20254 10 23¢
NVRAMOS'25

HF Aot

Preserving the Order in Modern IO Stack

KAIST

Youjip Won

Outline

1. Background
Storage Order in single queue TO stack
Storage Order and concurrency

Storage Order in multi queue TO stack

o > 0N

Conclusion

KAIST | Youiip Won

Chaos,
The Genesis

Ivan Aivazovsky
1831, Oil Canvas

KAl ST Youjip Won

Orders

The Creation of Adam, a fresco painting,
Michelangelo, 1508—-1512

KAIST Youjip Won 4

Modern IO Stack

Modern IO stack is Orderless.

Issue (I) Dispatch (D) Transfer (X) Persist (P)
W_SQLite 1 \\‘_’::-‘ e —
o W || |Cam
(O¥ |O Scheduler Cache
v~ Host Storage

I # D: 10 Scheduling
D # X: Time out / retry
X # P: Cache replacement, page table update algorithm of FTL

KAl ST Youjip Won

Storage Order

The order in which the data blocks are made durable.

Storage order guarantee
Issue (I) < » Persist (P)

I=D)AMD=X)AX=P)

Tssue (1) < > Dispatch (D)« Transfer (X) <> Persist (P)
w54 akk@ ki
A le |'o-THllle | ~~| TITHe
g Host Storage

KAl ST Youjip Won

Crash Consistency

Controlling the storage order is for crash consistency.

Database logging and Filesystem journaling (SQLite, EXT4, RocksDB)

o aen — ‘\‘)/\,
—) L »)
Y

\) \

Logging Commit Checkpoint

I

Out-of-place update (BTRFS, F2FS)

Update ‘A’ to 'B'

»

")

[k
"

KAIST | Youiip Won

Storage Evolution

1

J <o

8 CHX1WY

/

10 K IOPS

64 CH X 2 WY

10 M IOPS

KAIST

Youjip Won

Intel X25-M 830 PRO 850 PRO Intel 600p 960 PRO PM1725 PCIl Gen4
35KIOPS 80KIOPS 100KIOPS 155K IOPS 380 K IOPS 1 M IOPS 10 M IOPS
2009 2012 2014 2016 2016 2015
2022
Good Storage Performance

Bad Cell Program Speed

>
Finer Process Technology (FAST12) Multi Bits/Cell
a0 SLC MLC TLC QLc
251 : TLC? | I | + l { 1 Reference POints 1110 1100 1010 1000 0110 0100 0010 0000
I ”../_ 2 =T . 0

Ts12 256 128 64 32 16 8 V
t

Feature Size (nm)

KAl ST Youjip Won

Why has IO stack been orderless for the last 50 years?

In HDD, host cannot control the persist order.

(ME(IzD)/\(D=X)/\()%

%iﬁ%&

250MB @ 1970's

KAIST Youjip Won 10

Enforcing Storage Order in Orderless IO Stack

Transfer-and-Flush

write (A) ;
S Transfer-and-flush;
write (B) ;

write () ; write(B) ;
Host (!3 —————————————————— J
PESNN) S — |
Storage ' | N — :
N DMA e | DMA
To enforce transfer order, To enforce persist order,
block the caller! drain the cache !

KAIST | Youiip Won

11

Enforcing Storage Order in Orderless IO Stack

28 - -
TIe | THe — T0We — —
Y

_THillle Dispatch ~ Command 7
IO Scheduler Queue Queue Cache

]I-. Dispatch Command

Queue Queue
IO Scheduler

[THle "o THlle— [[lle—
]I.. Dispatch Command

Queue Queue
IO Scheduler Cache

KAl ST Youjip Won

12

Transfer-and-Flush

write(A) + fdatasync(A) write(B) + fdatasync(B)

|
Hos « & »le—rle tr >
L ==
Storage

Transfer Flush Transfer

a
>

T
5 A transfer-and-flush me

KAl ST Youjip Won

13

Transfer—-and-Flush

write(A) + fdatasync(A) write(B) + fdatasync(B)
Host | o . [
o | = S>> mmam
orage | Transfer Flush | Transfer
e A Time
transfer-and-flush
1MA PM1725 §
NVMe PM1725) W 2 NVMe PM1725 3
120K IOPS 500 K 4‘:zteK|l705<lgs Ordering 2K IOPS 3:%
850 PRO §
2N g kiape K ions Guarantee 5 e
’ 2000 2012 2014 2015 % — = 0 50 100 150 20c 3250
Storage Performance (IOPS) < 2 0/ Buffered 10 (I0PS X107
. . L
Host EEENE Host A
v v ty ty tV t
Storage EEEN Storage < = I <>
Parallel) Serial

