
1

DGIST

NDPipe: Exploiting Near-data Processing in Storage
Clusters for Scalable Inference and Continuous Training

Jungwoo Kim, Seonggyun Oh, Jaeha Kung*, Yeseong Kim, Sungjin Lee

DGIST and Korea Univ.

2024 Operating System Support for Next Generation Large Scale NVRAM

(Presented at ASPLOS’24)

2

Long Training Time and High Inference Cost

 Deep learning (DL) algorithms have evolved to have larger models to improve
the quality of deep neural network (DNN) models

 As more applications rely on DL algorithms, DNN inference is becoming a major
operation in datacenters

DGIST

Market portion of inference accelerators in datacenters

N
u

m
b

er
 o

f
Pa

ra
m

et
er

s

DNN model size

3

Long Training Time and High Inference Cost

 Deep learning (DL) algorithms have evolved to have larger models to improve
the quality of deep neural network (DNN) models

 → Large model requires very long training time

 As more applications rely on DL algorithms, DNN inference is becoming a major
operation in datacenters

 → Inference involves lots of data movements

DGIST

These pose two technical challenges when deploying DNN models:
(1) outdated model problem and (2) data relabeling problem

4

Outdated Model Problem

 Creating large DNN models is costly, in terms of computation and energy, and
takes very long time (e.g., 2—6 weeks)

 Long training time makes it difficult to create up-to-date DNN models timely,
which negatively affects model accuracy

 The model’s accuracy declines over time on changing data due to drift

DGIST

Technical Challenge #1:

5

Data Relabeling Problem

 Many DL-based services extract labels from incoming data using DNN models

 e.g., extracting image classes from incoming user images

 Extracted labels are kept in a database to serve user requests quickly

 Labels for previously stored data become obsolete whenever new DNN models
are released

DGIST

Technical Challenge #2:

Database Storage

Initial Model (M1)

Dog

Dog

6

Data Relabeling Problem

 Many DL-based services extract labels from incoming data using DNN models

 e.g., extracting image classes from incoming user images

 Extracted labels are kept in a database to serve user requests quickly

 Labels for previously stored data become obsolete whenever new DNN models
are released

DGIST

Technical Challenge #2:

Database Storage

Improved Model (M2)

Labrador

Retriever

Dog

Labrador

Retriever

Outdated label

7

Data Relabeling Problem (Cont.)

 Many DL-based services extract labels from incoming data using DNN models

 e.g., extracting image classes from incoming user images

 Extracted labels are kept in a database to serve user requests quickly

 Labels for previously stored data become obsolete whenever new DNN models
are released

DGIST

Technical Challenge #2:

0%

6.67%
7.29%

7.96%

8.98%

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

M1 M2 M3 M4 M5

%
 o

f
o

u
td

a
te

d
 i
m

a
g
e

s

Old New

8

Any Mitigations?

 Outdated Model Problem

 Online learning or incremental learning

 Regular full training

 Fine tuning

 Data Relabeling Problem

 Fast image labeling

 Refine labels by similarity

 Offline inference

DGIST

Database

Storage

Improved Model (M2)

DogLabrador

Retriever

Offline Inference

9

Fine-tuning and Offline Inference

 Performance evaluation of fine-tuning and offline inference

 Compare two different setups: Typical and Ideal

 Typical: a typical system setup where compute and storage are disaggregated

 Storage servers keep images

 Compute servers perform fine-tuning and offline inference by loading images from
storage servers over network

 Ideal: an ideal setup where compute servers contain all images locally

 No data movement for fine-tuning and offline inference

DGIST

10

Data Movement is a Bottleneck

 Fine-tuning and offline inference require relatively low computing power that
low-end GPUs can run

 A large amount of data transferred between storage and compute servers is a
major bottleneck

 How to eliminate data movement? Use near-data processing!

