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The Shift From Training to Inference

» Generative Al has moved from research to mainstream use, creating billions of inference events daily.

» By 2030, ~75% of Al compute will be inference
— design data centers for high-volume inference traffic.

Figure 10: Approximately 75% of Future Al Compute Demand to Come From Inference by 2030
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Source: Brookfield internal research.
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Inference Server (w RAG) is Driving Explosive Data Demand

* Alinference infra(GenAl) data demand will grow ~105% CAGR through 2030—over 3.5x training.

 Main driver: RAG—via vector DBs (indexing, replication, low-latency fetch).
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Capital Flows Toward eSSDs in the GenAl Supercycle

* Investment and attention are converging on eSSDs for the inference era.

« It signals a need for specialized eSSDs—not bulk HDDs or commodity drives—like HBM for training.
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RAG Makes Storage the Bottleneck in Inference (1)

 Vector search with query embeddings is crucial for inference QoS.

 To make vector search faster, caching key pieces in HBM and local SSD.
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RAG Makes Storage the Bottleneck in Inference (2)

* As the vector DB grows, caching gets complex - causing OOM(Out-of-Memory)

* As /O shifts from HBM<«+-GPU to NVMe SSD, SSD BW becomes the bottleneck
— this is why storage is critical for inference.
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RAG Workloads Storage Must Face

GB200/300 Compute Tray
(View only 1P (2GPU/1CPU)

* Volume
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What to solve?

1. (Infrastructure Developers) Optimize the path from GPUs to NVMe SSDs.

2. (Storage Developers) Make SSDs can handle the I/O rate generated by the GPU.
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Related work — Optimizing GPU-to-NVMe SSD Paths

GPU-initiated scaled data architecture

GPU becomes an autonomous highly parallel data access engine
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Future works

1. Remove local SSDs from the inference server
- Wil the network (e.g. the NIC) become the bottleneck?
- Do we need a new interface to the remote storage server?

2. A complete implementation of GPU-initiated storage access
- GPU-side NVMe command-level access is possible;
- However, without filesystem-level direct access, aren't we still dependent on the CPU?




LFADU

Random Read Maximization for Al Storage
Tech to overcome NAND Channel Bottleneck

EulJin.Kim, FADU Firmware
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Random Read IOPS Trend for Al Storage

-
Demand for Inference Al Storage

e IOPS/S
* |OPS / Watt

* embeddings 512B~4KB

* Fine-Grained Random Read Intensive

e graph structure could be 8B~128B

\
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-
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Target Random Read IOPS for Future Solution

Maximized BW & IOPS on PCle Gen7

Block size Ideal Read BW Ideal Read IOPS
4KB 55.7 GB/s 13.6M IOPS
512Byte 52.7 GB/s 102.9M IOPS 2 X7.3

-14-




Target Random Read IOPS for Future Solution

Maximized BW & IOPS on PCle Gen7

Block size Ideal Read BW Ideal Read IOPS
4KB 55.7 GB/s 13.6M IOPS
512Byte 52.7 GB/s 102.9M Iops <X 72

\ 4

Target IOPS for Future Solution
100M I0OPS !l
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To achieve 100 Million IOPS of Random Read

System capability to maximize Random Read I0OPS
Fully utilized PCle Gen7 throughput

s
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To achieve 100 Million IOPS of Random Read

System capability to maximize Random Read I0OPS

* Controller processing capability to handle single 1/O in 10ns
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To achieve 100 Million IOPS of Random Read

System capability to maximize Random Read I0OPS

 DRAM bus throughput for 100M metadata access

s
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To achieve 100 Million IOPS of Random Read

System capability to maximize Random Read I0OPS

* Practical solution with 16 NAND Channels x 8 Dies which support 4800MT/s

s
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Process
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DRAM BUS
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To achieve 100 Million IOPS of Random Read

System capability to maximize Random Read I0OPS

512Byte ECC Engine — Customized for Al workload
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x64 width 4800MT/s

-20-




To achieve 100 Million IOPS of Random Read

System capability to maximize Random Read I0PS

* 6.25M IOPS per Channel (=100M 10PS / 16 Channels)
Required effective BW of single channel: 3600MT/s
e Required channel efficiency: 75%

It is hurdle to get a CH efficiency of 75% or higher!!

