NVRAMOS 2025

Understanding Linux Distributed Lock
Management Overheads

Jaehyun Hwang
(jh.hwang@skku.edu)

with Taeyoung Park, Yunjae Jo, Daegyu Han, Beomseok Nam
Sungkyunkwan University

Confessions

« This talk includes our FAST’26 paper
— which has not yet been presented at the conference

[Slides are not yet polished..]

— which is a short paper (7 pages)

[Not enough for a 40-min talk]

« Initially, planned to cover two topics

 Finally, “FAST’26 paper + a few side stories” seems fine
- which led to a title change..

(S SKKU SYSLAB

Target environment

« Storage disaggregation in data centers

- Remote storage access via NVMe-over-Fabrics (NVMe-oF)
— Shared-disk file systems (e.g., GFS2, OCFS2)
— Distributed Lock Manager (DLM) for file operations

(S SKKU SYSLAB

Node 1

Shared FS

DLM

Node 2 Node 3
Shared FS Shared FS
DLM A DLM

[o]
NVMN/

Remote Storage

Initial motivation

« [CLOUD’23] EXT4-oF
-~ Maintains cache coherence for EXT4 metadata across nodes
~~~~~~ ., Can we overcome

- Extends EXT4 into a shared file system for
" these limitations?

— Currently its functionality is limited to “

(S SKKU SYSLAB

Node A Node B Node C Node D
Local File System in Node A  Local File System in Node B
Dire CTGJ’}I" Entr}-f Direc tﬂfy En [Ty appucatiﬂn
[ 7 M dir j+{a.mt] [ 7 P dir P{a.txt)
o b.txt] {zlnconsistanﬂfiew Read Wri
il L
: ] Read-Only EHEIHEJ
dir b.txt dir | 8§ MRl IRjIRIl IR IEMN IR IR} ] -=-===-
Inode Buffer Page Inode Buffer Page - e L A -
L (2)Update Cache ) T U S S
* ;-lﬂ;_:_t_‘:'ﬂl-._,__‘-.‘h: -
— =T T Te-l R
Disk Volumes
(8) Write Data ) . B
dir b.txt
Inode Table Data Block PCle Switch
wume allallallallallallallallallallallallallallal|lallallallallallal||lc
volume wilallallullallellel|lael|lellellellellellellellellallellvllallv]vn
L R A N e A R A L e A L R N A A A e A e N R N P A e A N e A R P e R e R e A T A P e R A 2
Disaggregated Storage Node




Real motivation

« Scalability issue of shared-disk file systems
even when only a single node is active!

App.
Node 1 Node 2 Node 3
GFS2 GFS2 GFS2
Linux DLM Linux DLM Linux DLM

‘\‘1‘/7

(S SKKU SYSLAB

)
)
D

Remote (shared) storage

Throughput (kops/s)

25

20

15

10

M Directory creation
M@ File creation

lmm
2 3 4 5

Number of nodes



Real motivation

« Scalability issue of shared-disk file systems
even when only a single node is active!

App.
Node 1 Node 2 Node 3
GFS2 GFS2 GFS2
Linux DLM Linux DLM Linux DLM

\1/

(S SKKU SYSLAB

)
)
D

Remote (shared) storage

25

20

15

10

Throughput (kops/s)

600

I
o
o

Throughput (kops/s)
N
o
o

[l Directory creation
[ File creation

2 3 4 5
Number of nodes

Seq-W

7 1 node
7 5 nodes

Seg-R Rand-W Rand-R



Linux distributed lock management

« Directory: finds the owner node of the requested object (file or directory)

« Owner: is the node who has the ownership of the requested object

N
ﬁmm

-
Who's the

directory node
for file “A”?

\_

Hashing(“A”) % #nodes

(S SKKU SYSLAB

Owner

Directory
Client

Node 1 Node 2 Node 3
GFS2 GFS2 GFS2
Linux DLM Linux DLM Linux DLM

.

D

1

/

\J‘/

o)
)
D




Lock acquisition example

B 3

Node 1

GFS2

Linux DLM

Request

App.

Node 2

A 4

GFS2

a lock 1

[

Query Owner

Linux DLM

Access File “B”

Owner

Node 3

GFS2

A

A

(S SKKU SYSLAB

“Owner is Node 3”

Request
lock acquisition

Linux DLM

Acquire the lock




How about creation?

8 3 Not found!
-------- cz App.
