
Accelerating
String-key Learned Index Structures via
Memoization-based Incremental Training

Minsu Kim
Jinwoo Hwang
Guseul Heo
Seiyeon Cho
Divya Mahajan†

Jongse Park

KAIST
Georgia Institute of Technology†

1. Bad scalability & performance due to accumulated keys

2. QR decomposition operations are expensive
• QRD is a key operation in linear model training

• Existing learning algorithms require both old keys and new keys

Bottlenecks of Learned Index Training

5

What is learned index anyway?

3 18 32 45 61 77 88 96

Learned Index Structure [1]

Key-Value
Array

Index
Structure

Queried
Key

3 18 32 45 61 77 88 96

Traditional Index Structure Learned Index Structure

32

80

50

10 90

20

7040

32

Local Search

Predicted Idx: 1

[1] Kraska et al., The Case for Learned Index Structures, SIGMOD 2018

Learned Index Structure
Traditional Index Learned Index

Time Complexity ▲ ▼

Performance ▼ ▲

Index Size ▲ ▼

▪ Example Applications
◦Database: BOURBON (OSDI 2020)

Learned Bigtable (ML for Systems at NeurIPS 2020)

◦DNA Sequencing: BWA-MEME (Bioinformatics 2022)
BLESS (ISCA 2024)

◦Embedded Sensor: Ding et al. (SENSORNETS 2023)

Updatable Learned Index [2, 3, 4]

Updatable learned indexes require periodic retraining using the entire keys

Buffer for
Inserted Keys

Key-Value Array
at Time t

Inserted Key

Machine Learning
Model at Time t

Model Retraining
Machine Learning

Model at Time t+1

Key-Value Array
at Time t+1

[2] Ding et al., ALEX: An Updatable Adaptive Learned Index, SIGMOD 2020
[3] Tang et al., XIndex: A Scalable Learned Index for Multicore Data Storage, PPoPP 2020
[4] Wang et al., SIndex: A Scalable Learned Index for String Keys, APSys 2020

Performance of Updatable Indexes

0.0M
0.5M
1.0M
1.5M
2.0M
2.5M
3.0M
3.5M

A B C D E F
0M

5M

10M

15M

20M

25M

A B C D E F
Integer Keys String Keys

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Wormhole Cuckoo Trie ALEX LIPP XIndex/SIndex

Read-only Workload Read-Write Workload
String-key learned indexes show poor performance for read-write workloads

Non-Learned Indexes Learned Indexes
* Used YCSB (Yahoo Cloud Serving Benchmark) workloads

[8] Wu et al., Wormhole: A Fast Ordered Index for In-memory Data Management, Eurosys 2019
[9] Zeitak et al., Cuckoo Trie: Exploiting Memory-Level Parallelism for Efficient DRAM Indexing, SOSP 2022

[8] [9]

Importance of String-Keys

▪ String-key key-value store assists GenAI of Cisco by indexing
3,600+ documents [5]

▪ Elasticsearch improves quality of GenAI model by 20% with the aid
of string-key key-value store [6]

▪ Customer app should handle 10,000+ personalized requests per
second for over 100 million items with under 40ms delay [7]

[5] Omar Santos, Cisco Powers Secure, Responsible Artificial Intelligence Innovation at Scale with MongoDB, 2024

[6] LG CNS, Elasticsearch와 AI 검색 모델 통합으로 검색 정확도 고도화하다, 2024

[7] Delivery Hero Helps Customers Navigate more than 100 Million Products with MongoDB Atlas Search, 2024

0

100

200

300

400

0M 20M 40M 60M 80M 100M

16 32
64 96

Bottlenecks of Learned Index Training

Accumulated keys degrade the performance of learned index
by delaying updates of ML model

1. Bad scalability & performance due to accumulated keys

Total Number of Trained Keys

Tr
ai

ni
ng

 T
im

e
(s

ec
)

0

100

200

300

400

0M 20M 40M 60M 80M 100M

16 32
64 96

Increasing Training Time Performance Degradation with Slow Training

Training Interval
Pe

rfo
rm

an
ce

 D
eg

ra
da

tio
n

Key Length

3%

11%

23%

0%

5%

10%

15%

20%

25%

30%

30s 100s 300s

(30% Insertion Ratio)

Bottlenecks of Learned Index Training

▪ Most learned indexes use linear regression for their ML model
▪ Solving linear regression involves QR decomposition

2. QR Decomposition Operations are Expensive

X (Matrix of keys) Y (Vector of positions)

β (Model weight)