KAIST Youjip Won

Storage is severely under-utilized.

DD $16hm, *+SPA

RS k Cayley . mongoDB

l ”-
or Al o
Cassandra COUChDB * neOLI ;

Page Cache

Filesystem

Block IO SEEELE Flush
Layer ¢ 6 o o l“.T

Writeback Cache

i o T [o [

Storage

KAl ST Youjip Won

15

How fto mitigate the overhead of storage order guarantee?

Mainly to hide the overhead of transfer-and-flush.

tm &
Supercap at Vot s shorten flush
SSD C 0 .
.]
no _barrier mount I eliminate flush
option (EXT4) - .
. | = %
journal async commit v te 4 Two flush > one flush
(EXT4/Android) m >
KAIST

Youjip Won

How to mitigate the overhead of storage order guarantee?

v’ FeatherStitch [SOSP'07], NoFS[FAST12],
OptFS[SOSP'13]
> HDD, still use flush

v' HORAE [0SDI'20], ccNVMe [SOSP'21], RIO
[EUROSYS'23]
» Ordered recovery
» On-SSD NVM logging
» Multi-queue support > place the ordered IO at the

same queue.

4 LazyBarrier[ASPLOS24]
» Ordered IO in Smartphone

KAl ST Youjip Won

17

Outline

o > 0N

Background

Storage Order in single queue TO stack
Storage Order and concurrency
Storage Order in multi queue TO stack

Conclusion

KAIST | Youiip Won

18

How to mitigate the overhead of storage order guarantee?

In the era of HDD In the era of 5SD
(circa 1970) (circa 2000)
p
| EE -
Seek and rotational delay. —Seeland-rotationat-detay—
B The host cannot control persist B The host may control persist
order. order.
mp the IO stack becomes orderless.) The IO stack may become order-
B use transfer-and-flush to preserving.
control the storage order) Control the storage order without

Transfer-and-Flush

KAIST Youjip Won 19

Barrier-enabled IO Stack (FAST'18)

v iy

G

I
NtV

T

OVA < TUSHS> BWA < Tuss>

Transfer-and-Flush

[
ty
< ——>n

&0

|
v

=

Legacy IO Stack

¥

e

v

Barrier

Barrier-enabled

» Dual-Mode Journaling
= fbarrier() / fdatabarrier()

Order-preserving Block dev
» Order-preserving dispatch

" Epoch-based 10 scheduling

Order-Preserving Storage

= Barrier write command

Barrier-enabled IO Stack

KAIST

Youjip Won

20

File
System

Order-preserving Storage

KAIST

Youjip Won

21

Satisfying X =P

\

~ 43
=]

.

=
» <& |
/8 barrier command (2005, eMMC)

¢ \

&

write (A) ;
barrier;

write (B) ;
write (C) ;
write (D) ;

With barrier, Host can control the persist order, X = P.

KAIST

Youjip Won

22

With Barrier command,
host can control the persist order without flush.

1Py = 1 3) A (0 3 A (K P)

cache-barrier was defined at 2005.

KAIST

Youjip Won

23

Order-preserving Block Layer

File
System

Flash

KAIST Youjip Won 24

Satisfying D = X

4 Order Preserving Dispatch
» Avoid out-of-order transfer.

» satisfies D = X without interleaving the requests with DMA transfer!

write (A) ;
l write (B) ; //set the command priority to ‘ORDERED’

Storage
Dispatch Command
Queue Queue
Cache

KAIST Youjip Won 25

SCSI Command Priority

v" Head of the Queue

Dispatch Queue

Command Queue

v’ Ordered (Barely being used)

Dispatch Queue Command Queue
v e
Simple (Default) anywhere
(Simple)

Dispatch Queue

>

Command Queue

KAIST

Youjip Won

26

Order Preserving Dispatch

Legacy Dispatch

For D = X, wait till DMA finishes to
send the following command.

write (A); write (B);

o o
ctorsge]

. DMA . DMA

Caller blocks.