s
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To achieve 100 Million IOPS of Random Read

System capability to maximize Random Read I0PS
e Fully utilized PCle Gen7 throughput

* Controller processing capability to handle single I/0 in 10ns
 DRAM bus throughput for 100M metadata access

* Practical solution with 16 NAND Channels x 8 Dies which support 4800MT/s

e 512Byte ECC Engine — Customized for Al workload
* 6.25M IOPS per Channel (=100M 10PS / 16 Channels)
* Required effective BW of single channel: 3600MT/s
e Required channel efficiency: 75%

Host

~N

-

The more channels,

e the higher the throughput can be achieved
* the larger the chip size
the less installation space

=» Find a way to solve the issue, while

The easiest way to achieve throughput is
to “increase the # of channels”

practically staying within 16 channels.
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Background: NAND Read Operation Flow

How NAND Read works & Interact with controller (on sca protocol)

s N e N
Controller NAND
CH Media Cell
Block 0
N [CA_CE# —| e
AN ) CA[0:1] — i
5128 / |CA CLK B —— iWL'MQ g
/|| [DQl7:0] —_— ;
ECC / DQS t,DQS ¢ «—> Block 2080
RE t,RE c ——|| |fmm 7
Z i
iwu19 g
‘PageRegster H
Cache Register
- A \. ‘ e Y,

/
CMD I/F /
Data I/F |‘

< NAND Read Sequence >

*1. SCA: Separated Command Address
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Background: NAND Read Operation Flow

How NAND Read works & Interact with controller (on sca protocol)
1. Read Cell Command via CMD I/F

e  Controller designates the cell address to read

« NAND : ch ( ) ( )
. status: changed to busy Controller NAND
*  Sensing Read data from Cell CH Media Cell
* Load data to page register . Block 0
*  Copydata from page register to cache register N [[CA_CE# I iwm oS8 e g
*  NAND status: changed to ready after finishing job \\ CA[0:1] —> i
/
5128 / |CA CLK B —— iWL'MQ g
/|| |pQ[7:0] —_— ;
ECC / DQS_t, DQS_C —> Block 2080
RE_t,RE.c ——| |z 7
i
iWL 719 g
‘PageRegster
‘Cache Register
\§ / J/ \_ J
CMD 1/F |- (CReaiai
Data I/F

< NAND Read Sequence >

*1. SCA: Separated Command Address
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Background: NAND Read Operation Flow

How NAND Read works & Interact with controller (on sca protocol)
1. Read Cell Command via CMD I/F

*  Controller designates the cell address to read

«  NAND status: changed to b ( h ( )
S Controller NAND
*  Sensing Read data from Cell H Media Cell
. Load data to page register — C Block 0
Copydata from page register to cache register N [[CA_CE# I iwm oS8 e g
*  NAND status: changed to ready after finishing job \\/ CA[0:1] > i
2. Status Read Command via CMD I/F 5128 ||/ |CA CLK —> hwmfﬁ
e Controller check NAND is ready to read-out data / DQ[7:0] —> !
. NAND returns current status ECC / DQS t,DQS ¢ +— Block 2080
RE t,RE c ——|| |z 7z
i
J}WL 719 g
‘PageRegster
‘Cache Register

\\ J . J

/

CMD I/F % Read cell I Status Read }
Data I/F

< NAND Read Sequence >

*1. SCA: Separated Command Address
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Background: NAND Read Operation Flow

How NAND Read works & Interact with controller (on sca protocol)
1. Read Cell Command via CMD I/F

*  Controller designates the cell address to read

«  NAND status: changed to b ( h ( )
o e e o ey Controller NAND
* Sensing Read data from Cell CH Media Cell
. Load data to page register — Block 0
*  Copy data from page register to cache register N |CA_CE# — 'm_a?sé’gfs_g
*  NAND status: changed to ready after finishing job \\/ CA[0:1] > i
2. Status Read Command via CMD I/F 512 / |CA CLK — !mm*ﬁ
*  Controller check NAND is ready to read-out data B / DQ[7:0] —> !
. NAND returns current status ECC / DQS_t, DQS ¢ +—>| Block 2080
3. Random data-out command via CMD I/F RE_t,RE.c ~—— |mm ﬁ
*  The controller notifies the NAND to prepare to toggle out data. !
iWL 719 g
|PageRe§ster
|Cache Register