#
 o

f K
ey

s

Key Length 1

β = 𝐑−𝟏𝐑−𝟏𝐓 XTY
, where 𝐗 = 𝐐𝐑

Linear Regression Solution

Xβ = Y

Linear Regression Model

0%

20%

40%

60%

80%

100%

16 32 64 96

QR Decomposition R Inverse + GEMM

▪ QR decomposition is the major bottleneck when training
▪ R Inverse and GEMM are the second longest

Xβ = Y

Linear Regression Model

β = 𝐑−𝟏𝐑−𝟏𝐓 XTY
, where 𝐗 = 𝐐𝐑

Linear Regression Solution

Bottlenecks of Learned Index Training
2. QR Decomposition Operations are Expensive

Key Length

Pe
rc

en
ta

ge

37%

62%

83% 88%

1. Bad scalability & performance due to accumulated keys

2. QR decomposition operations are expensive
• QRD is a key operation in linear model training

• Existing learning algorithms require both old keys and new keys

Bottlenecks of Learned Index Training

14

Existing String-key Learned Index Systems
Offer Limited Performance

SIA: System Overview

① Algorithm that reuses memoized intermediate results
② Hardware that offloads index training with FPGA accelerator

Algorithm-Hardware Co-designed String-key Learned Index System

Modelt+1Modelt

CPU

Inference Thread Training Thread

Update

Rt

Modelt+1Modelt

Rt+1

CPU
key Update Memoize

Use
memoized

result

FPGA

key

Existing System SIA-accelerated System

* FPGA: Field Programmable Gate Array

Insight from Parallel QR Decomposition
▪ Existing parallel QRD offers advantage to tall-and-skinny matrices
▪ Parallel QRD ensures mathematical equivalence

X

X1

X2

X3

X4

Q1,1

Q1,2

Q1,3

Q1,4

R1,1

R1,2

R1,3

R1,4

×

×

×

×

1st QR 2nd QR

Q2,1 R2,1×

Q2,2 R2,2×

3rd QR

Q3,1 R×

concat

X Q

R×

concat

#
 o

f K
ey

s

Key Length

▪ Incremental index learning reduces costly QRD via memoization

XΔ QΔ RΔ×

Q Rnew×

Rold

Rtmp

concat

Algorithm Design

17

Incremental Index Learning

β = (𝐑−𝟏𝐑−𝟏𝐓)XTY where 𝐗 = 𝐐𝐑

Linear Regression Solution

Xold Qold ×

Memoized

U
pd

at
ed

Ke
ys

O
ld

Ke
ys

Result R Matrix
for
Entire Keys

Algorithm Design

▪ There is no need to perform QRD for entire key matrix

18

Incremental Index Learning

XΔ2 QΔ2 RΔ2×

Q2 R2×

2nd QRD

XΔ1 QΔ1 RΔ1×

Q1 R1×

1st QRD

X Q R×

0th QRD

R R1

=

X

XΔ1

XΔ2

Memoized QR Decomposition Naive QR Decomposition

Q × RR1

Q′
Q′′

R2

concat

concat

R∆1

0th QRD1st QRD2nd QRD

Memoized Memoized

0

100

200

300

400

0M 20M 40M 60M 80M 100M

16 32
64 96

Why Do We Need Hardware Acceleration?

19

Tr
ai

ni
ng

 T
im

e
(s

ec
)

0M

2M

4M

6M

1 15

Total Number of Trained Keys
1 15

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

of Inference Threads # of Training Threads

Training Time with Incremental Learning Throughput with Varying CPU Threads

CPU-only solution is still slow due to low efficiency in training

Hardware Design

20

Hardware Selection: FPGA

◦Reconfigurable
Reprogrammable without changing hardware

◦Customizable
Programmable with user custom hardware logic

◦Parallelizable
Simultaneous operation of multiple logic blocks

◦Area & Energy Efficient
High performance at low operating costField Programmable Gate Array

Hardware Design

21

FPGA Accelerator Architecture

𝑥∆

FPGA accelerator calculates
𝜽 = 𝐑−𝟏𝐑−𝟏𝐓

with incremental index learning

Inserted keys are
copied from host to

FPGA

QR decomposition is
done in QRD Unit

R∆
RoldMemoized matrix is

stored on FPGA DRAM
Memoized matrix is

reused at concat unit &
QRD Unit

Rtmp

Rnew

Result R is memorized
on FPGA DRAM, again

Rnew

Remaining calculation
is done on systolic array θ

Calculation result is
returned to host CPU

β = (𝐑−𝟏𝐑−𝟏𝐓)XTY where 𝐗 = 𝐐𝐑
Linear Regression Solution

Evaluation Methodology
Dataset Workload

“amaz”
Amazon review dataset

YCSB – D
Read & Insert

queries

YCSB – E
Range & Insert

queries

“meme”
Memetracker dataset

“rand”
Randomly generated

strings

Twitter Cache Trace
12.2, 15.5, 31.1, 37.3

Twitter Cache Trace
12.2, 15.5, 31.1, 37.3
Read & Insert Queries

22

▪ Baselines
◦Wormhole[*]