DMA transfer overhead

Order Preserving Dispatch

write (A); // “ordered”

l write (B); //”simple”

v
Host]
Storage I
| DMA DMA
Caller does not block. -

No DMA transfer overhead =

KAIST

Youjip Won

With Order Preserving Dispatch, host can control the transfer order
without DMA transfer.

(IX}B) = (IXQ) A (D)Q() A (X = P)

KAIST | Youiip Won

28

SatisfyingI = D

Use NO-OP, or FIFO scheduler.

|O Scheduler

KAIST

Youjip Won

29

With Epoch Based IO Scheduling, host can control the dispatch order
with existing IO scheduler.

Dj/\(D=X)/\(X=P)

T
‘ barrier write

Order-preserving dispatch

Epoch-based IO scheduler

KAIST | Youiip Won

30

Enforcing the Storage Order

Legacy Block Layer (With Transfer-and-Flush)

write () ; write(B) ;

Host ﬂ
Storage l DMA T l{ Il Fm:h;_ﬁ ld

>
Order Preserving Block Layer L
write(A); barrier; write(B); No Flush ! @
No DMA |
Host - °
l l No Context Switch |
Storage I
>

KAIST Youjip Won 31

fbarrier () and fdatabarrier ()

File - o—lille | | TITHRe _, [

System e

Flash

Host Storage

KAl ST Youjip Won

New primitives for ordering guarantee

Durability guarantee

: Ordering guarantee

4 fsync()

v’ fbarrier()

Journaling » Dirty pages » Dirty pages
» journal transaction » Journal transaction
> Durable : > —dunabl
v’ fdatasync() : v/ fdatabarrier()
No > Dirt : > Dirt
journaling ity pages 5 ity pages
» durable > —dupabl
KAIST

Youjip Won

33

Separation of Ordering Guarantee and Durability Guarantee

write (fileA, “Hello”) ;
fdatabarrier (fileA) ;

write (fileA, “World”) ;

write (“Hello”) ;

write (“World”) ;

Host

Storage e
DMA DMA

DMA transfer overhead NO

Flush overhead

Context switch

NO

NO

KAIST

Youjip Won

34

fsync() in EXT4

{Dirty Pages (D), Journal Logs (JL)} > {Journal Commit (JC)}

Two Flushes
Three DMA Transfers
A number of Context switches

fsync () fsync ()
start enfl
@Filesys‘rem :
I |

@ JBD <

| bma l DMAH . DMA

Storage , = -3
. D JL Flush JC FUA
: : >

35

KAIST Youjip Won

fsync() and fbarrier() in BarrierFS

+—Twe One Flushes
o+ Thpee DMA Transfers
* One Anumberof-Context switch

@ Filesystem fbarrier () fsync ()
@ Commit
@ Flush 1 ll [
Storage K Flush
>

KAl ST | Youjip Won

36

Outline

o > 0N

Background

Storage Order in single queue TO stack
Storage Order and concurrency
Storage Order in multi queue TO stack

Conclusion

KAIST | Youiip Won

37

Concurrency and Order (CJFS, FAST23)

v What we expected: Concurrent Journaling

T1 () fsync ()——— |

T2 (:) fsync () —— H

T3 () £syne () — ’
T4 () fsync () —— =

v’ What we have observed: Serial Journaling

T1 () fsync () —— ~

T2 (:) £sync () R .
T3 () fsync () -
T4 () fsync ()

v

v

KAJST' | Youjip Won

38

Reason 1: Transaction conflict

« A file operation modifies a page which is being committed.
« A file operation is blocked ftill the conflict transaction is committed.

