
Youjip Won

Preserving the Order in Modern IO Stack

2025년 10월 23일

NVRAMOS’25

제주 신라호텔

2Youjip Won

Outline

1. Background

2. Storage Order in single queue IO stack

3. Storage Order and concurrency

4. Storage Order in multi queue IO stack

5. Conclusion

3Youjip Won

Chaos,

The Genesis

Ivan Aivazovsky
1831, Oil Canvas

4Youjip Won

The Creation of Adam, a fresco painting,

Michelangelo, 1508–1512

Orders

5Youjip Won

Modern IO Stack

CacheIO Scheduler

Command
Queue

Host Storage

Dispatch
Queue

HDD

Issue (𝐼) Persist (𝑃)Transfer (𝑋)Dispatch (𝐷)

𝐼 ≠ 𝐷: IO Scheduling

𝐷 ≠ 𝑋: Time out / retry

X ≠ 𝑃: Cache replacement, page table update algorithm of FTL

Modern IO stack is Orderless.

6Youjip Won

Storage Order

Host Storage

Issue (𝐼) Persist (𝑃)Transfer (𝑋)Dispatch (𝐷)

App’s

𝐼 = 𝐷 ∧ (𝐷 = 𝑋) ∧ (𝑋 = 𝑃)

Issue (I)

The order in which the data blocks are made durable.

Storage order guarantee
Persist (P)

7Youjip Won

Crash Consistency

Logging Commit Checkpoint

Controlling the storage order is for crash consistency.

A
Update ‘A’ to ‘B’

A B

Database logging and Filesystem journaling (SQLite, EXT4, RocksDB)

Out-of-place update (BTRFS, F2FS)

8Youjip Won

Storage Evolution

16 X 1

8 CH X 1 WY

10 K IOPS

. . .

. . .

64 CH X 2 WY

10 M IOPS

64 K X 64 K

. . .

1 GB 1 TB

9Youjip Won

Storage Performance

Cell Program Speed

Good

Bad

830 PRO

80 K IOPS

2012

850 PRO

100 K IOPS

2014

960 PRO

380 K IOPS

2016

Intel 600p

155 K IOPS

2016

Intel X25-M

35 K IOPS

2009

PM1725

1 M IOPS

2015

PCI Gen4

10 M IOPS

2022

Finer Process Technology (FAST12) Multi Bits/Cell
SLC

Reference Points
MLC

Reference Points
TLC QLC

𝑽𝒕 𝑽𝒕
𝑽𝒕 𝑽𝒕

10Youjip Won

Why has IO stack been orderless for the last 50 years?

cache HDD250MB @ 1970’s

In HDD, host cannot control the persist order.

𝐼 = 𝑃 ≡ 𝐼 = 𝐷 ∧ (𝐷 = 𝑋) ∧ (𝑋 = 𝑃)

Disk Scheduler

11Youjip Won

Enforcing Storage Order in Orderless IO Stack

write (A) ;

write (B) ;

write (A) ;

Transfer-and-flush;

write (B) ;

Transfer-and-Flush

Host

Storage
Flush DMA

…

DMA

To enforce transfer order,
block the caller !

write(A); write(B);

To enforce persist order,
drain the cache !

12Youjip Won

Enforcing Storage Order in Orderless IO Stack

CacheIO Scheduler

Command
Queue

Dispatch
Queue

CacheIO Scheduler

Command
Queue

Dispatch
Queue

CacheIO Scheduler
Command

Queue
Dispatch
Queue

13Youjip Won

Transfer-and-Flush

Host Storage

App’s

14Youjip Won

Transfer-and-Flush

NVMe PM1725

2K IOPS

NVMe PM1725

120K IOPS Ordering
Guarantee

< 2%

Multi Command
Queue

Multi-Channel
Multi-Way

Disk Cache I/O Scheduler

Buffered IO (IOPS X 103)

0 50 100 150 200 250

5

10

15

20

25

(F
lu

s
h
 I

O
)

/
(B

u
ff
e
re

d
 I

O
)

(%
)

1351

2131

2296
2297

584830 PRO

80 K IOPS

850 PRO

100 K IOPSX25-M

35 K IOPS

2009

1M

0

500 K

Storage Performance (IOPS)

2012 2014 2015

Intel 750

440 K IOPS

~~

PM1725

1 M IOPS

Parallel Serial

Host

Storage

Host

Storage

15Youjip Won

Storage is severely under-utilized.

