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Long Training Time and High Inference Cost

 Deep learning (DL) algorithms have evolved to have larger models to improve 
the quality of deep neural network (DNN) models

 As more applications rely on DL algorithms, DNN inference is becoming a major 
operation in datacenters

DGIST
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Long Training Time and High Inference Cost

 Deep learning (DL) algorithms have evolved to have larger models to improve 
the quality of deep neural network (DNN) models

   → Large model requires very long training time

 As more applications rely on DL algorithms, DNN inference is becoming a major 
operation in datacenters

   → Inference involves lots of data movements

DGIST

These pose two technical challenges when deploying DNN models:
(1) outdated model problem and (2) data relabeling problem



4

Outdated Model Problem

 Creating large DNN models is costly, in terms of computation and energy, and 
takes very long time (e.g., 2—6 weeks)

 Long training time makes it difficult to create up-to-date DNN models timely, 
which negatively affects model accuracy

 The model’s accuracy declines over time on changing data due to drift

DGIST

Technical Challenge #1:
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Data Relabeling Problem

 Many DL-based services extract labels from incoming data using DNN models

 e.g., extracting image classes from incoming user images

 Extracted labels are kept in a database to serve user requests quickly

 Labels for previously stored data become obsolete whenever new DNN models 
are released

DGIST

Technical Challenge #2:
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Data Relabeling Problem

 Many DL-based services extract labels from incoming data using DNN models

 e.g., extracting image classes from incoming user images

 Extracted labels are kept in a database to serve user requests quickly

 Labels for previously stored data become obsolete whenever new DNN models 
are released
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Data Relabeling Problem (Cont.)

 Many DL-based services extract labels from incoming data using DNN models

 e.g., extracting image classes from incoming user images

 Extracted labels are kept in a database to serve user requests quickly

 Labels for previously stored data become obsolete whenever new DNN models 
are released

DGIST

Technical Challenge #2:
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Any Mitigations?

 Outdated Model Problem

 Online learning or incremental learning

 Regular full training

 Fine tuning

 Data Relabeling Problem

 Fast image labeling

 Refine labels by similarity

 Offline inference

DGIST
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Fine-tuning and Offline Inference

 Performance evaluation of fine-tuning and offline inference

 Compare two different setups: Typical and Ideal

 Typical: a typical system setup where compute and storage are disaggregated

 Storage servers keep images

 Compute servers perform fine-tuning and offline inference by loading images from 
storage servers over network

 Ideal: an ideal setup where compute servers contain all images locally

 No data movement for fine-tuning and offline inference

DGIST
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Data Movement is a Bottleneck

 Fine-tuning and offline inference require relatively low computing power that 
low-end GPUs can run

 A large amount of data transferred between storage and compute servers is a 
major bottleneck

 How to eliminate data movement? Use near-data processing!

DGIST
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Index

 Introduction

 Overall Design of NDPipe

 Optimization of NDPipe

 Experimental Results

 Conclusion
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NDPipe’s Approach

 Design goal of NDPipe

 Improve fine-tuning and offline inference by leveraging near-data processing 
at the level of storage clusters where data resides nearby

 Our approach

1. Deploy cost- and power-effective commodity GPUs in storage servers

2. Execute fine-tuning and offline inference on storage servers and return only 
labels or intermediate results to compute servers → Eliminate almost all data 
transfers required in fine-tuning and inference

3. Accelerate the fine-tuning and inference processes by fully utilizing high 
aggregate throughputs of low-end GPUs in multiple storage servers

DGIST
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Overall Architecture of NDPipe
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Overall Architecture of NDPipe
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Technical Challenges

 Challenge #1: How to efficiently execute (fine-tuning-based) training tasks over 
many storage servers without serious synchronization cost

 Fine-tuning-based data and model parallelism (FT-DMP)

 Challenge #2: How to make individual PipeStores with a commodity GPU fast 
and efficient for fine-tuning and inference

 Near-data processing engine (NPE) optimized with various optimizations (e.g., 
pipelining, task offloading, quantization, and so on)

 Challenge #3: How to redistribute the latest DNN models to storage servers

 Version-aware model redistribution (VAMR) to minimize model distribution cost

DGIST
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Fine-tuning-based data and model parallelism (FT-DMP)

 FT-DMP exploits the unique property of fine-tuning where the model’s layers 
are split into weight-freeze and trainable layers

 Assign a replica of weight-freeze layers to PipeStores, executing multiple workers

 Assign trainable layers to Tuner and run a single worker on Tuner

 The individual PipeStores extract features for local batches and deliver them to Tuner 
which updates the weights of the trainable layers

