A FADU
Storage: The Quiet Engine of Al

Heechul (Fletcher) Chae
FADU, Product Planning

The Shift From Training to Inference

» Generative Al has moved from research to mainstream use, creating billions of inference events daily.

» By 2030, ~75% of Al compute will be inference
— design data centers for high-volume inference traffic.

Figure 10: Approximately 75% of Future Al Compute Demand to Come From Inference by 2030

Generative Al Tools Total Global Absorption (GW)
Content Coding &
Creation Development 10
9
Re2 o@~
. ‘ 7
Scribe ChatGPT Copy.ai GitHub Turing's AlphaCode
Copilot CodeGen 6
Copilot
) 5
® R "b S 4
S} r
Jasper Claude Cohere Pico Microsoft ~ Amazon 3
Copilot Bedrock 2
1 l
TSR N o
+

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

Microsoft

Gemini Bard Research Power Apps

Rabbit
B Al Training Bl AlInference

Source: Brookfield internal research.

X Brookfield Building the Backbone of Al.pdf

https://www.brookfield.com/sites/default/files/documents/Brookfield_Building_the_Backbone_of_AI.pdf
https://www.brookfield.com/sites/default/files/documents/Brookfield_Building_the_Backbone_of_AI.pdf

Inference Server (w RAG) is Driving Explosive Data Demand

* Alinference infra(GenAl) data demand will grow ~105% CAGR through 2030—over 3.5x training.

 Main driver: RAG—via vector DBs (indexing, replication, low-latency fetch).

M Al training’ § M Al inference, including retrieval- General purpose xx00 1 2024-30 CAGR x| 2024-30
augmented generation (RAG) and other storage® cumulative growth
Enterprise solid state drive (eSSD) Solid state drive (SSD) content per Server or storage unit volumes,
bit demand, exabytes server or storage unit, terabytes million units
o 3 = X

Taros 344

p
1078 (35%)
15.7

13.8
>b50% of
eSSD bit
demand

by 2030

181 g 504 20%

31

168 - 17 12

2024 2030 2024 2030 2024 2030

X Generative Al spurs new demand for enterprise SSDs | McKinsey

https://www.mckinsey.com/industries/semiconductors/our-insights/generative-ai-spurs-new-demand-for-enterprise-ssds
https://www.mckinsey.com/industries/semiconductors/our-insights/generative-ai-spurs-new-demand-for-enterprise-ssds

Capital Flows Toward eSSDs in the GenAl Supercycle

* Investment and attention are converging on eSSDs for the inference era.

« It signals a need for specialized eSSDs—not bulk HDDs or commodity drives—like HBM for training.

£ > SHHBUSINESS

“GPUO|A| SSDE” 228 4lH|3 §£X}% 0|5 l
Al investments to drive enterprise SSD demand surge in

North America

¢ ol ZR 900 i IR LLELEE §
Generative Al spurs new de

for
enterprise SSDs

December 3, 2024 | Article

Sandisk stock price

121.12 uso

+89.64 (284.76%) 4 past 6 months
Closed: Oct 6, 7:58 PM EDT - Disclaimer

After hours 123.81 +2.69 (2.22%)
1D 5D ™ 6M YTD 1Y 5Y Max
150

42.06 USD Thu, Jul 24

100
50

T T T
Jun 2025 Aug 2025 Oct 2025

190.96 uso Micron stock price
+122.59 (179.30%) 4 past 6 months
Closed: Oct 6, 7:59PM EDT + Disclaimer
After hours 192.30 +1.34 (0.70%)
1D 5D ™ 6M YTD 1Y 5Y Max
200

123.55 USD Mon, Aug 18

150

100

50

T T
Jun 2025 Aug 2025 Oct 2025

https://www.mckinsey.com/industries/semiconductors/our-insights/generative-ai-spurs-new-demand-for-enterprise-ssds

RAG Makes Storage the Bottleneck in Inference (1)

 Vector search with query embeddings is crucial for inference QoS.

 To make vector search faster, caching key pieces in HBM and local SSD.

Embedding

Vector Database

@ 2 D

)
nformation Relevant Da
i N

g &

Kk | 99 | Chunking

Mg o

Data Preparation

1 Query

Retrieval Augménted Generation

LLM(s)

e
|

-

Vector DB Caching Effects

Tail Latency Suppression

Eliminate PCle/DRAM round-trips

Remove CPU scheduling jitter

— p99/p999 Stabilized

QPS Increase f

GPU massive parallel search

(1000s~10000s queries batched)

— No memory bottleneck

Recall Cost Mitigation

Increase nprobe (IVF)

efSearch (HNSW)

— Gentle latency growth

Data Copy Cost |

Candidate — Distance — Re-rank

All in HBM pipeline

— Minimize memory bounce

RAG Makes Storage the Bottleneck in Inference (2)

* As the vector DB grows, caching gets complex - causing OOM(Out-of-Memory)

* As /O shifts from HBM<«+-GPU to NVMe SSD, SSD BW becomes the bottleneck
— this is why storage is critical for inference.