Page Cache

M J DFilesystem

Block IO

Layer

Storage

Flush

Writeback Cache

…

…

16Youjip Won

How to mitigate the overhead of storage order guarantee?

Mainly to hide the overhead of transfer-and-flush.

Supercap at
SSD

no_barrier mount
option (EXT4)

journal async commit

(EXT4/Android)

shorten flush

eliminate flush

Two flush →> one flush

17Youjip Won

✓ FeatherStitch [SOSP’07] , NoFS[FAST’12],

OptFS[SOSP’13]

➢ HDD, still use flush

✓ HORAE [OSDI’20], ccNVMe [SOSP’21], RIO

[EUROSYS’23]

➢ Ordered recovery

➢ On-SSD NVM logging

➢ Multi-queue support → place the ordered IO at the

same queue.

✓ LazyBarrier[ASPLOS’24]

➢ Ordered IO in Smartphone

How to mitigate the overhead of storage order guarantee?

18Youjip Won

Outline

1. Background

2. Storage Order in single queue IO stack

3. Storage Order and concurrency

4. Storage Order in multi queue IO stack

5. Conclusion

19Youjip Won

Seek and rotational delay.

The host cannot control persist

order.

the IO stack becomes orderless.

use transfer-and-flush to

control the storage order

HDD

Seek and rotational delay

The host may control persist

order.

The IO stack may become order-

preserving.

Control the storage order without

Transfer-and-Flush

Controller

…

… … …

In the era of HDD
(circa 1970)

In the era of SSD
(circa 2000)

How to mitigate the overhead of storage order guarantee?

20Youjip Won

Barrier-enabled IO Stack (FAST’18)

Barrier-enabled IO Stack

Controller

Legacy IO Stack

000

Controller

…… … …

Barrier-enabled
filesystem

▪ Order-preserving dispatch
▪ Epoch-based IO scheduling

▪ Barrier write command

Order-Preserving Storage

000
……B

……B

Order-preserving Block dev

▪ Dual-Mode Journaling
▪ fbarrier() / fdatabarrier()

flush flushDMA DMA

Transfer-and-Flush Barrier

B B

21Youjip Won

Order-preserving Storage

Host Storage

File
System

Flash

22Youjip Won

Satisfying X = P

B

B

barrier command (2005, eMMC)

write (A) ;

barrier;

write (B) ;

write (C) ;

write (D) ;

With barrier, Host can control the persist order, 𝑋 = 𝑃.

23Youjip Won

With Barrier command,

host can control the persist order

𝐼 = 𝑃 ≡ 𝐼 = 𝐷 ∧ (𝐷 = 𝑋) ∧ (𝑋 = 𝑃)

without flush.

cache-barrier was defined at 2005.

24Youjip Won

Order-preserving Block Layer

Host Storage

File
System

Flash

25Youjip Won

Satisfying D = X

✓ Order Preserving Dispatch

➢ Avoid out-of-order transfer.

➢ satisfies 𝐷 = 𝑋 without interleaving the requests with DMA transfer!

Cache

Command
Queue

Storage

Dispatch
Queue

write (A) ;

write (B) ; //set the command priority to ‘ORDERED’

AB

26Youjip Won

SCSI Command Priority

✓ Head of the Queue

✓ Ordered (Barely being used)

✓ Simple (Default)

Command QueueDispatch Queue

(HoQ)

Command Queue

(Ordered)

Command Queue

(Simple)

anywhere

Dispatch Queue

Dispatch Queue

27Youjip Won

Order Preserving Dispatch

Host

Storage
DMA

…
DMA

write(A); write(B);

Legacy Dispatch

For D = X, wait till DMA finishes to
send the following command.

