CXL device attached memory

CXL and CXL DRAM

How about **DRAM Translation Layer (DTL)**?

DTL provides capabilities for:

- Host Physical Address (HPA) to Device Physical Address (DPA) translation
- Flexible, host-transparent data migration

Applications?

DRAM power savings, reliability & beyond!

Place another level of indirection here!

* Figure from Samsung Tech Blog: [Expanding the Limits of Memory Bandwidth and Density: Samsung's CXL Memory Expander](https://semiconductor.samsung.com/news-events/tech-blog/expanding-the-limits-of-memory-bandwidth-and-density-samsungs-cxl-dram-memory-expander/)

Low Memory Utilization in Datacenters

- *Low utilization of DRAM capacity* in datacenters
	- Only around *40-60%* on average[1]

[1] Tirmazi et al., "Borg: the Next Generation", EuroSys, 2020.

Challenges in Datacenter #2: Memory Reliability

- Memory *density* increase poses challenges to efficiency of *ECC*
- Conventional *memory mirroring*
	- Full mirroring
		- Replicating entire dataset
		- 50% reduction in available memory capacity and significant performance degradation
	- Partial mirroring
		- Predefining the mirrored address range
		- Trading the coverage of protection for higher performance
- *Limitations* in pooled memory system
	- Requiring system reboot or OS intervention
	- Lacking flexibility in managing mirroring space capacity

Challenges in Datacenter #2: Memory Reliability

- Memory *density* increase poses challenges to efficiency of ECC
- Conventional *memory mirroring*
	- $Full$ mirroring

For *underutilized* memory in datacenters, CXL opens up opportunities for localizing *power-state management* and implementing *<u>memory mirrorin</u>g* \mid within the CXL devices, thus makes the DRAM power management and reliability enhancement *transparent* to the host σ , commensement a analysis and the coverage of protection for σ

- *Limitations* in pooled memory system
	- Requiring system reboot or *OS* intervention
	- Lacking flexibility in managing mirroring space capacity

Outline

- Background and Motivation
- **Proposal #1: DRAM Power Savings**
- Proposal #2: Adaptive Partial Mirroring
- Conclusion

DRAM Translation Layer: Software-Transparent DRAM Power Savings for Disaggregated Memory

Wenjing Jin, Wonsuk Jang, Haneul Park, Jongsung Lee, Soosung Kim, Jae W. Lee

Presented at IEEE/ACM *International Symposium on Computer Architecture (ISCA) 2023*

Seoul National University **Jae W. Lee -** "The Case for DRAM Translation Layer (DTL)"

Memory Disaggregation Technologies

- RDMA-based memory disaggregation
	- Redundant memory copies, OS kernel and network overheads ➔ long access latency

Our Proposal: DRAM Translation Layer

- DTL is the *first proposal* of address (re)mapping and data migration mechanism for disaggregated memory
	- Transparent to both software stack and memory controller on the host
	- Inspired by Flash Translation Layer (*FTL*) in SSDs, DTL is placed in the CXL memory controller
- Two DRAM power management techniques
	- Rank-level power-down
	- Hotness-aware self-refresh
- Key idea
	- Control address remapping to maximize the number of ranks that can *enter low-power states* while provisioning *sufficient DRAM bandwidth*
- Key results
	- *31.6%* DRAM energy savings for rank-level power-down scheme with *1.6%* of performance

cost

Department of **QSE** Seoul National University **Jae W. Lee -** "The Case for DRAM Translation Layer (DTL)" ○ Hotness self-refresh scheme further reduces DRAM energy consumption by up to *14.9%* 16

Outline

Overview

● **DRAM Translation Layer**

- Address translation
- Two-power management techniques
	- Technique #1: rank-level power-down
	- Technique #2: hotness-aware self-refresh
- **Evaluation**
- Conclusion

DRAM Translation Layer Overview

- Address translation
	- Host physical address (*HPA*) ➔ device physical address (*DPA*)
	- Flexible data migration
- Two device-side power-management techniques
	- Rank-level power-down
	- Hotness-aware self-refresh

Address Translation

- Segment is the unit of address mapping in DTL (e.g., 2MB)
- Segment mapping cache (**SMC**)
	- Two-level TLB-like structure for fast HPA-to-DPA translation

HPA: host physical address DPA: device physical address

○ Hit ratio is *97.7%*

Segment Mapping Cache
0x0002 0 <HPA>) x0008 Segment Offset HSN DSN 0x0002 0x0010 Host Segment Number (HSN) DRAM Segment Number (DSN) 0x0008 0x0003 Memory Controller $Ch N-1$ Request Queues \exists Ch 0 \sim 0x0003 \rightarrow \rightarrow T Hit <DPA> 0x0008 **Cache Hit**

