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Confessions

• This talk includes our FAST’26 paper
– which has not yet been presented at the conference

– which is a short paper (7 pages)

Slides are not yet polished..

Not enough for a 40-min talk

• Initially, planned to cover two topics

• Finally, “FAST’26 paper + a few side stories” seems fine
– which led to a title change..
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Target environment

• Storage disaggregation in data centers
– Remote storage access via NVMe-over-Fabrics (NVMe-oF)

– Shared-disk file systems (e.g., GFS2, OCFS2) or local file systems (e.g., EXT4)

– Distributed Lock Manager (DLM) for file operations

File system

Remote Storage
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File system
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DLM DLM DLM
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Shared FS Shared FS Shared FS …
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Initial motivation

• [CLOUD’23] EXT4-oF
– Maintains cache coherence for EXT4 metadata across nodes

– Extends EXT4 into a shared file system for immutable data

– Currently its functionality is limited to “open()”
Can we overcome 
these limitations?
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Real motivation

• Scalability issue of shared-disk file systems
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Real motivation
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Linux distributed lock management

• Directory: finds the owner node of the requested object (file or directory)
• Owner: is the node who has the ownership of the requested object
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Lock acquisition example
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How about creation?
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Why scalability issue for creation?
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What about other combinations?
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Our solution: Lockify (notifies lock ownership)

• Self-owner notifications
– Observation: DLM doesn’t care about the lock owner of non-existent objects!

– Let’s notify the directory node of self-ownership upon object creation

• Extended lock acquisition interface
– File systems decide whether to enable Lockify through the extended interface

– Minimize modifications to existing file systems

• Asynchronous ownership management
– Introduce a wait-list to track and resend unconfirmed notifications

– Ensure DLM-level consistency across nodes
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Lockify: self-owner notifications
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Lockify: self-owner notifications
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Lockify: asynchronous ownership management
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How to deal with node crashes: Linux DLM’s recovery
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How to deal with node crashes: Linux DLM’s recovery
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How to deal with node crashes: Linux DLM’s recovery
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How to deal with node crashes: Lockify’s recovery
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How to deal with node crashes: Lockify’s recovery
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Lockify evaluation setup

• Implemented in the Linux kernel 6.6.23
– On top of the kernel DLM

– Also modified GFS2 and OCFS2 with the extended lock acquisition interface

• Five 20-core servers connected via 56Gbps links
– Connected to a shared storage server using NVMe-over-TCP

– 250GB Samsung 970 EVO Plus NVMe SSD

• Workloads
– Microbenchmarks: mdtest

– Low-contention scenario: 1 active node with varying #nodes from 1 to 5

– High-contention scenario: 5 active nodes

– Real-world workloads: Postmark and Filebench
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Microbenchmarks (mdtest)

• Low-contention scenario with a single active node

2.9x

6.4x

2.8x 5.4x

Lockify significantly reduces DLM-side latency with low overhead,
achieving higher throughput compared to existing solutions
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Microbenchmarks (mdtest)

• High-contention scenario with 5 active nodes

1.11x

5.4x

5.2x

1.09x

GFS2’s internal optimization (regarding parent directory locks)
helps Lockfy improve performance even in high-contention scenarios
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Real-world workloads

• Low-contention scenario with a single active node

2.0x

1.7x

1.14x

1.07x

2.5x

1.08x

Lockify achieves better performance across diverse workloads!
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Summary

• For object creations, shared-disk file systems:
– Suffer from high lock-acquisition latency with multiple nodes

– Face this scalability challenge even under low-contention scenarios

• With self-owner notifications, Lockify:
– Minimizes lock-acquisition latency through execution pipelining

– Achieves up to 6.4x higher throughput compared to kernel DLM and O2CB

https://github.com/skku-syslab/lockify



Thank you!
Q&A
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