Host

Storage
DMA

…
DMA

write(A); // “ordered”

write(B); //”simple”

Order Preserving Dispatch

Caller blocks.

DMA transfer overhead

Caller does not block.

No DMA transfer overhead

28Youjip Won

With Order Preserving Dispatch, host can control the transfer order

𝐼 = 𝑃 ≡ 𝐼 = 𝐷 ∧ (𝐷 = 𝑋) ∧ (𝑋 = 𝑃)

without DMA transfer.

29Youjip Won

Satisfying I = D

IO Scheduler

Use NO-OP, or FIFO scheduler.

30Youjip Won

With Epoch Based IO Scheduling, host can control the dispatch order

with existing IO scheduler.

𝐼 = 𝑃 ≡ 𝐼 = 𝐷 ∧ (𝐷 = 𝑋) ∧ (𝑋 = 𝑃)

Epoch-based IO scheduler

Order-preserving dispatch

barrier write

31Youjip Won

Legacy Block Layer (With Transfer-and-Flush)

Host

Storage Flush DMA
…

DMA

write(A); write(B);

Host

Storage

write(A); barrier; write(B);

Order Preserving Block Layer

Enforcing the Storage Order

No Flush !

No DMA !

No Context Switch !

32Youjip Won

fbarrier() and fdatabarrier()

Host Storage

File
System

Flash

33Youjip Won

New primitives for ordering guarantee

✓ fsync()

➢ Dirty pages

➢ journal transaction

➢ Durable

✓ fdatasync()

➢ Dirty pages

➢ durable

✓ fbarrier()

➢ Dirty pages

➢ Journal transaction

➢ durable

✓ fdatabarrier()

➢ Dirty pages

➢ durable

Durability guarantee Ordering guarantee

Journaling

No
journaling

34Youjip Won

write(fileA, “Hello”) ;

fdatabarrier (fileA) ;

write(fileA, “World”) ;

DMA transfer overhead

Flush overhead

Context switch

Host

Storage

…

DMA DMA

write(“Hello”);

write(“World”);

Separation of Ordering Guarantee and Durability Guarantee

35Youjip Won

fsync() in EXT4

• Two Flushes

• Three DMA Transfers

• A number of Context switches

Filesystem

Storage
DMA

fsync ()

start

JBD

DMA

Flush FUA

fsync ()

end

D JL JC

DMA

{Dirty Pages (D), Journal Logs (JL)} → {Journal Commit (JC)}

36Youjip Won

fsync() and fbarrier() in BarrierFS

Filesystem

Storage

Commit

Flush

Flush

fbarrier() fsync()

• Two One Flushes

• Three DMA Transfers

• One A number of Context switch

37Youjip Won

Outline

1. Background

2. Storage Order in single queue IO stack

3. Storage Order and concurrency

4. Storage Order in multi queue IO stack

5. Conclusion

38Youjip Won

Concurrency and Order (CJFS, FAST’23)

✓ What we expected: Concurrent Journaling

……
fsync()

fsync()

fsync()

fsync()

T1

T2

T3

T4

✓ What we have observed: Serial Journaling

fsync()

fsync()

fsync()

fsync()

T1

T2

T3

T4

……

……

……

……

……

……

……

39Youjip Won

Reason 1: Transaction conflict

Running Tx

Time

User

JBD

Tx1
Committing

Modify

Tx2

Tx1 Commit
Start

Tx1 Commit
End

create()
Start

Blocked

• A file operation modifies a page which is being committed.

• A file operation is blocked till the conflict transaction is committed.

• Most journal transactions have some blocks in common; bitmap, superblock

40Youjip Won

Reason 2: Transaction Lock-Up

Time

Tx1 Locked Committing

OP4

OP3

OP2

OP1 Coalesced to Tx1

Tx2

Running

Coalesced to Tx1

Coalesced to Tx1

Coalesced to Tx2

• When committing a running transaction, the filesyste stops issues journal

handle and waits till all outstanding journal handles are returned.

• During transaction lock-up, a filesystem operation is blocked.