* Most journal fransactions have some blocks in common; bitmap, superblock

create()

Tx, Commit U)}_] Tx gcﬁwmif
n
Tx, Start [{'
Committing
4
Tx, []
Running Tx

Time

KAIST Youjip Won 39

Reason 2: Transaction Lock-Up

« When committing a running transaction, the filesyste stops issues journal
handle and waits till all outstanding journal handles are returned.

* During transaction lock-up, a filesystem operation is blocked.

OP, - Coalesced 10 TX; -—-commmm
OP, e Coalesced 10 TX; -
OP; oo Coalesced to Tx; [rmmr s
OP, s . Coalesced to Tx, ---.--
Blocked :

Tx, —— Running =§< Locked T Committing —
Tx; «—— Running ——

Time

KAIST Youjip Won 40

Resolve transaction conflict and transaction lock-up.

Tx,

Tx,

Txs

Tx,

TX3

KAIST

Youjip Won

41

Resolve Transaction Conflict: Multi-version Shadow Paging

« Commit a shadow page rather than the original page.
« Creating a shadow page is hot as significant as expected.

* A page can have up to N versions. (currently, N = 5)

™ (G3F9)

~ v |
TX, ! % g%
o o o ° .
Tx; Commit Tx, Commit Tx; Commit Time
. . File
Original page cache entries: operations
Txl [Vl V1 V1]
TXZ [v2 \/1]
T, (V2 V2 ¥, |

Time

KAIST Youjip Won 42

Resolve Transaction Lock-up Overhead: Opportunistic Coalescing

- When versions are exhausted, transaction commits are serialized

- The running transaction is locked and waits for preceding transaction commits

Txq Tx,
. Lock Prepare Lock Prepare
@Commu‘r Up DMA Up DMA

v

Time
Tx, Tx,
. Lock Prepare : Prepare
@“mm” Up DMA Running DMA
(SFlush
Time

KAl ST Youjip Won

43

Compound Flush

om0 g
(SFlush

v

@Comml‘r Lock- Lock Lock
S q- o e
cache_barrier -
Time

KA'ST Youjip Won

44

Outline

o > 0N

Background

Storage Order in single queue TO stack
Storage Order and concurrency
Storage Order in multi queue TO stack

Conclusion

KAIST | Youiip Won

45

Multi-Queue and Order (OPIMQ, FAST25)

How can we ensure the order across the queues?

Queues are meant to be independent.

: /™
—

relax

.mongoDB

iig
WSQLite » .. @
| iig

MHSQKL .
IO Scheduler .
Dispatch
Cassandra H Ost Queue StO rage

KAIST Youjip Won 46

Storage Order in Multi-Queue Block Device

v Ensuring the storage order across the different queues.

{Dirty Pages (D), Journal Logs (JL)@Jour‘nal Commit (JC)}

JC —

KAIST | Youiip Won

Inter-Queue Storage Order Dependency

v When requests are from same thread

- What we want: {W1,W2 W3 W4} >{.}
- What may happen: {W4} > {W1,W2,W3,..}

. Cache barrier

migration

epoch is split.

KAIST

Youjip Won

48

Inter-Queue Storage Order Dependency

v When requests are from different threads.

- What we want: {D}>{JL}> {JC}
- What may happen: {JL} >{JC} >{D}

I Cache barrier

fsync()

Core 2
1 0
l JBD
I
JC
Ci—
JL

KAIST

Youjip Won

49

Model

v’ Stream: a set of IO requests generated by the same thread.
v Epoch
> A set of order-preserving write requests that can be reordered or coalesced
with each other

» Cache barrier command delimits the boundaries of an epoch.

v Write command has <stream id, epoch id>

stream

KAIST Youjip Won 50

Inter-queue order within a thread: Epoch Pinning

IO's in the same epoch are placed at the same queue.