◦Cuckoo Trie [*]

◦SIndex [**]

◦ALEX [**]

◦LIPP [**]

▪ FPGA
◦Intel Arria 10 GX-1150

(Synthesized to 272MHz)

[*] Non-learned indexes
[**] Updatable learned indexes

Performance Evaluation

23

Twitter Cache Trace ClustersYCSB Workloads

Learned indexes with SIA shows an average of 2.9x throughput improvement
compared to learned indexes without SIA

0M
2M
4M
6M
8M

10M
12M
14M

D-rand D-amaz D-meme E-rand E-amaz E-meme
0M
1M
2M
3M
4M
5M
6M
7M

12.2 15.5 31.1 37.3

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

ALEX ALEX-SIA LIPP LIPP-SIA SIndex SIndex-SIA

Tree Traversal Hashing ML Inference Local Search Buffer Search Range Search

Latency Breakdown

0.0

0.5

1.0

1.5

2.0

2.5

Wormhole Cuckoo Trie SIndex SIndex-SIA

24

0.0

2.0

4.0

6.0

8.0

Wormhole Cuckoo Trie SIndex SIndex-SIA

10.7 27.3

La
te

nc
y

(u
s)

Learned Index with SIA benefits from reduced search time
due to “freshness” of learning model

YCSB - D YCSB - E

Energy Efficiency Evaluation

0

50

100

150

200

250

CPU
Idle

CPU
Infer

CPU
Train

Total CPU
Idle

CPU
Infer

GPU
Train

Total CPU
Idle

CPU
Infer

FPGA
Train

Total

SIndex-CPU SIndex-GPU SIndex-SIA

25

Po
we

r (
W

)

Normalized
Performance

per Watt
SIndex-CPU 1.00x
SIndex-GPU 1.67x
SIndex-SIA 2.89x

SIndex-CPU SIndex-GPU SIndex-SIA

SIA achieves higher energy efficiency with low energy usage of FPGA
(28x less than NVIDIA RTX 2080 TI GPU)

Suitable for continuous retraining of learned index system

* CPU: Intel Xeon Gold 6226R
* GPU: NVIDIA RTX 2080 TI

More Results in Paper
▪ Hardware Resource Utilization

▪ Memory Consumption Comparison

▪ Ablation Study

▪ Throughput with Different Query Distribution

▪ Implication of Lazy Delete Query Handling

26

Conclusion

27

• SIA
◦ Fast and efficient

string-key learned index
through CPU-FPGA heterogeneous acceleration

• Results
◦ 2.9x performance boost on existing string-key learned indexes

• Work-in-Progress and Future Directions
◦ Exploration of use cases for learned indexes in domain-specific applications

◦ Vector DB for LLM (i.e., RAG)
◦ Databases for ML training data

	Slide 1: Accelerating String-key Learned Index Structures via Memoization-based Incremental Training
	Slide 2: Computer Architecture and Systems Lab
	Slide 3: Jongse Park
	Slide 4: Research Projects
	Slide 5: Bottlenecks of Learned Index Training
	Slide 6: Learned Index Structure [1]
	Slide 7: Learned Index Structure
	Slide 8: Updatable Learned Index [2, 3, 4]
	Slide 9: Performance of Updatable Indexes
	Slide 10: Importance of String-Keys
	Slide 11: Bottlenecks of Learned Index Training
	Slide 12: Bottlenecks of Learned Index Training
	Slide 13: Bottlenecks of Learned Index Training
	Slide 14: Bottlenecks of Learned Index Training
	Slide 15: SIA: System Overview
	Slide 16: Insight from Parallel QR Decomposition
	Slide 17: Algorithm Design
	Slide 18: Algorithm Design
	Slide 19: Why Do We Need Hardware Acceleration?
	Slide 20: Hardware Design
	Slide 21: Hardware Design
	Slide 22: Evaluation Methodology
	Slide 23: Performance Evaluation
	Slide 24: Latency Breakdown
	Slide 25: Energy Efficiency Evaluation
	Slide 26: More Results in Paper
	Slide 27: Conclusion

