
Understanding Linux Distributed Lock 
Management Overheads

Jaehyun Hwang
(jh.hwang@skku.edu)

with Taeyoung Park, Yunjae Jo, Daegyu Han, Beomseok Nam
Sungkyunkwan University

NVRAMOS 2025



SKKU SYSLAB

Confessions

• This talk includes our FAST’26 paper
– which has not yet been presented at the conference

– which is a short paper (7 pages)

Slides are not yet polished..

Not enough for a 40-min talk

• Initially, planned to cover two topics

• Finally, “FAST’26 paper + a few side stories” seems fine
– which led to a title change..



SKKU SYSLAB

Target environment

• Storage disaggregation in data centers
– Remote storage access via NVMe-over-Fabrics (NVMe-oF)

– Shared-disk file systems (e.g., GFS2, OCFS2) or local file systems (e.g., EXT4)

– Distributed Lock Manager (DLM) for file operations

File system

Remote Storage

Node 1

File system

Node 2

File system

Node 3

DLM DLM DLM

NVMe-oF

Shared FS Shared FS Shared FS …



SKKU SYSLAB

Initial motivation

• [CLOUD’23] EXT4-oF
– Maintains cache coherence for EXT4 metadata across nodes

– Extends EXT4 into a shared file system for immutable data

– Currently its functionality is limited to “open()”
Can we overcome 
these limitations?



SKKU SYSLAB

Real motivation

• Scalability issue of shared-disk file systems

GFS2

Node 1

Linux DLM

GFS2

Node 2

Linux DLM

GFS2

Node 3

Linux DLM

…

even when only a single node is active!

App.

0

5

10

15

20

25

1 2 3 4 5

Th
ro

u
gh

p
u

t 
(k

o
p

s/
s)

Number of nodes

Directory creation
File creation

Remote (shared) storage



SKKU SYSLAB

Real motivation

• Scalability issue of shared-disk file systems

GFS2

Node 1

Linux DLM

GFS2

Node 2

Linux DLM

GFS2

Node 3

Linux DLM

…

even when only a single node is active!

App. 0

5

10

15

20

25

1 2 3 4 5

Th
ro

u
gh

p
u

t 
(k

o
p

s/
s)

Number of nodes

Directory creation
File creation

0

200

400

600

Seq-W Seq-R Rand-W Rand-R

Th
ro

u
gh

p
u

t 
(k

o
p

s/
s) 1 node

5 nodes

Remote (shared) storage



SKKU SYSLAB

Linux distributed lock management

• Directory: finds the owner node of the requested object (file or directory)
• Owner: is the node who has the ownership of the requested object

GFS2

Node 1

Linux DLM

GFS2

Node 2

Linux DLM

GFS2

Node 3

Linux DLM

ClientClient Client
DirectoryDirectory Directory

Owner

Who’s the 
directory node 

for file “A”?

Hashing(“A”) % #nodes

Object Owner

A 2

D 1

… …



SKKU SYSLAB

Lock acquisition example

GFS2

Node 1

Linux DLM

Access File “B”

GFS2

Linux DLM

GFS2

Node 3

Linux DLM

App.

Node 2

Request a lock

Query Owner

“Owner is Node 3”

Directory Owner

Request
lock acquisition

Acquire the lock

Object Owner

B 3

… …



SKKU SYSLAB

How about creation?

GFS2

Node 1

Linux DLM

Create File “C”

GFS2

Linux DLM

GFS2

Node 3

Linux DLM

App.

Node 2

Request a lock

Query Owner

“You are the owner”

Directory

Object Owner

B 3

… …
Not found!

Acquire the lock

C 2



SKKU SYSLAB

Why scalability issue for creation?

GFS2

Node 1

Linux DLM

GFS2

Node 2

Linux DLM

GFS2

Node 3

Linux DLM

…

App.

0

5

10

15

20

25

1 2 3 4 5

Th
ro

u
gh

p
u

t 
(k

o
p

s/
s)

Number of nodes

Directory creation
File creation

Directory

Owner

Directory

Owner
Directory

Owner

[A multi-node latency breakdown]

Single-node case: locking is entirely local! VS.
File systemDLM

Remote (shared) storage



SKKU SYSLAB

What about other combinations?

OCFS2

Node 1

DLM

OCFS2

Node 2

DLM

OCFS2

Node 3

DLM

…

App.

0

5

10

15

20

25

1 nodes 5 nodes

Th
ro

u
gh

p
u

t 
(k

o
p

s/
s)

Number of nodes

OCFS2+O2CB
OCFS2+DLM

• OCFS2 + (O2CB or Linux DLM)

A similar trend!

Remote (shared) storage



SKKU SYSLAB

Our solution: Lockify (notifies lock ownership)

• Self-owner notifications
– Observation: DLM doesn’t care about the lock owner of non-existent objects!

– Let’s notify the directory node of self-ownership upon object creation

• Extended lock acquisition interface
– File systems decide whether to enable Lockify through the extended interface

– Minimize modifications to existing file systems

• Asynchronous ownership management
– Introduce a wait-list to track and resend unconfirmed notifications

– Ensure DLM-level consistency across nodes



SKKU SYSLAB

Lockify: self-owner notifications

Shared FS

Node 1

Lockify

Create File “C”

Shared FS

Lockify

Shared FS

Node 3

Lockify

App.

