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1. Bad scalability & performance due to accumulated keys

2. QR decomposition operations are expensive
• QRD is a key operation in linear model training

• Existing learning algorithms require both old keys and new keys

Bottlenecks of Learned Index Training
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What is  learned index  anyway?
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Learned Index Structure [1]
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[1] Kraska et al., The Case for Learned Index Structures, SIGMOD 2018



Learned Index Structure
Traditional Index Learned Index

Time Complexity ▲ ▼

Performance ▼ ▲

Index Size ▲ ▼

▪ Example Applications
◦Database: BOURBON (OSDI 2020)

Learned Bigtable (ML for Systems at NeurIPS 2020)

◦DNA Sequencing: BWA-MEME (Bioinformatics 2022) 
BLESS (ISCA 2024)

◦Embedded Sensor: Ding et al. (SENSORNETS 2023)



Updatable Learned Index [2, 3, 4]

Updatable learned indexes require periodic retraining using the entire keys
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[2] Ding et al., ALEX: An Updatable Adaptive Learned Index, SIGMOD 2020
[3] Tang et al., XIndex: A Scalable Learned Index for Multicore Data Storage, PPoPP 2020
[4] Wang et al., SIndex: A Scalable Learned Index for String Keys, APSys 2020



Performance of Updatable Indexes
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String-key learned indexes show poor performance for read-write workloads

Non-Learned Indexes Learned Indexes
* Used YCSB (Yahoo Cloud Serving Benchmark) workloads

[8] Wu et al., Wormhole: A Fast Ordered Index for In-memory Data Management, Eurosys 2019
[9] Zeitak et al., Cuckoo Trie: Exploiting Memory-Level Parallelism for Efficient DRAM Indexing, SOSP 2022

[8] [9]



Importance of String-Keys

▪ String-key key-value store assists GenAI of Cisco by indexing 
3,600+ documents [5]

▪ Elasticsearch improves quality of GenAI model by 20% with the aid 
of string-key key-value store [6]

▪ Customer app should handle 10,000+ personalized requests per 
second for over 100 million items with under 40ms delay [7]

[5] Omar Santos, Cisco Powers Secure, Responsible Artificial Intelligence Innovation at Scale with MongoDB, 2024

[6] LG CNS, Elasticsearch와 AI 검색 모델 통합으로 검색 정확도 고도화하다, 2024

[7] Delivery Hero Helps Customers Navigate more than 100 Million Products with MongoDB Atlas Search, 2024
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Bottlenecks of Learned Index Training

Accumulated keys degrade the performance of learned index
by delaying updates of ML model

1. Bad scalability & performance due to accumulated keys
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Bottlenecks of Learned Index Training

▪ Most learned indexes use linear regression for their ML model
▪ Solving linear regression involves QR decomposition

2. QR Decomposition Operations are Expensive

X (Matrix of keys) Y (Vector of positions)

β (Model weight)
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β = 𝐑−𝟏𝐑−𝟏𝐓 XTY
, where 𝐗 = 𝐐𝐑 

Linear Regression Solution

Xβ = Y

Linear Regression Model
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QR Decomposition R Inverse + GEMM

▪ QR decomposition is the major bottleneck when training
▪ R Inverse and GEMM are the second longest

Xβ = Y

Linear Regression Model

β = 𝐑−𝟏𝐑−𝟏𝐓 XTY
, where 𝐗 = 𝐐𝐑 

Linear Regression Solution

Bottlenecks of Learned Index Training
2. QR Decomposition Operations are Expensive
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1. Bad scalability & performance due to accumulated keys

2. QR decomposition operations are expensive
• QRD is a key operation in linear model training

• Existing learning algorithms require both old keys and new keys

Bottlenecks of Learned Index Training
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Existing String-key Learned Index Systems
Offer Limited Performance



SIA: System Overview

① Algorithm that reuses memoized intermediate results
② Hardware that offloads index training with FPGA accelerator

Algorithm-Hardware Co-designed String-key Learned Index System
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* FPGA: Field Programmable Gate Array