Inference Server

A

Storage Server

DPU |« CPU

A 4

4 N\
Remote NVMe SSD [

ary HBM)
..... If cached,
HBM — compute.
GPU GPU QPS 1, Latency |
1 t
CPU | > NIC
?
Y w—
Local NVMe SSD If not cached,
SSD — host DRAM —
et HBM — compute.
QPS |, Latency 1
\ g J

Test datatiase

RAG/VectorDB (>600GB)
ANN algos on embeddings

cuVS

B 0351 .
H 04609 \
[4,6,2,5] ~ -
- 16.8,61] > .3esl- i
©(7.0,3,5]
B 0469 A G Vet e
r[4,6,2. 4]

Vector Search (up to 40PB)
specialized algos on
embeddings and files

cuVs -6-

RAG Workloads Storage Must Face

GB200/300 Compute Tray
(View only 1P (2GPU/1CPU)

* Volume

- Provide O(100M) IOPs!
- Gen5 PCle (x16 lane): 50 GB/s

- 10OPS per GPU 6x Clinks (~15
= PCle bandwidth / xfer xsize T o
= 50 GB/s / 512B ik C2

2
§

x16 RP (U1)
bt Kol
x16 RP (UO)

= 100 MIOPs/GPU

- Of) Blackwell 7| (2 GPU to 4 NVMe)
|IOPS per GPU = 200 MIOPS / GPU
= 100 MIOPS / NVMe (Can be required)

+ Size :
- Under 512Bytes .
- Embeddings 512B-4KB, m
graph structure could be 8B-128B . % 5 : s s
=mma =
- Sparse (Random) k3 Mm: . 2°°6F °:G Mj(’ m:%

What to solve?

1. (Infrastructure Developers) Optimize the path from GPUs to NVMe SSDs.

2. (Storage Developers) Make SSDs can handle the I/O rate generated by the GPU.

Inference Server

HBM HBM

GPUs should be
able to access

data anywhere
without CPU

intervention

\

Storage Server

DPU |«

CPU

Remote NVMe SSD

CPU NIC

Local NVMe SSD

If not cached,
SSD — host DRAM —
HBM — compute.

QPS |, Latency 1

FADU is preparing to
achieve 100 million IOPS
for 512-byte random
reads with its Gen7 SSDs

Related work — Optimizing GPU-to-NVMe SSD Paths

GPU-initiated scaled data architecture

GPU becomes an autonomous highly parallel data access engine

User view Tiered view = SCADA | Backing

» storage
éPU client \ ./Data server h view
/ Process requests\

= ontro and DMAs data in
App R a trusted

Submit | component, e.g.

- requests on GPU /

Data Inte
persistent world

- \ // —

e S [e GPUDirect Storage
A - / \ /
GIDS & BaM

Remote/
Shared

=1 [

CPU

C'?..U__&L)_Re Qe nliie = Gl}: S$D C'Tl.Jn. 'lni(tialize() G?U ?, 2
/”— ad(file, ize U) - ! initialize ssd,off,size) ——i — [
“|__launchkemely | Read DMA Transter > > i E |

~
~

~

Serial Queues

i 1
a z
CTRL
=
®
3 o
)
- loop until N
completion

|
1 i
| i :
: GPU ll i = e
| kemelDone() Compute | '
I
[I
|
I
I
. -]

il
. = Write(file, size, GPU)
) L] o 5 . A —p
; “u | ._Write DMA Transfer
1/0 buffers ; x ! f With GPUDirect Storage
GPU Memo '
ry (a) CPU-Centric Model. (b) BaM Model.

Figure 1: Logical view of BaM design.

7 9-

Future works

1. Remove local SSDs from the inference server
- Wil the network (e.g. the NIC) become the bottleneck?
- Do we need a new interface to the remote storage server?

2. A complete implementation of GPU-initiated storage access
- GPU-side NVMe command-level access is possible;
- However, without filesystem-level direct access, aren't we still dependent on the CPU?