Node 2

Request a lock
with Lockify enabled

Self-owner
notification

Confirmation

Directory

Object Owner

B 3

… …

Acquire the lock

C 2
Add “C’s owner 

is Node 2” 
without lookup

No extra communication overhead!

File systemDLM

End-to-end latency



SKKU SYSLAB

Lockify: self-owner notifications

Shared FS

Node 1

Lockify

Create File “C”

Shared FS

Lockify

Shared FS

Node 3

Lockify

App.

Node 2

Request a lock
with Lockify enabled

Self-owner
notification

Confirmation

Directory

Object Owner

B 3

… …

Acquire the lock

C 2

No extra communication overhead!

File systemDLM

End-to-end latency

Add “C’s owner 

is Node 2” 
without lookup

Parallel 
execution!



SKKU SYSLAB

Lockify: asynchronous ownership management

Shared FS

Node 1

Lockify

Create File “C”

Shared FS

Lockify

Shared FS

Node 3

Lockify

App.

Node 2

Request a lock
with Lockify enabled

Self-owner
notification

Confirmation

Directory

Wait-list

A B

: Confirmed

: Not confirmed

CC



SKKU SYSLAB

How to deal with node crashes: Linux DLM’s recovery

Shared FS

Node 1

Linux DLM

Shared FS

Linux DLM

Shared FS

Node 3

Linux DLM

Node 2

A, B

ownership

C, D

ownership

E, F

ownership

Crash!

Object Owner

A 1

F 3

Object Owner

B 1

D 2

Object Owner

C 2

E 3



SKKU SYSLAB

How to deal with node crashes: Linux DLM’s recovery

Shared FS

Node 1

Linux DLM

Shared FS

Linux DLM

Shared FS

Node 3

Linux DLM

Node 2

A, B

ownership

C, D

ownership

E, F

ownership

Crash!

Object Owner Object OwnerObject Owner

Update 

with new 
directories



SKKU SYSLAB

How to deal with node crashes: Linux DLM’s recovery

Shared FS

Node 1

Linux DLM

Shared FS

Linux DLM

Shared FS

Node 3

Linux DLM

Node 2

A, B

ownership

C, D

ownership

E, F

ownership

Crash!

Object Owner

A 1

B 1

Object OwnerObject Owner

C 2

D 2

Update 

with new 
directories

What if some node 
wants to access E or F?

=> That node becomes 
the new owner!



SKKU SYSLAB

How to deal with node crashes: Lockify’s recovery

Shared FS

Node 1

Lockify

Shared FS

Lockify

Node 2

A, B

ownership

C, D

ownership

Object Owner

A 1

B 1

Object Owner

C 2

D 2

Wait-list

E

Create File “E”

Self-owner
notification

Good!

• Directories are reset
• Lost ownerships can be 

restored later



SKKU SYSLAB

How to deal with node crashes: Lockify’s recovery

Shared FS

Node 1

Lockify

Shared FS

Lockify

Node 2

A, B

ownership

C, D

ownership

Object Owner

A 1

B 1

Object Owner

C 2

D 2

Wait-list

E

Create File “E”

Self-owner
notification

Good!

• Directories are reset
• Ownerships are sent to new 

directories
• Unconfirmed ownerships are 

also sent to new directories



SKKU SYSLAB

Lockify evaluation setup

• Implemented in the Linux kernel 6.6.23
– On top of the kernel DLM

– Also modified GFS2 and OCFS2 with the extended lock acquisition interface

• Five 20-core servers connected via 56Gbps links
– Connected to a shared storage server using NVMe-over-TCP

– 250GB Samsung 970 EVO Plus NVMe SSD

• Workloads
– Microbenchmarks: mdtest

– Low-contention scenario: 1 active node with varying #nodes from 1 to 5

– High-contention scenario: 5 active nodes

– Real-world workloads: Postmark and Filebench



SKKU SYSLAB

Microbenchmarks (mdtest)

• Low-contention scenario with a single active node

2.9x

6.4x

2.8x 5.4x

Lockify significantly reduces DLM-side latency with low overhead,
achieving higher throughput compared to existing solutions



SKKU SYSLAB

Microbenchmarks (mdtest)

• High-contention scenario with 5 active nodes

1.11x

5.4x

5.2x

1.09x

GFS2’s internal optimization (regarding parent directory locks)
helps Lockfy improve performance even in high-contention scenarios



SKKU SYSLAB

Real-world workloads

• Low-contention scenario with a single active node

2.0x

1.7x

1.14x

1.07x

2.5x

1.08x

Lockify achieves better performance across diverse workloads!



SKKU SYSLAB

Summary

• For object creations, shared-disk file systems:
– Suffer from high lock-acquisition latency with multiple nodes

– Face this scalability challenge even under low-contention scenarios

• With self-owner notifications, Lockify:
– Minimizes lock-acquisition latency through execution pipelining

– Achieves up to 6.4x higher throughput compared to kernel DLM and O2CB

https://github.com/skku-syslab/lockify



Thank you!
Q&A


	Slide 1: Understanding Linux Distributed Lock Management Overheads
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