Running

Blocked

41Youjip Won

Tx1

Tx2

Tx3

Tx1

Tx2

Tx3

Resolve transaction conflict and transaction lock-up.

42Youjip Won

Resolve Transaction Conflict: Multi-version Shadow Paging

Tx1

Tx2

Tx3

Time

V1

V2

V1 V1

V2 V1

V2 V2

Original page cache entries:

Tx1

Tx2

Tx3

Tx1 Commit TimeTx2 Commit Tx3 Commit

File
operations

• Commit a shadow page rather than the original page.

• Creating a shadow page is not as significant as expected.

• A page can have up to N versions. (currently, N = 5)

43Youjip Won

Resolve Transaction Lock-up Overhead: Opportunistic Coalescing

- When versions are exhausted, transaction commits are serialized

- The running transaction is locked and waits for preceding transaction commits

Time

Commit
Lock

Up

Prepare

DMA

Lock

Up

Prepare

DMA

Tx1 Tx2

Flush
DMA

Transfer
Flush

DMA

Transfer
Flush

Time

Commit
Lock

Up

Prepare

DMA

Prepare

DMA

Tx1 Tx2

Flush
DMA

Transfer
Flush

DMA

Transfer
Flush

Running

44Youjip Won

Compound Flush

Time

Commit
Lock

Up

Prepare

DMA

Tx1 Tx2

Flush
DMA

Transfer
Flush

DMA

Transfer
Flush

Lock

Up

Prepare

DMA

Tx3

Lock

Up

Prepare

DMA

DMA

Transfer
Flush

Still serial

Time

Commit
Lock

Up

Prepare

DMA

Tx1 Tx2

Flush
DMA

Transfer

DMA

Transfer

Lock

Up

Prepare

DMA

Tx3

Lock

Up

Prepare

DMA

DMA

Transfer
Flush

cache_barrier

45Youjip Won

Outline

1. Background

2. Storage Order in single queue IO stack

3. Storage Order and concurrency

4. Storage Order in multi queue IO stack

5. Conclusion

46Youjip Won

Multi-Queue and Order (OPIMQ, FAST’25)

CacheIO Scheduler
Command

QueueHost Storage
Dispatch
Queue

Flash

How can we ensure the order across the queues?

Queues are meant to be independent.

47Youjip Won

Storage Order in Multi-Queue Block Device

✓ Ensuring the storage order across the different queues.

𝑇1

fsync ()

D

JL1JL2

𝐽𝐵𝐷

JC JC

{Dirty Pages (D), Journal Logs (JL)} → {Journal Commit (JC)}

48Youjip Won

Inter-Queue Storage Order Dependency

✓ When requests are from same thread

- What we want: {W1,W2,W3,W4} →{…}

- What may happen: {W4} → {W1,W2,W3,…}

Core 1 Core 2

T1

W1

W2

W3

T1

Cache barrier

W4

migration

epoch is split.

49Youjip Won

Inter-Queue Storage Order Dependency

✓ When requests are from different threads.

- What we want: {D}→{JL}→ {JC}

- What may happen: {JL} →{JC} →{D}

Core 1 Core 2

D

T1

JL

JBD

JC

fsync()

Cache barrier

50Youjip Won

Model

✓ Stream: a set of IO requests generated by the same thread.

✓ Epoch

➢ A set of order-preserving write requests that can be reordered or coalesced

with each other

➢ Cache barrier command delimits the boundaries of an epoch.

✓ Write command has <stream id, epoch id>

𝑇1
W1 W2 W3

epoch epoch

...

𝑠𝑡𝑟𝑒𝑎𝑚

51Youjip Won

W1

W2

W3

W4

Core 1 Core 2 Core 1 Core 2

W1

W2

W3

W4

IO’s in the same epoch are placed at the same queue.

epoch split

Inter-queue order within a thread: Epoch Pinning

epoch pinning

52Youjip Won

Inter-queue order among the threads: Dual Stream Write

D

T1

JL

JBD

JC

fsync()

Cache barrier

Dual Stream Write

A write request that belongs to

two streams.

major <stream id, epoch id> and

minor <stream id, epoch id>

53Youjip Won

Dual Stream Write

Stream of A

Stream of B

A1

B1

Stream of A

Stream of B

A2

B2

Intra-stream order dependency

Inter-stream order dependency

A1

B1

A2

B2A1

Dual-stream write

54Youjip Won

✓ Order-preserving mapping table update.