Address Translation

- Segment is the unit of address mapping in DTL (e.g., 2MB)
- Segment mapping cache (**SMC**)
	- Two-level TLB-like structure for fast HPA-to-DPA translation
	- Hit ratio is *97.7%*

HPA: host physical address DPA: device physical address

- Translation overhead
	- 4.2ns on average (min/max 0.67ns/123.7ns) **Cache Miss**
	- 0.18% slowdown on Cloudsuite benchmarks

DRAM Physical Address Bit Mapping

- Performance benefits of rank-interleaving are relatively small for cloud services
	- Only *1.7%* of performance loss for local memory when we do not exploit rank-interleaving
	- The cost further reduced to *1.4%* for remote CXL memory
- DRAM physical address bit mapping for CXL memory
	- Channels are interleaved at segment granularity

Technique #1: Rank-level Power-down

- *Consolidating unallocated DRAM segments* to subset of ranks at VM deallocation
- **Maximizing opportunities for entering** *MPSM* **mode ot wank group granularity** MPSM: maximum rower saving mode

Rank group indicates a set of ranks with the same rank index across all memory channels

Technique #2: Hotness-aware Self-refresh

- Periodically *swapping cold-hot segments* across ranks
- Maximizing the rank idle time for entering *SR* mode

SR: self-refresh

Trade-off in Address Mapping Granularity

• Smaller segment size (address mapping granularity)

○ Higher space overhead of the segment mapping table

- Higher channel-level parallelism
	- DTL requires channel-interleaving at segment granularity
		- Placing channel bits in the lower bits enhances channel-level parallelism

U_2 choose $2MD$ for We choose *2MB* for the address mapping granularity

Outline

- **Overview**
- DRAM Translation Layer
	- Address translation
	- Two-power management techniques
		- Technique #1: rank-level power-down
		- Technique #2: hotness-aware self-refresh
- **Evaluation**
- Conclusion

Methodology

- *Real machine* measurement for rank-level power-down scheme
	- 400 VMs from Microsoft Azure VM traces[1]
	- Measures background and active power consumption with different number of *active ranks*
- Custom *trace-driven simulation* for hotness-aware self-refresh scheme
	- Collects memory traces by Intel Pintool[2]
	- Generates post-cache traces via cache simulation
	- Randomly mixes post-cache traces
- **Workloads**
	- **O** Cloudsuite 4.0^[3] CloudSuite

[1] Cortez et al., "Resource Central: Understanding and Predicting Workloads for Improved Resource Management in Large Cloud Platforms", SOSP, 2017. [2] Luk et al., "Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation", ACM SIGPLAN Notices, 2015 [3] https://github.com/parsa-epfl/cloudsuite.

Rank-level Power-down

- *31.6%* DRAM energy savings with *<1.6%* performance loss
- Data migration delays MPSM entry
	- Migration opportunistically utilize the unused bandwidth by foreground
	- \circ 24GB data migration (~1.3s)

Total Energy Savings

● Applying hotness-aware self-refresh scheme after rank-level power-down results in an additional reduction in DRAM energy consumption by up to *14.9%* with negligible performance loss

N-rank configuration refers to a configuration in which *N* active ranks are utilized to provide enough memory capacity

Seoul National University **Jae W. Lee -** "The Case for DRAM Translation Layer (DTL)" 28

The Case for DRAM Translation Layer (DTL): Enhancing Datacenter Efficiency, Reliability, and Beyond

Wenjing Jin **Wonsuk Jang** Haneul Park

Jongsung Lee Soosung Kim Jae W. Lee

 \boxtimes

[wenjing.jin@snu.ac.kr](mailto:yejinlee@snu.ac.kr) $\overline{\triangleright\!\!\prec\!\!}$ skylark0827@snu.ac.kr $\overline{\triangleright\!\!\prec\!\!}$ skyp0714@snu.ac.kr

leitia@snu.ac.kr soosungkim@snu.ac.kr jaewlee@snu.ac.kr

Address Mappings: Allocation Unit (AU)

- HSN part is further divided into HostID|AU ID|AU Offset
	- AU is the minimum memory allocation unit to each VM
	- Default AU size: 2GB (minimum vMemory allocation size per instance in top-three cloud vendors)

Seoul National University **Jae W. Lee -** "The Case for DRAM Translation Layer (DTL)"