LFADU

Random Read Maximization for Al Storage
Tech to overcome NAND Channel Bottleneck

EulJin.Kim, FADU Firmware

Contents

Random Read IOPS Trend for Al
Target Random Read IOPS for Future Solution
To achieve 100 Million IOPS of Random Read
e Required System Configurations
e Issue with NAND Channel
Background: NAND Read Operation Flow
Why the NAND Channel is the Bottleneck
NAND Channel Optimization
» Data I/F Optimization
 CMD I/F Optimization
Conclusion

-12-

Random Read IOPS Trend for Al Storage

-
Demand for Inference Al Storage

e IOPS/S
* |OPS / Watt

* embeddings 512B~4KB

* Fine-Grained Random Read Intensive

e graph structure could be 8B~128B

\

S

-
SSD Tech Trend for Inference Al Storage

Focused on “Random Read IOPS” & “Watt”
512Byte Block Size

More IOPS via fixed speed I/F

e SLCNAND

e Lowest Cell Read Time

e Lowest Cell Read Power

GB/S,

Inference Al
Storag,e

IOPS/S

C

Computing
Storage

)

(Data Storage)

(Near-Line SSD)

SLC

TLC

QLC

-13-

Target Random Read IOPS for Future Solution

Maximized BW & IOPS on PCle Gen7

Block size Ideal Read BW Ideal Read IOPS
4KB 55.7 GB/s 13.6M IOPS
512Byte 52.7 GB/s 102.9M IOPS 2 X7.3

-14-

Target Random Read IOPS for Future Solution

Maximized BW & IOPS on PCle Gen7

Block size Ideal Read BW Ideal Read IOPS
4KB 55.7 GB/s 13.6M IOPS
512Byte 52.7 GB/s 102.9M Iops <X 72

\ 4

Target IOPS for Future Solution
100M I0OPS !l

-15-

To achieve 100 Million IOPS of Random Read

System capability to maximize Random Read I0OPS
Fully utilized PCle Gen7 throughput

s

Host GPU

~N

100M IOPS

/

PCle Gen7/

Controller

-16-

To achieve 100 Million IOPS of Random Read

System capability to maximize Random Read I0OPS

* Controller processing capability to handle single 1/O in 10ns

s

Host GPU

~N

-
Controller
100M I0OPS
PCle Gen7 { H }{ }[]-
BEEE,
Process
in 10ns
_

-17-

To achieve 100 Million IOPS of Random Read

System capability to maximize Random Read I0OPS

 DRAM bus throughput for 100M metadata access

s

Host GPU

~N

100M IOPS

/
Controller

PCle Gen7/

BN,

DRAM ”

BN,

Process
in 10ns

Bus

5.2 Gbps
x64 width

_

-18-

To achieve 100 Million IOPS of Random Read

System capability to maximize Random Read I0OPS

* Practical solution with 16 NAND Channels x 8 Dies which support 4800MT/s

s

Host GPU

~N

e N
Controller CHO NAND
100M IOPS {]{ }{]{ }
Process
in 10ns
DRAM BUS
5.2 Gb CH 15 NAND
) ps)
x64 width 4800MT/s

-19-

To achieve 100 Million IOPS of Random Read

System capability to maximize Random Read I0OPS

512Byte ECC Engine — Customized for Al workload

s

Host GPU

~N

e Y\
Controller CHO NAND
100M I0OPS {]{ }{ }{ } A
512B
Process
in 10ns
DRAM BUS
_— = b CH 15 NAND
) ps J
x64 width 4800MT/s

-20-

To achieve 100 Million IOPS of Random Read

System capability to maximize Random Read I0PS

* 6.25M IOPS per Channel (=100M 10PS / 16 Channels)
Required effective BW of single channel: 3600MT/s
e Required channel efficiency: 75%

It is hurdle to get a CH efficiency of 75% or higher!!

s

Host GPU

~N

- ~ 6250K10PS
Controller CHO NAND
100M I0OPS {]{ }{]{ } A
512B
Process
in 10ns
DRAM BUS
_— = b CH 15 NAND
) ps J
x64 width 4800MT/s

-21-

To achieve 100 Million IOPS of Random Read

System capability to maximize Random Read I0PS
e Fully utilized PCle Gen7 throughput

* Controller processing capability to handle single I/0 in 10ns
 DRAM bus throughput for 100M metadata access

* Practical solution with 16 NAND Channels x 8 Dies which support 4800MT/s

e 512Byte ECC Engine — Customized for Al workload
* 6.25M IOPS per Channel (=100M 10PS / 16 Channels)
* Required effective BW of single channel: 3600MT/s
e Required channel efficiency: 75%

Host

~N

-

The more channels,

e the higher the throughput can be achieved
* the larger the chip size
the less installation space

=» Find a way to solve the issue, while

The easiest way to achieve throughput is
to “increase the # of channels”

practically staying within 16 channels.