Insight from Parallel QR Decomposition
▪ Existing parallel QRD offers advantage to tall-and-skinny matrices
▪ Parallel QRD ensures mathematical equivalence
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▪ Incremental index learning reduces costly QRD via memoization

XΔ QΔ RΔ×

Q Rnew×

Rold

Rtmp

concat

Algorithm Design
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Incremental Index Learning

β = (𝐑−𝟏𝐑−𝟏𝐓)XTY where 𝐗 = 𝐐𝐑 

Linear Regression Solution
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Algorithm Design

▪ There is no need to perform QRD for entire key matrix
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Incremental Index Learning
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Why Do We Need Hardware Acceleration?
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CPU-only solution is still slow due to low efficiency in training



Hardware Design
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Hardware Selection: FPGA

◦Reconfigurable
Reprogrammable without changing hardware

◦Customizable
Programmable with user custom hardware logic

◦Parallelizable
Simultaneous operation of multiple logic blocks

◦Area & Energy Efficient
High performance at low operating costField Programmable Gate Array



Hardware Design
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FPGA Accelerator Architecture

𝑥∆

FPGA accelerator calculates 
𝜽 = 𝐑−𝟏𝐑−𝟏𝐓

with incremental index learning

Inserted keys are 
copied from host to 

FPGA

QR decomposition is 
done in QRD Unit

R∆
RoldMemoized matrix is 

stored on FPGA DRAM
Memoized matrix is 

reused at concat unit & 
QRD Unit

Rtmp

Rnew

Result R is memorized 
on FPGA DRAM, again

Rnew

Remaining calculation 
is done on systolic array θ

Calculation result is 
returned to host CPU

β = (𝐑−𝟏𝐑−𝟏𝐓)XTY where 𝐗 = 𝐐𝐑 
Linear Regression Solution



Evaluation Methodology
Dataset Workload

“amaz” 
Amazon review dataset

YCSB – D
Read & Insert

queries

YCSB – E
Range & Insert

queries

“meme” 
Memetracker dataset

“rand” 
Randomly generated 

strings

Twitter Cache Trace
12.2, 15.5, 31.1, 37.3

Twitter Cache Trace
12.2, 15.5, 31.1, 37.3
Read & Insert Queries
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▪ Baselines
◦Wormhole[*]

◦Cuckoo Trie [*]

◦SIndex [**]

◦ALEX [**]

◦LIPP [**]

▪ FPGA
◦Intel Arria 10 GX-1150

(Synthesized to 272MHz) 

[*] Non-learned indexes
[**] Updatable learned indexes



Performance Evaluation
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Twitter Cache Trace ClustersYCSB Workloads

Learned indexes with SIA shows an average of 2.9x throughput improvement
compared to learned indexes without SIA
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Tree Traversal Hashing ML Inference Local Search Buffer Search Range Search

Latency Breakdown
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Energy Efficiency Evaluation
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Normalized 
Performance 

per Watt
SIndex-CPU 1.00x
SIndex-GPU 1.67x
SIndex-SIA 2.89x

SIndex-CPU SIndex-GPU SIndex-SIA

SIA achieves higher energy efficiency with low energy usage of FPGA
(28x less than NVIDIA RTX 2080 TI GPU)

Suitable for continuous retraining of learned index system

* CPU: Intel Xeon Gold 6226R
* GPU: NVIDIA RTX 2080 TI



More Results in Paper
▪ Hardware Resource Utilization

▪ Memory Consumption Comparison

▪ Ablation Study

▪ Throughput with Different Query Distribution

▪ Implication of Lazy Delete Query Handling
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Conclusion
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• SIA
◦  Fast and efficient 

string-key learned index 
through CPU-FPGA heterogeneous acceleration

• Results
◦ 2.9x performance boost on existing string-key learned indexes

• Work-in-Progress and Future Directions
◦ Exploration of use cases for learned indexes in domain-specific applications

◦ Vector DB for LLM (i.e., RAG)
◦ Databases for ML training data
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