Accelerating String-key Learned Index Structures via Memoization-based Incremental Training

Minsu Kim Jinwoo Hwang Guseul Heo Seiyeon Cho Divya Mahajan[†] Jongse Park

KAIST Georgia Institute of Technology[†]

What is *learned index* anyway?

Learned Index Structure [1]

Traditional Index Structure

Learned Index Structure

[1] Kraska et al., The Case for Learned Index Structures, SIGMOD 2018

Learned Index Structure

	Traditional Index	Learned Index
Time Complexity		$\mathbf{ abla}$
Performance		
Index Size		

Example Applications

• Database: BOURBON (OSDI 2020)

Learned Bigtable (ML for Systems at NeurIPS 2020)

• **DNA Sequencing**: BWA-MEME (Bioinformatics 2022) BLESS (ISCA 2024)

• Embedded Sensor: Ding et al. (SENSORNETS 2023)

Updatable Learned Index [2, 3, 4]

Updatable learned indexes require periodic retraining using the entire keys

[2] Ding et al., ALEX: An Updatable Adaptive Learned Index, SIGMOD 2020

[3] Tang et al., XIndex: A Scalable Learned Index for Multicore Data Storage, PPoPP 2020

[4] Wang et al., SIndex: A Scalable Learned Index for String Keys, APSys 2020

Performance of Updatable Indexes

* Used YCSB (Yahoo Cloud Serving Benchmark) workloads

Read-only Workload

Read-Write Workload

String-key learned indexes show **poor performance** for **read-write workloads**

[8] Wu et al., Wormhole: A Fast Ordered Index for In-memory Data Management, Eurosys 2019[9] Zeitak et al., Cuckoo Trie: Exploiting Memory-Level Parallelism for Efficient DRAM Indexing, SOSP 2022

Importance of String-Keys

String-key key-value store assists GenAI of Cisco by indexing 3,600+ documents [5]

[5] Omar Santos, Cisco Powers Secure, Responsible Artificial Intelligence Innovation at Scale with MongoDB, 2024

 Elasticsearch improves quality of GenAI model by 20% with the aid of string-key key-value store [6]

[6] LG CNS, Elasticsearch와 AI 검색 모델 통합으로 검색 정확도 고도화하다, 2024

 Customer app should handle 10,000+ personalized requests per second for over 100 million items with under 40ms delay [7]

[7] Delivery Hero Helps Customers Navigate more than 100 Million Products with MongoDB Atlas Search, 2024

Bottlenecks of Learned Index Training

1. Bad scalability & performance due to accumulated keys

Accumulated keys degrade the performance of learned index

by delaying updates of ML model

Bottlenecks of Learned Index Training

2. QR Decomposition Operations are Expensive

- Most learned indexes use linear regression for their ML model
- Solving linear regression involves QR decomposition

Bottlenecks of Learned Index Training

2. QR Decomposition Operations are Expensive

- QR decomposition is the major bottleneck when training
- R Inverse and GEMM are the second longest

Existing String-key Learned Index Systems Offer Limited Performance

SIA: System Overview

Algorithm-Hardware Co-designed String-key Learned Index System

(1) **Algorithm** that reuses memoized intermediate results

2 Hardware that offloads index training with FPGA accelerator

Existing System

SIA-accelerated System

Insight from Parallel QR Decomposition

- Existing parallel QRD offers advantage to tall-and-skinny matrices
- Parallel QRD ensures mathematical equivalence

Algorithm Design

Incremental Index Learning

Incremental index learning reduces costly QRD via memoization

Algorithm Design

Incremental Index Learning

There is no need to perform QRD for entire key matrix

Naive QR Decomposition

Memoized QR Decomposition

Why Do We Need Hardware Acceleration?

CPU-only solution is still slow due to low efficiency in training

Training Time with Incremental Learning

Throughput with Varying CPU Threads

Hardware Design

Hardware Selection: FPGA

Field Programmable Gate Array

High performance at low operating cost

Hardware Design

FPGA Accelerator Architecture

Linear Regression Solution

 $\beta = (\mathbf{R}^{-1}\mathbf{R}^{-1^{\mathrm{T}}})\mathbf{X}^{\mathrm{T}}\mathbf{Y}$ where $\mathbf{X} = \mathbf{Q}\mathbf{R}$

FPGA accelerator calculates $\boldsymbol{\theta} = \left(\mathbf{R}^{-1}\mathbf{R}^{-1^{\mathrm{T}}}\right)$

with incremental index learning

Calculation result is returned to host CPU

Evaluation Methodology

 Baselines 	Dataset	Workload	
 Wormhole^[*] Cuckoo Trie^[*] SIndex^[**] 	" amaz" Amazon review dataset		
 ALEX [**] LIPP [**] 	" <i>meme"</i> Memetracker dataset	YCSB – D Read & Insert queries	YCSB – E Range & Insert queries
[*] Non-learned indexes [**] Updatable learned indexes	" rand" Randomly generated strings	•	
 Intel Arria 10 GX-1150 (Synthesized to 272MHz) 	Twitter Cache Trace 12.2, 15.5, 31.1, 37.3	Twitter Cache Trace 12.2, 15.5, 31.1, 37.3 Read & Insert Queries	

Performance Evaluation

Learned indexes with SIA shows an average of **2.9x throughput improvement** compared to learned indexes without SIA

Latency Breakdown

Learned Index with SIA benefits from **reduced search time** due to "freshness" of learning model

Energy Efficiency Evaluation

SIA achieves higher energy efficiency with low energy usage of FPGA

(28x less than NVIDIA RTX 2080 TI GPU)

Suitable for continuous retraining of **learned index system**

More Results in Paper

- Hardware Resource Utilization
- Memory Consumption Comparison
- Ablation Study
- Throughput with Different Query Distribution
- Implication of Lazy Delete Query Handling

Conclusion

• SIA

• Fast and efficient

string-key learned index

through CPU-FPGA heterogeneous acceleration

Results

• **2.9x** performance boost on existing string-key learned indexes

Work-in-Progress and Future Directions

- Exploration of use cases for learned indexes in domain-specific applications
 - Vector DB for LLM (i.e., RAG)
 - Databases for ML training data