/

CMD I/F % Read cell I Status Read I Data Out }
Data I/F

< NAND Read Sequence >

*1. SCA: Separated Command Address
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Background: NAND Read Operation Flow

How NAND Read works & Interact with controller (on sca protocol)
1. Read Cell Command via CMD I/F

*  Controller designates the cell address to read

«  NAND status: changed to b ( h ( )
o e e o ey Controller NAND
*  Sensing Read data from Cell H Media Cell
. Load data to page register — C Block 0
*  Copy data from page register to cache register N |CA_CE# — 'm_a?sé’gfs_g
*  NAND status: changed to ready after finishing job \\ CA[0:1] «—> !
2. Status Read Command via CMD I/F 5128 CA_CLK — !wmg*fj
*  Controller check NAND is ready to read-out data DQ[7:0] —> !
. NAND returns current status ECC DQS_t, DQS ¢ +—>| Block 2080
3. Random data-out command via CMD I/F RE t,RE c ~——»| |mm ﬁ
*  The controller notifies the NAND to prepare to toggle out data. - !
4. Data Toggle Out via Data I/F TS g
*  Controller toggles RE to NAND
*  NAND toggle-out data in cache register via NVDDR I/F (DQ[7:0]) |Pa9eRe9ister
L A X |Cache Register )

CMD I/F Mead cell I Status Read I Data Out }

Data I/F |‘ | oaerogglecut |

< NAND Read Sequence >

*1. SCA: Separated Command Address
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Why the NAND Channel is the Bottleneck

legacy manner

Factors that reduce channel efficiency
1. Slow improvement of the CMD I/F speed with

CMD I/F ~{ Readcell }{ Status Read }{ Data Out }
Data I/F | | Datatoggleout | |-
< NAND Read Sequence >
Data I/F CMD I/F
CH Efficiency
NAND Interface Spec Data I/F Speed Data Transfer Time Pre-amble CMD&ADDR
4KB 5128 / Post-amble | Transfer AKB 512B
ONFi 2.0 NV-DDR 200 MT/s 23040 ns 2880 ns 90ns lus 95% 73%
ONFi 3.0 NV-DDR2 400 MT/s 11520 ns 1440 ns 90ns lus 91% 57%
ONFi 4.0 NV-DDR3 1200 MT/s 3840 us 480 us 90ns lus AL 78% 31%
ONFi 5.0 NV-LPDDR4 3600 MT/s 1280 us 160 us 90ns 500ns 20 93% 32%
ONFi 5.0 Enhanced 4800 MT/s 960 ns 120 ns 90ns 500ns 91% 24%

*1. SCA: Separated Command Address
-28-




Why the NAND Channel is the Bottleneck

Factors that reduce channel efficiency

2. Fixed overhead for data interfaces reliability
* Pre-amble, Post-amble

CMD |/F { Read cell }{StatusReadI Data Out }

Data I/F Data toggle-out
< NAND Read Sequence >
Data I/F CMD I/F
CH Efficiency

NAND Interface Spec Data I/F Speed Data Transfer Time Pre-amble CMD&ADDR

4KB 5128 / Post-amble | Transfer AKB 512B
ONFi 2.0 NV-DDR 200 MT/s 23040 ns 2880 ns 90ns lus 95% 73%
ONFi 3.0 NV-DDR2 400 MT/s 11520 ns 1440 ns 90ns lus 91% 57%
ONFi 4.0 NV-DDR3 1200 MT/s 3840 us 480 us 90ns lus AL 78% 31%
ONFi 5.0 NV-LPDDR4 3600 MT/s 1280 us 160 us 90ns 500ns 20 93% 32%
ONFi 5.0 Enhanced 4800 MT/s 960 ns 120 ns 90ns 500ns 91% 24%

*1. SCA: Separated Command Address
-29-




Why the NAND Channel is the Bottleneck

Factors that reduce channel efficiency

1. Slow improvement of the CMD I/F speed with
legacy manner
Fixed overhead for data interfaces reliability

* Pre-amble, Post-amble
3. The smaller the data size, the relatively higher
the fixed cost

2.