Create File “C’
Node 1 Node 2
v
GFS2 GFS2
Request|a lock 1 T
Linux DLM [ Linux DLM
Query Owner - —

(S SKKU SYSLAB

“You are the owner”

Acquire the lock

Node 3

GFS2

Linux DLM




Why Scalability issue for creation? [A multi-node latency breakdown]

Directory Identification Lock Acquisition
Inter—-node Communication Create Operation
Owner Lookup
: .. } DIIM | ' Filelsys'tem
[ Single-node case: locking is entirely local! ] VS. | i

| | I |
0% 20% 40% 60% 80% 100%

Owner Owner Latency overhead
Directory Directory Directory 5c

Node 1 Node 2 Node 3 g 50 H Directory creation
GFS?2 GFS?2 GFS?2 e S " File creation
= 15
>
Linux DLM Linux DLM Linux DLM .§'D 10
o
W 'E 5 .
; B B
=== 1 2 3 4 5
s Number of nodes

Remote (shared) storage
(S SKKU SYSLAB



What about other combinations?

« OCFS2 + (02CB or Linux DLM)

[ A similar trend! ]

App.
25
Node 1 Node 2 Node 3 z 0 OCFS2+02CB
Q.
OCFS2 OCFS2 OCFS?2 I §, . B OCFS2+DLM
S
DLM DLM DLM %‘D 10
3
N/ <
l—

Z B

1 nodes 5 nodes

)
)
D

Number of nodes

Remote (shared) storage
(S SKKU SYSLAB



Our solution: Lockify (notifies lock ownership)

« Self-owner notifications
— Observation: DLM doesn’t care about the lock owner of non-existent objects!
~ Let’s the directory node of upon object creation

« Extended lock acquisition interface
- File systems decide whether to enable Lockify through the extended interface
- to existing file systems

« Asynchronous ownership management
— Introduce a wait-list to track and resend unconfirmed notifications
- across nodes

(S SKKU SYSLAB



Lockify: self-owner notifications <« Endto-endlatency ,

DLM File system
B 3
\{ Add “C’s owner
________ c 2 | isNode2 App.
without lookup Create File “C”
Node 1 Node 2 Node 3
\ 4
Shared FS Request a lodk Shared FS Shared FS
with Lockify efiabled | |
Lockif < Lockif Lockif
ocxity Self-owner Aoc el ocxity
notification
Confirmation Acquire the lock

[ No extra communication overhead! ]

(S SKKU SYSLAB



Lockify: self-owner notifications oo ENdtoendlatency

DLM File system
| Object | Owner = | )
5 3 Parallel
execution!
\{ Add “C’s owner
________ c 2 | isNode2 App.
without lookup Create File “C”
Node 1 Node 2 Node 3
\ 4
Shared FS Request a lodk Shared FS Shared FS
with Lockify efiabled | |
Lockif < Lockif Lockif
ocxity Self-owner Aoc el ocxity
notification
Confirmation Acquire the lock

[ No extra communication overhead! ]

(S SKKU SYSLAB



Lockify: asynchronous ownership management

App.
Create File “C’
Node 1 Node 2
\ 4
Shared FS Request a lodk Shared FS
with Lockify epabled 1 —————————— s
Wait-list
Lockif Lockif
y Self-owner - Yy 1] n
notificaton | | | T
. : Confirmed

(S SKKU SYSLAB

Confirmation

- : Not confirmed



How to deal with node crashes: Linux DLM’s recovery

Node 1

Shared FS

Linux DLM

—

ownership

(S SKKU SYSLAB

Node 2

Shared FS

Linux DLM

— &L

ownership

ownership

Crash!




How to deal with node crashes: Linux DLM’s recovery

Node 1 Node 2
Shared FS Shared FS
Update
Linux DLM with new Linux DLM
directories
m --------- > m
== = -
ownership ownership

(S SKKU SYSLAB



How to deal with node crashes: Linux DLM’s recovery

| Object | Owner_
A

1
D 2 B 1
Node 1 Node 2
Shared FS Shared FS What if some node
wants to access E or F?
Update
Linux DLM with new Linux DLM => That node becomes
directories the new owner!
m --------- = m
@ ————
ownership ownership

(S SKKU SYSLAB



How to deal with node crashes: Lockify’s recovery