✓ Epochs are made persisted in order within a stream.

✓ For the dual-stream write, guarantee the persistence order in both streams.

Order-Preserving FTL

Cache
Command

Queue

Storage

Flash

LPN PPN
… …

Persist

Durable

OPFTL

55Youjip Won

Outline

1. Background

2. Storage Order in single queue IO stack

3. Storage Order and concurrency

4. Storage Order in multi queue IO stack

5. Conclusion

56Youjip Won

Conclusion

✓ Why transfer-and-flush?

➢ Host does not trust storage.

➢ Host needs to ensure the every step, e.g. data transfer, FLUSH.

➢ ”cache barrier”? Standardize in UFS, but in NVMe is still pending.

➢ OS needs to run correctly on thousands of different and possibly unreliable storage

models.

✓ Why core migration causes ordering issue?

➢ OS design is CPU centric and command Queue is bound to CPU.

➢ Thread is migrated to new CPU, IO command is fed to new queue.

59Youjip Won

Question?

	기본 구역
	슬라이드 1: Preserving the Order in Modern IO Stack
	슬라이드 2: Outline
	슬라이드 3: Chaos, The Genesis
	슬라이드 4: Orders
	슬라이드 5: Modern IO Stack
	슬라이드 6: Storage Order
	슬라이드 7: Crash Consistency
	슬라이드 8: Storage Evolution
	슬라이드 9
	슬라이드 10: Why has IO stack been orderless for the last 50 years?
	슬라이드 11: Enforcing Storage Order in Orderless IO Stack
	슬라이드 12: Enforcing Storage Order in Orderless IO Stack
	슬라이드 13: Transfer-and-Flush
	슬라이드 14: Transfer-and-Flush
	슬라이드 15: Storage is severely under-utilized.
	슬라이드 16: How to mitigate the overhead of storage order guarantee?
	슬라이드 17: How to mitigate the overhead of storage order guarantee?
	슬라이드 18: Outline
	슬라이드 19
	슬라이드 20: Barrier-enabled IO Stack (FAST’18)
	슬라이드 21: Order-preserving Storage
	슬라이드 22: Satisfying X = P
	슬라이드 23
	슬라이드 24: Order-preserving Block Layer
	슬라이드 25: Satisfying D = X
	슬라이드 26: SCSI Command Priority
	슬라이드 27: Order Preserving Dispatch
	슬라이드 28
	슬라이드 29: Satisfying I = D
	슬라이드 30
	슬라이드 31: Legacy Block Layer (With Transfer-and-Flush)
	슬라이드 32: fbarrier() and fdatabarrier()
	슬라이드 33: New primitives for ordering guarantee
	슬라이드 34
	슬라이드 35: fsync() in EXT4
	슬라이드 36: fsync() and fbarrier() in BarrierFS
	슬라이드 37: Outline

	cjfs
	슬라이드 38: Concurrency and Order (CJFS, FAST’23)
	슬라이드 39: Reason 1: Transaction conflict
	슬라이드 40: Reason 2: Transaction Lock-Up
	슬라이드 41
	슬라이드 42: Resolve Transaction Conflict: Multi-version Shadow Paging
	슬라이드 43: Resolve Transaction Lock-up Overhead: Opportunistic Coalescing
	슬라이드 44: Compound Flush
	슬라이드 45: Outline
	슬라이드 46: Multi-Queue and Order (OPIMQ, FAST’25)
	슬라이드 47
	슬라이드 48
	슬라이드 49
	슬라이드 50
	슬라이드 51
	슬라이드 52
	슬라이드 53
	슬라이드 54
	슬라이드 55: Outline
	슬라이드 56: Conclusion
	슬라이드 57
	슬라이드 58
	슬라이드 59: Question?