DGIST

11

Index

 Introduction

 Overall Design of NDPipe

 Optimization of NDPipe

 Experimental Results

 Conclusion

DGIST

12

NDPipe’s Approach

 Design goal of NDPipe

 Improve fine-tuning and offline inference by leveraging near-data processing
at the level of storage clusters where data resides nearby

 Our approach

1. Deploy cost- and power-effective commodity GPUs in storage servers

2. Execute fine-tuning and offline inference on storage servers and return only
labels or intermediate results to compute servers → Eliminate almost all data
transfers required in fine-tuning and inference

3. Accelerate the fine-tuning and inference processes by fully utilizing high
aggregate throughputs of low-end GPUs in multiple storage servers

DGIST

13

Overall Architecture of NDPipe

DGIST

…

Storage servers

Model training

GPU
3
1
8

6
4

4
3
1
1

7

4
5

Dataset

Training server

Network

Database

GPU
3
1
1

7
4

5

Inference server

1 Read

3 Distribution

2

CPU

…

CPU

…

CPU

…

1 Read

3

2 Inference

HDD/SSDs

31

S
to

re
2

Typical image classification system

Online Inference Flow

Offline Inference Flow

Training Flow

14

Overall Architecture of NDPipe

DGIST

Training serverDatabase

Offline
inference

Model
distribution

Inference

server

GPU
3

1

1

7

4
5

GPU Model

PipeStores

Network

Fine-
tuning

GPUCPU

…

GPUCPU

…

GPUCPU

…
…

3 Update

2 Intermediate data

1 Request

Tuner

Design of the proposed NDPipe

Online Inference Flow (Not shown)

Offline Inference Flow

Training Flow

2

Request

Update

1

15

Technical Challenges

 Challenge #1: How to efficiently execute (fine-tuning-based) training tasks over
many storage servers without serious synchronization cost

 Fine-tuning-based data and model parallelism (FT-DMP)

 Challenge #2: How to make individual PipeStores with a commodity GPU fast
and efficient for fine-tuning and inference

 Near-data processing engine (NPE) optimized with various optimizations (e.g.,
pipelining, task offloading, quantization, and so on)

 Challenge #3: How to redistribute the latest DNN models to storage servers

 Version-aware model redistribution (VAMR) to minimize model distribution cost

DGIST

16

Index

 Introduction

 Overall Design of NDPipe

 Optimization of NDPipe

 Experimental Results

 Conclusion

DGIST

17

Fine-tuning-based data and model parallelism (FT-DMP)

 FT-DMP exploits the unique property of fine-tuning where the model’s layers
are split into weight-freeze and trainable layers

 Assign a replica of weight-freeze layers to PipeStores, executing multiple workers

 Assign trainable layers to Tuner and run a single worker on Tuner

 The individual PipeStores extract features for local batches and deliver them to Tuner
which updates the weights of the trainable layers

DGIST

Input batch

...

...

Feature extraction Classifier

Error

BackwardForward

Storage

Memory
Intermd. result buffering

18

PipeStore

Fine-tuning-based data and model parallelism (FT-DMP)

 FT-DMP exploits the unique property of fine-tuning where the model’s layers
are split into weight-freeze and trainable layers

 Assign a replica of weight-freeze layers to PipeStores, executing multiple workers

 Assign trainable layers to Tuner and run a single worker on Tuner

 The individual PipeStores extract features for local batches and deliver them to Tuner
which updates the weights of the trainable layers

DGIST

Tuner

...

Feature extraction Classifier

Error

BackwardForward

Intermd. result buffering

Just transfer small feature

Input batch

Storage

Memory

Weight-freeze layers Trainable layers

19

DGIST

Impact of layer offloading and data traffic

High weight

synchronization

costsRaw Images

20

Fine-tuning-based data and model parallelism (FT-DMP)

DGIST

The weight-freeze layers only require processing the

forward pass of the network → low-end GPUs provide

sufficient compute capability

Weight synchronization run locally on Tuner → up-to-date

models can be produced with little synchronization costs

Small-sized outputs from the last weight-freeze layer are

delivered to Tuner → minimum network traffic

21

 In NDPipe, all the batches are distributed across multiple PipeStores

 Following the DNN training procedure that requires the entire training data, Tuner may wait for the
intermediate results corresponding to all data samples from the participated PipeStores

 This results in the serial execution of PipeStores (Store-stage) and Tuner (Tuner-stage)

 Inspired by pipelined model parallelism that executes split partitions concurrently, we propose a
pipelined training strategy

Pipelined FT-DMP

DGIST

Store-stage (in PipeStores)

Data transmission
An iteration1 epoch

Tuner-stage (in Tuner)

...
Input

dataset
Time

Run
Run 1

Run 2

Run 3

22

 The pipelined training executes multiple runs simultaneously over separate sub-datasets

 The pipelined training starts the training in Tuner for the current run, while PipeStores are processing
local batches for the next run

 In our case, the model would be more fitted to the training samples used in the last run

Pipelined FT-DMP (Cont.)