Node 1

Shared FS

 Directories are reset
* Lost ownerships can be
restored later

[ Good! ]

Wait-list

Lockify [*

—

ownership

(S SKKU SYSLAB

Self-owner
notification

ownership




How to deal with node crashes: Lockify’s recovery

ownership

(S SKKU SYSLAB

Create File “FE”

Node 2

Shared FS

Self-owner
notification

Lockify

ownership

-
-
-
-
-
-
.~

* Directories are reset

* Ownerships are sent to new
directories

* Unconfirmed ownerships are
also sent to new directories

[ Good!]

Wait-list




Lockify evaluation setup

« Implemented in the Linux kernel 6.6.23
— On top of the kernel DLM
- Also modified GFS2 and OCFS2 with the extended lock acquisition interface

« Five 20-core servers connected via 56Gbps links

— Connected to a shared storage server using NVMe-over-TCP
- 250GB Samsung 970 EVO Plus NVMe SSD

 Workloads

— Microbenchmarks: mdtest

— Low-contention scenario: 1 active node with varying #nodes from 1to 5
— High-contention scenario: 5 active nodes

-~ Real-world workloads: Postmark and Filebench

(S SKKU SYSLAB



Microbenchmarks (mdtest)
« Low-contention scenario with a single active node

NFS mmm  GFS2+DLM ===
OCFS2+DLM GFS2+Lockify ===

OCFS2+Lockify == DLM FS =

- 25 :

)

g 20 “ET 6.4x ,

ED., e = § GFS2+DLM(1 client)

-'g_ § GFS2+DLM(5 clients) \\\ \\ N

g: - % GFS2+Lockify(5 clients)

o 5 \ | | . |

= i

= 0 0% 20% 40% 60% 80% 100%

1 client 5 clients Latency overhead

(a) Directory creation.

Lockify significantly reduces DLM-side latency with low overhead,
achieving higher throughput compared to existing solutions

(S SKKU SYSLAB



Microbenchmarks (mdtest)

« High-contention scenario with 5 active nodes

NFS mmm  GFS2:+DLM &=m3 NFS mmm  GFS2:DLM ez
OCFS2+DLM GFS2+Lockify === OCFS2+DLM GFS2+Lockify ==
OCFS2+Lockify mmm OCFS2+Lockify =
5.2x
_. 15 . 15
© A ©
w - w
S ’ ]
~ 10| i x 10| 5'A4X
5 i 3 5
= : 2 :
> 5 i o b :
- 1 - 1
2 e W o :
= 1.09x s e 1.11x \4
— U i R 35:5:?4 — 0 2| 4
(a) Directory creation. (b) File creation.

GFS2’s internal optimization (regarding parent directory locks)
helps Lockfy improve performance even in high-contention scenarios

(S SKKU SYSLAB



Real-world workloads

« Low-contention scenario with a single active node

NFS OCFS2+Lockify ===
OCFS2+DLM GFS2+DLM E=== GF82+Lc:c:kify [ |
20 - - . : : = . .
) 2.0xf © 100 © 100 | 2.5%
= 15| a 114 S
~ [ 80 | - 14X o 80 | < )
= S e | =
g 10 3 3 \ \
< < § N
o S 40 5 40| % §
S 5| 3 = \ )
= 2 201 _ | g 20} % %
I_ U pore=] hitet I_ 0 § § o) I_ U & o §
1 client 5 clients 1 client 5 clients 1 client 5 clients
(a) Postmark. (b) Fileserver. (c) Webproxy.

[ Lockify achieves better performance across diverse workloads! ]

(S SKKU SYSLAB



Summary

« For object creations, shared-disk file systems:
— Suffer from high lock-acquisition latency with multiple nodes
— Face this scalability challenge even under low-contention scenarios

« With self-owner notifications, Lockify:
- Minimizes lock-acquisition latency through execution pipelining

- Achieves up to compared to kernel DLM and O2CB
ARTIFACT ARTIFACT ARTIFACT = 7 (o
EVALUATED EVALUATED EVALUATED by o .'l:l
Sl
(@ usenix (@ usenix (@ usenix i'k‘!;l‘-"_.'a:
DL

CS SKKU SYSLAB https://github.com/skku-syslab/lockify




Thank you!
Q&A



	Slide 1: Understanding Linux Distributed Lock Management Overheads
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

