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Confessions

« This talk includes our FAST’26 paper
— which has not yet been presented at the conference

[ Slides are not yet polished.. ]

— which is a short paper (7 pages)

[ Not enough for a 40-min talk ]

« Initially, planned to cover two topics

 Finally, “FAST’26 paper + a few side stories” seems fine
- which led to a title change..
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Target environment

« Storage disaggregation in data centers

- Remote storage access via NVMe-over-Fabrics (NVMe-oF)
— Shared-disk file systems (e.g., GFS2, OCFS2)
— Distributed Lock Manager (DLM) for file operations
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Initial motivation

« [CLOUD’23] EXT4-oF
-~ Maintains cache coherence for EXT4 metadata across nodes
~~~~~~ ., Can we overcome

- Extends EXT4 into a shared file system for
" these limitations?

— Currently its functionality is limited to “
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Real motivation

« Scalability issue of shared-disk file systems
even when only a single node is active!
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« Scalability issue of shared-disk file systems
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Linux distributed lock management

« Directory: finds the owner node of the requested object (file or directory)

« Owner: is the node who has the ownership of the requested object

N
ﬁmm

-
Who's the

directory node
for file “A”?

\_

Hashing(“A”) % #nodes
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Lock acquisition example
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How about creation?

8 3 Not found!
-------- cz App.
Create File “C’
Node 1 Node 2
v
GFS2 GFS2
Request|a lock 1 T
Linux DLM [ Linux DLM
Query Owner - —
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Why Scalability issue for creation? [A multi-node latency breakdown]
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What about other combinations?

« OCFS2 + (02CB or Linux DLM)

[ A similar trend! ]
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Our solution: Lockify (notifies lock ownership)

« Self-owner notifications
— Observation: DLM doesn’t care about the lock owner of non-existent objects!
~ Let’s the directory node of upon object creation

« Extended lock acquisition interface
- File systems decide whether to enable Lockify through the extended interface
- to existing file systems

« Asynchronous ownership management
— Introduce a wait-list to track and resend unconfirmed notifications
- across nodes
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Lockify: self-owner notifications <« Endto-endlatency ,

DLM File system
B 3
\{ Add “C’s owner
________ c 2 | isNode2 App.
without lookup Create File “C”
Node 1 Node 2 Node 3
\ 4
Shared FS Request a lodk Shared FS Shared FS
with Lockify efiabled | |
Lockif < Lockif Lockif
ocxity Self-owner Aoc el ocxity
notification
Confirmation Acquire the lock

[ No extra communication overhead! ]
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Lockify: self-owner notifications oo ENdtoendlatency

DLM File system
| Object | Owner = | )
5 3 Parallel
execution!
\{ Add “C’s owner
________ c 2 | isNode2 App.
without lookup Create File “C”
Node 1 Node 2 Node 3
\ 4
Shared FS Request a lodk Shared FS Shared FS
with Lockify efiabled | |
Lockif < Lockif Lockif
ocxity Self-owner Aoc el ocxity
notification
Confirmation Acquire the lock

[ No extra communication overhead! ]
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Lockify: asynchronous ownership management

App.
Create File “C’
Node 1 Node 2
\ 4
Shared FS Request a lodk Shared FS
with Lockify epabled 1 —————————— s
Wait-list
Lockif Lockif
y Self-owner - Yy 1] n
notificaton | | | T
. : Confirmed
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How to deal with node crashes: Linux DLM’s recovery
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How to deal with node crashes: Linux DLM’s recovery

Node 1 Node 2
Shared FS Shared FS
Update
Linux DLM with new Linux DLM
directories
m --------- > m
== = -
ownership ownership
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How to deal with node crashes: Linux DLM’s recovery

| Object | Owner_
A

1
D 2 B 1
Node 1 Node 2
Shared FS Shared FS What if some node
wants to access E or F?
Update
Linux DLM with new Linux DLM => That node becomes
directories the new owner!
m --------- = m
@ ————
ownership ownership
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How to deal with node crashes: Lockify’s recovery

Node 1

Shared FS

 Directories are reset
* Lost ownerships can be
restored later

[ Good! ]

Wait-list

Lockify [*

—

ownership
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How to deal with node crashes: Lockify’s recovery

ownership
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Create File “FE”
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Lockify
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* Directories are reset

* Ownerships are sent to new
directories

* Unconfirmed ownerships are
also sent to new directories

[ Good!]

Wait-list




Lockify evaluation setup

« Implemented in the Linux kernel 6.6.23
— On top of the kernel DLM
- Also modified GFS2 and OCFS2 with the extended lock acquisition interface

« Five 20-core servers connected via 56Gbps links

— Connected to a shared storage server using NVMe-over-TCP
- 250GB Samsung 970 EVO Plus NVMe SSD

 Workloads

— Microbenchmarks: mdtest

— Low-contention scenario: 1 active node with varying #nodes from 1to 5
— High-contention scenario: 5 active nodes

-~ Real-world workloads: Postmark and Filebench
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Microbenchmarks (mdtest)
« Low-contention scenario with a single active node

NFS mmm  GFS2+DLM ===
OCFS2+DLM GFS2+Lockify ===

OCFS2+Lockify == DLM FS =
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(a) Directory creation.

Lockify significantly reduces DLM-side latency with low overhead,
achieving higher throughput compared to existing solutions
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Microbenchmarks (mdtest)

« High-contention scenario with 5 active nodes

NFS mmm  GFS2:+DLM &=m3 NFS mmm  GFS2:DLM ez
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(a) Directory creation. (b) File creation.

GFS2’s internal optimization (regarding parent directory locks)
helps Lockfy improve performance even in high-contention scenarios
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Real-world workloads

« Low-contention scenario with a single active node

NFS OCFS2+Lockify ===
OCFS2+DLM GFS2+DLM E=== GF82+Lc:c:kify [ |
20 - - . : : = . .
) 2.0xf © 100 © 100 | 2.5%
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(a) Postmark. (b) Fileserver. (c) Webproxy.

[ Lockify achieves better performance across diverse workloads! ]
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Summary

« For object creations, shared-disk file systems:
— Suffer from high lock-acquisition latency with multiple nodes
— Face this scalability challenge even under low-contention scenarios

« With self-owner notifications, Lockify:
- Minimizes lock-acquisition latency through execution pipelining

- Achieves up to compared to kernel DLM and O2CB
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Thank you!
Q&A
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