CMD |/F % Read cell }{Status Read I Data Out }

Channel Efficiency with Data | /F Speed & Data Size

100.0%

80.0%

60.0%

40.0%

20.0%

CH Efficiency 4KB

H CH Efficiency 512B

Data I/F | patatoggleout | | 0.0%
< NAND Read Sequence > . ONFi 2.0 ONFi 3.0 ONFi 4.0 ONFi 5.0 ONFI5.0
Sync DDR NV-DDR2 NV-DDR3 NV-LPDDR4 4800MT/s
Data |m : CMD I/F
7 Fixed Cost | CH Efficiency
NAND Interface Spec Data I/F Speed Data Transfgr Time Pre-amble CMD&ADDR
4KB 512B /Post-amble Transfer A4KB 512B
ONFi 2.0 NV-DDR 200 MT/s 23040 ns 2880 ns 90ns lus 95% 73%
ONFi 3.0 NV-DDR2 400 MT/s 11520 ns 1440 ns 90ns lus 91% 57%
ONFi 4.0 NV-DDR3 1200 MT/s 3840 us 480 us 90ns lus AL 78% 31%
ONFi 5.0 NV-LPDDR4 3600 MT/s 1280 us 160 us 90ns 500ns ‘ 93% 32%
ONFi 5.0 Enhanced 4800 MT/s 960 ns 120 ns \90ns 500ns ) 91% 24% *1. SCA: Separated Command Address
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Points to optimize for 100M IOPS

Goal to optimize

e Channel Efficiency of 75% or higher

* 6250K IOPS per Channel (=160 ns per single read command)

 CMD I/F occupancy time < 160 ns
* Data I/F occupancy time < 160 ns

2 Blockers

1. CMD I/F time: 500ns > 160 ns
2. Datal/F time: 210ns > 160 ns

Data I/F CMD I/F
CH Efficiency
NAND Interface Spec Data I/F Speed Data Transfer Time Pre-amble CMD&ADDR
4KB 512B /Post—amble Transfer AKB 512B
ONFi5.0 | Enhanced | 4800MT/s 960ns | 120ns 90ns )|('500ns 91% 24%
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NAND Channel Optimization — Data I/F

Limitation

Pre-amble & Post-amble time is fixed

Approach to solve problem

Reducing the fixed overhead ratio
Data size @ Data-out Time @ Pre-amble Overhead Ratio Data I/F efficienty
+Post-amble time (= @ / (@ + @))
5128B 119ns 90ns 43% 57%
4K 955ns 90ns 8.6% 91.4%
16K 3820ns 90ns 2.3% 97.7%
AS-1S
CMD |/F { Read cell }[ Status Read _—[ Read cell }{ Status Read _ [ Read cell }[ Status Read r
Data I/F [ED @ @
TO_BE CMD |/F { Read cell }[ Status Read }{ Read cell }{ Status Read } [ Read cell }{ Status Read _
Data I/F B -
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NAND Channel Optimization — Data I/F

Limitation

Pre-amble & Post-amble time is fixed

Approach to solve problem
Reducing the fixed overhead ratio

Data size @ Data-out Time @ Pre-amble Overhead Ratio Data I/F efficiency
+Post-amble time (= @ / (@ + @))
512B 119ns 90ns 43% 57%
4K 955ns 90ns 8.6% 91.4%
16K 3820ns 90ns 2.3% 97.7%
AS-IS

CMD |/F { Read cell }[ Status Read _—[ Read cell }{ Status Read _

Data I/F

TO-BE

Data I/F

a B

r

Improvement Effect
Data I/F

- Overhead sharing

a0

[ Read cell }[ Status Read r

e -

CMD |/F { Read cell }[ Status Read }{ Read cell }{ Status Read }

(

L

Read cell }{ Status Read _

0

0
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NAND Channel Optimization — Data I/F

Limitation

Pre-amble & Post-amble time is fixed

Approach to solve problem
Reducing the fixed overhead ratio

Data size @ Data-out Time @ Pre-amble Overhead Ratio Data I/F efficiency
+Post-amble time (= @ / (@ + @))
512B 119ns 90ns 43% 57%
4K 955ns 90ns 8.6% 91.4%
16K 3820ns 90ns 2.3% 97.7%
AS-IS