DGIST

Run
Run 1

Run 2

Run 3

Time

Catastrophic forgetting?

Our theoretical analysis confirms that the pipelined training can still guarantee

the convergence of training and not seriously affect the final model quality with a

reasonable number of pipeline runs, 𝑁𝑟𝑢𝑛

23

Pipelined FT-DMP (Cont.)

DGIST

See our paper for more details!

24

Near-data processing engine (NPE)

 PipeStore handles both fine-tuning and offline inference, which require six
common steps

 Image loading

 Decoding

 Resizing

 Normalization

 Feature extraction (FE)

 Classification (CL)

DGIST

I/O operations by HDDs or SSDs

Preprocessing by CPU

FE & CL by GPU

25

Near-data processing engine (NPE)

 Optimize each step by applying (1) pipelining and (2) offloading and (3) by
optimizing inference engine with quantization, layer fusion, and enlarged
batch size

DGIST

26

Version-aware Model Redistribution

 Each PipeStore must keep up-to-date models for fine-tuning and inference

 Delivering new models to many PipeStores is costly

 VAMR reduces the network traffic to deliver up-to-date models

 Send only small deltas by exploiting similarity between adjacent models

 Send the latest model to PipeStores where inference and fine-tuning take place

 Manage different versions of models each PipeStore has

DGIST

Version 1.0 (old) Version 2.0 (latest) Deltas

400x

size reduction
XOR

27

Version-aware Model Redistribution (Cont.)

DGIST

Tuner M.m Full model Delta compressed fileM.m

v3.2 v2.2

PipeStores (Required version: v3.3)

v3.3
v3.3+

v2.3~3.3
v3.3+

v2.0 v2.1 v2.2 v2.3 v3.1 v3.2 v3.3v3.0v1.3

Checkpoint

v1.2

+

Bzip2 Compression
Aggregate

Decompression
Remove

28

Index

 Introduction

 Overall Design of NDPipe

 Optimization of NDPipe

 Experimental Results

 Conclusion

DGIST

29

 We implement the prototype of NDPipe in Amazon Web Services (AWS)

 We use ImageNet 2012 ILSVRC as an input dataset

 Our experiments are conducted using four image classification models (InceptionV3, ResNet50,
ResNeXt101-32x4d, and ViT)

Evaluation Setup

DGIST

Baseline (SRV) NDPipe

Fine-tuning Offline inference Fine-tuning Offline inference

Host p3.8xlarge

• 2 V100 GPUs

• 32 vCPUs (2.3GHz)

• 244GB Memory

• $12.24 per hour

p3.2xlarge

• 1 V100 GPU

• 8 vCPUs

(2.3GHz)

• 61GB Memory
• $3.06 per hour

Storage

server

g4dn.4xlarge (GPU disabled)

• 16 vCPUs (2.5GHz)

• 64GB Memory

• $0.688 per hour

g4dn.4xlarge

• 1 T4 GPU

• 16 vCPUs (2.5GHz)

• 64GB Memory

• $1.204 per hour

30

Inference Throughput & Power Efficiency

DGIST

31

Training Time and Energy Efficiency

DGIST

32

Pipelined Training

DGIST

33

Model Redistribution Cost

DGIST

We assume the worst-case scenario where all the
PipeStores have the model v1.0

34

Conclusion

 We proposes a novel deep learning (DL) system called NDPipe, which
accelerates training and inference performance by leveraging near-data
processing in storage servers

 NDPipe distributes storage servers with inexpensive commodity GPUs in a
data center and uses their collective intelligence to perform inference and
training near data

 Our results show that, NDPipe exhibits 1.8x faster training speed with 1.7x
lower AWS cost

DGIST

35

Thank You! Any Question?

DGIST

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