() W4)
W3 W3

W, | epoch pinning
epoch split

KAIST | Youiip Won

51

Inter-queue order among the threads: Dual Stream Write

fsync()

O L
o
| |
- —

mm—
J— JC
ST

I Cache barrier

Dual Stream Write

A write request that belongs to
Two streams.
major <stream id, epoch id> and

minor <stream id, epoch id>

KAIST

Youjip Won 52

Dual Stream Write

(N\ Dual-stream write
7/

== Intra-stream order dependency

L

= Inter-stream order dependency

X N O N
Stream of A A lﬂ—f@) Stream of A :1) — @)
Stream of B | Stream of B [{ B
KAIST

Youjip Won

Order-Preserving FTL

v Order-preserving mapping table update.
v Epochs are made persisted in order within a stream.

v For the dual-stream write, guarantee the persistence order in both streams.

Durable
B . [onn -
-
..—> OPFTL Flash
e \Persist /'
h LPN PPN
Command Cache
Queue

Storage

KAl ST Youjip Won

Outline

o > 0N

Background

Storage Order in single queue TO stack
Storage Order and concurrency
Storage Order in multi queue TO stack

Conclusion

KAIST | Youiip Won

55

Conclusion

4 Why transfer-and-flush?

>

>
>
>

Host does not trust storage.
Host needs to ensure the every step, e.g. data transfer, FLUSH.
“cache barrier"? Standardize in UFS, but in NVMe is still pending.

OS needs to run correctly on thousands of different and possibly unreliable storage

models.

v Why core migration causes ordering issue?

>
>

OS design is CPU centric and command Queue is bound to CPU.

Thread is migrated to new CPU, IO command is fed to new queue.

KAIST

Youjip Won

56

Question?

KAl ST | Youjip Won

	기본 구역
	슬라이드 1: Preserving the Order in Modern IO Stack
	슬라이드 2: Outline
	슬라이드 3: Chaos, The Genesis
	슬라이드 4: Orders
	슬라이드 5: Modern IO Stack
	슬라이드 6: Storage Order
	슬라이드 7: Crash Consistency
	슬라이드 8: Storage Evolution
	슬라이드 9
	슬라이드 10: Why has IO stack been orderless for the last 50 years?
	슬라이드 11: Enforcing Storage Order in Orderless IO Stack
	슬라이드 12: Enforcing Storage Order in Orderless IO Stack
	슬라이드 13: Transfer-and-Flush
	슬라이드 14: Transfer-and-Flush
	슬라이드 15: Storage is severely under-utilized.
	슬라이드 16: How to mitigate the overhead of storage order guarantee?
	슬라이드 17: How to mitigate the overhead of storage order guarantee?
	슬라이드 18: Outline
	슬라이드 19
	슬라이드 20: Barrier-enabled IO Stack (FAST’18)
	슬라이드 21: Order-preserving Storage
	슬라이드 22: Satisfying X = P
	슬라이드 23
	슬라이드 24: Order-preserving Block Layer
	슬라이드 25: Satisfying D = X
	슬라이드 26: SCSI Command Priority
	슬라이드 27: Order Preserving Dispatch
	슬라이드 28
	슬라이드 29: Satisfying I = D
	슬라이드 30
	슬라이드 31: Legacy Block Layer (With Transfer-and-Flush)
	슬라이드 32: fbarrier() and fdatabarrier()
	슬라이드 33: New primitives for ordering guarantee
	슬라이드 34
	슬라이드 35: fsync() in EXT4
	슬라이드 36: fsync() and fbarrier() in BarrierFS
	슬라이드 37: Outline

	cjfs
	슬라이드 38: Concurrency and Order (CJFS, FAST’23)
	슬라이드 39: Reason 1: Transaction conflict
	슬라이드 40: Reason 2: Transaction Lock-Up
	슬라이드 41
	슬라이드 42: Resolve Transaction Conflict: Multi-version Shadow Paging
	슬라이드 43: Resolve Transaction Lock-up Overhead: Opportunistic Coalescing
	슬라이드 44: Compound Flush
	슬라이드 45: Outline
	슬라이드 46: Multi-Queue and Order (OPIMQ, FAST’25)
	슬라이드 47
	슬라이드 48
	슬라이드 49
	슬라이드 50
	슬라이드 51
	슬라이드 52
	슬라이드 53
	슬라이드 54
	슬라이드 55: Outline
	슬라이드 56: Conclusion
	슬라이드 57
	슬라이드 58
	슬라이드 59: Question?