DGIST
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PipeStore

Fine-tuning-based data and model parallelism (FT-DMP)

 FT-DMP exploits the unique property of fine-tuning where the model’s layers 
are split into weight-freeze and trainable layers

 Assign a replica of weight-freeze layers to PipeStores, executing multiple workers

 Assign trainable layers to Tuner and run a single worker on Tuner

 The individual PipeStores extract features for local batches and deliver them to Tuner 
which updates the weights of the trainable layers
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Fine-tuning-based data and model parallelism (FT-DMP)

DGIST

The weight-freeze layers only require processing the 

forward pass of the network → low-end GPUs provide 

sufficient compute capability

Weight synchronization run locally on Tuner → up-to-date 

models can be produced with little synchronization costs

Small-sized outputs from the last weight-freeze layer are 

delivered to Tuner → minimum network traffic
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 In NDPipe, all the batches are distributed across multiple PipeStores

 Following the DNN training procedure that requires the entire training data, Tuner may wait for the 
intermediate results corresponding to all data samples from the participated PipeStores

 This results in the serial execution of PipeStores (Store-stage) and Tuner (Tuner-stage)

 Inspired by pipelined model parallelism that executes split partitions concurrently, we propose a 
pipelined training strategy

Pipelined FT-DMP

DGIST
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 The pipelined training executes multiple runs simultaneously over separate sub-datasets

 The pipelined training starts the training in Tuner for the current run, while PipeStores are processing 
local batches for the next run

 In our case, the model would be more fitted to the training samples used in the last run

Pipelined FT-DMP (Cont.)

DGIST
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Catastrophic forgetting?

Our theoretical analysis confirms that the pipelined training can still guarantee 

the convergence of training and not seriously affect the final model quality with a 

reasonable number of pipeline runs, 𝑁𝑟𝑢𝑛
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Pipelined FT-DMP (Cont.)

DGIST

See our paper for more details!



24

Near-data processing engine (NPE)

 PipeStore handles both fine-tuning and offline inference, which require six 
common steps

 Image loading

 Decoding

 Resizing

 Normalization

 Feature extraction (FE)

 Classification (CL) 

DGIST

I/O operations by HDDs or SSDs
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Near-data processing engine (NPE)

 Optimize each step by applying (1) pipelining and (2) offloading and (3) by 
optimizing inference engine with quantization, layer fusion, and enlarged 
batch size 

DGIST
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Version-aware Model Redistribution

 Each PipeStore must keep up-to-date models for fine-tuning and inference

 Delivering new models to many PipeStores is costly

 VAMR reduces the network traffic to deliver up-to-date models

 Send only small deltas by exploiting similarity between adjacent models

 Send the latest model to PipeStores where inference and fine-tuning take place

 Manage different versions of models each PipeStore has

DGIST
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400x 
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Version-aware Model Redistribution (Cont.)

DGIST
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 We implement the prototype of NDPipe in Amazon Web Services (AWS)

 We use ImageNet 2012 ILSVRC as an input dataset

 Our experiments are conducted using four image classification models (InceptionV3, ResNet50, 
ResNeXt101-32x4d, and ViT)

Evaluation Setup

DGIST

Baseline (SRV) NDPipe

Fine-tuning Offline inference Fine-tuning Offline inference

Host p3.8xlarge

• 2 V100 GPUs

• 32 vCPUs (2.3GHz)

• 244GB Memory

• $12.24 per hour

p3.2xlarge

• 1 V100 GPU

• 8 vCPUs 

(2.3GHz)

• 61GB Memory
• $3.06 per hour

Storage 

server

g4dn.4xlarge (GPU disabled)

• 16 vCPUs (2.5GHz)

• 64GB Memory

• $0.688 per hour

g4dn.4xlarge

• 1 T4 GPU

• 16 vCPUs (2.5GHz)

• 64GB Memory

• $1.204 per hour
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Inference Throughput & Power Efficiency

DGIST
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Training Time and Energy Efficiency

DGIST
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Pipelined Training

DGIST
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Model Redistribution Cost

DGIST

We assume the worst-case scenario where all the 
PipeStores have the model v1.0
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Conclusion

 We proposes a novel deep learning (DL) system called NDPipe, which 
accelerates training and inference performance by leveraging near-data 
processing in storage servers

 NDPipe distributes storage servers with inexpensive commodity GPUs in a 
data center and uses their collective intelligence to perform inference and 
training near data

 Our results show that, NDPipe exhibits 1.8x faster training speed with 1.7x 
lower AWS cost

DGIST
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Thank You! Any Question?

DGIST


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