CMD |/F { Read cell }[ Status Read _—[ Read cell }{ Status Read _

Data I/F

TO-BE

Data I/F

a B

r

Improvement Effect

CMD I/F

Out commands

- Reduction in the number of Data

a0

[ Read cell }[ Status Read r

e -

CMD |/F { Read cell }[ Status Read }{ Read cell }{ Status Read }

(

L

Read cell }{ Status Read -

il
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NAND Channel Optimization — Data I/F

Limitation
Pre-amble & Post-amble time is fixed

Improvement Effect

Read cell }[ Status Read r

=T

Approach to solve problem
Reducing the fixed overhead ratio
Data size @ Data-out Time @ Pre-amble Overhead Ratio Data I/F efficiency
+Post-amble time (= @ / (@ + @))
512B 119ns 90ns 43% 57%
4K 955ns 90ns 8.6% 91.4%
16K 3820ns 90ns 2.3% 97.7%
AS-IS
CMD |/F { Read cell }[ Status Read _—[ Read cell }{ Status Read _ [
Data I/F (1] B n
TO_BE CMD |/F { Read cell }[ Status Read }{ Read cell }{ Status Read } [ Read cell }{ Status Read _
Data I/F B
[Current NAND does not support this behavior ]
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NAND Channel Optimization — Data I/F

TO-BE

CMD |/F { Read cell J{ Status Read I Read cell I Status Read } [ Read cell I Status Read I Data Out }

Required New NAND Command To-Be:
Read & Flexible load to cache register

* After cell sensing, data is copied to cache register with source & destination offset
* Cacheregisteris utilized like data FIFO
* Improve the constraint requiring loading to a fixed column address between the page register and cache register

Vs

Single data-out from multiple sensed data
LUN LUN LUN LUN LUN Controller
[ Page Register ] [ Page Registar ] [ Page Register ] [ Page Register ] [ Page Register ] ﬁ ?
[ Cache Register ] [ Cdche Register ] [ Cdche ergister ] [ C3ache R egist}.r ] [ Cdche Register ] [ I I I ]
Q@ 1t read () 21 read (3) 31 read (@) 4t read (5) Random Data-out
3rd sector data is copied to 15t sector data is copied to 4th sector data is copied to 3rd sector data is copied to Controller read-out data with
1st sector of cache register 2nd sector of cache register 3rd sector of cache register 4th sector of cache register legacy command
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NAND Channel Optimization — CMD I/F 1%t

]
Origin :
CMD I/F { Read cell }{ Status Read _—[ Read cell }{ Status Read _ | Read cell }{ Status Read _7
Data I/F 3 8 Tl - B R
Data I/F CMD |/F { Read cell [ Status Read ][ Read cell [ Status Read } [ Read cell I Status Read ][ Data Out }
A A
Opt. Data I/F 0 -

(Is it still needed? }

Expansion of Idea
- Why status read is always required?

- Command input is not allowed during busy € Requires periodic status read
- There is no need to immediately perform data-out after reading the cell.

- The tasks that can be performed within the NAND if tasks are queued.

- Only last status read is required before ‘Data-out’
=>» NAND read command queueing

- Eliminate the status read command overhead

TO-BE b e —(Resdasin 7 e - et | statens | oo

Data I/F D( &
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|dea to reduce CMD |/F overhead
Coded CMD for Limited Column Address Usage
- The usage case for NAND column addresses is aligned to ECC units.

- 2Byte information is not required.
- Legacy confirm command(30h) is replaced by coded command include column address info(ex. 30h~4Fh)

=>» Reduction of CMD I/F occupancy time to send read command

CMD |/F [ Read cell }[Status Read}{ Data Out }

Data I/F / l

/ -

l —

( 00h )| Col.Addr || Col.Addr [ Row.Addr || Row.Addr [| Row.Addr {( 30h )

Coded
CMD

C 00h >{ Row.Addr H Row.Addr H Row.Addr K xxh )




Conclusion

The customized SSD market is rapidly growing.
* To meet the requirements of the custom SSD market, improvements are needed at each layer.

SSD solution & NAND vendors must jointly enhance the customized solutions.
 FADU is engaging to advance the future solutions with multiple NAND suppliers .

The NAND Legacy CMD I/F is somewhat unsuitable for Al SSD.

* The fixed overhead ratio will continue to increase.

Long-term, the NAND Command Interface requires innovative improvements.




BFADU

The SSD Expert
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