~

J

It is hurdle to get a CH efficiency of 75% or higher!! \-
- ~ 6250K IOPS
Controller CHO NAND
100M IOPS {]{][}{ } A
512B
Process
in 10ns
DRAM BUS
—— = b CH 15 NAND
: ps J
x64 width 4800MT/s

-22-

Background: NAND Read Operation Flow

How NAND Read works & Interact with controller (on sca protocol)

s N e N
Controller NAND
CH Media Cell
Block 0
N [CA_CE# —| e
AN) CA[0:1] — i
5128 / |CA CLK B —— iWL'MQ g
/|| [DQl7:0] —_— ;
ECC / DQS t,DQS ¢ «—> Block 2080
RE t,RE c ——|| |fmm 7
Z i
iwu19 g
‘PageRegster H
Cache Register
- A \. ‘ e Y,

/
CMD I/F /
Data I/F |‘

< NAND Read Sequence >

*1. SCA: Separated Command Address

u -23-

Background: NAND Read Operation Flow

How NAND Read works & Interact with controller (on sca protocol)
1. Read Cell Command via CMD I/F

e Controller designates the cell address to read

« NAND : ch () ()
. status: changed to busy Controller NAND
* Sensing Read data from Cell CH Media Cell
* Load data to page register . Block 0
* Copydata from page register to cache register N [[CA_CE# I iwm oS8 e g
* NAND status: changed to ready after finishing job \\ CA[0:1] —> i
/
5128 / |CA CLK B —— iWL'MQ g
/|| |pQ[7:0] —_— ;
ECC / DQS_t, DQS_C —> Block 2080
RE_t,RE.c ——| |z 7
i
iWL 719 g
‘PageRegster
‘Cache Register
\§ / J/ _ J
CMD 1/F |- (CReaiai
Data I/F

< NAND Read Sequence >

*1. SCA: Separated Command Address

u -24-

Background: NAND Read Operation Flow

How NAND Read works & Interact with controller (on sca protocol)
1. Read Cell Command via CMD I/F

* Controller designates the cell address to read

« NAND status: changed to b (h ()
S Controller NAND
* Sensing Read data from Cell H Media Cell
. Load data to page register — C Block 0
Copydata from page register to cache register N [[CA_CE# I iwm oS8 e g
* NAND status: changed to ready after finishing job \\/ CA[0:1] > i
2. Status Read Command via CMD I/F 5128 ||/ |CA CLK —> hwmfﬁ
e Controller check NAND is ready to read-out data / DQ[7:0] —> !
. NAND returns current status ECC / DQS t,DQS ¢ +— Block 2080
RE t,RE c ——|| |z 7z
i
J}WL 719 g
‘PageRegster
‘Cache Register

\\ J . J

/

CMD I/F % Read cell I Status Read }
Data I/F

< NAND Read Sequence >

*1. SCA: Separated Command Address

u -25-

Background: NAND Read Operation Flow

How NAND Read works & Interact with controller (on sca protocol)
1. Read Cell Command via CMD I/F

* Controller designates the cell address to read

« NAND status: changed to b (h ()
o e e o ey Controller NAND
* Sensing Read data from Cell CH Media Cell
. Load data to page register — Block 0
* Copy data from page register to cache register N |CA_CE# — 'm_a?sé’gfs_g
* NAND status: changed to ready after finishing job \\/ CA[0:1] > i
2. Status Read Command via CMD I/F 512 / |CA CLK — !mm*ﬁ
* Controller check NAND is ready to read-out data B / DQ[7:0] —> !
. NAND returns current status ECC / DQS_t, DQS ¢ +—>| Block 2080
3. Random data-out command via CMD I/F RE_t,RE.c ~—— |mm ﬁ
* The controller notifies the NAND to prepare to toggle out data. !
iWL 719 g
|PageRe§ster
|Cache Register

/

CMD I/F % Read cell I Status Read I Data Out }
Data I/F

< NAND Read Sequence >

*1. SCA: Separated Command Address

u -26-

Background: NAND Read Operation Flow

How NAND Read works & Interact with controller (on sca protocol)
1. Read Cell Command via CMD I/F

* Controller designates the cell address to read

« NAND status: changed to b (h ()
o e e o ey Controller NAND
* Sensing Read data from Cell H Media Cell
. Load data to page register — C Block 0
* Copy data from page register to cache register N |CA_CE# — 'm_a?sé’gfs_g
* NAND status: changed to ready after finishing job \\ CA[0:1] «—> !
2. Status Read Command via CMD I/F 5128 CA_CLK — !wmg*fj
* Controller check NAND is ready to read-out data DQ[7:0] —> !
. NAND returns current status ECC DQS_t, DQS ¢ +—>| Block 2080
3. Random data-out command via CMD I/F RE t,RE c ~——»| |mm ﬁ
* The controller notifies the NAND to prepare to toggle out data. - !
4. Data Toggle Out via Data I/F TS g
* Controller toggles RE to NAND
* NAND toggle-out data in cache register via NVDDR I/F (DQ[7:0]) |Pa9eRe9ister
L A X |Cache Register)

CMD I/F Mead cell I Status Read I Data Out }

Data I/F |‘ | oaerogglecut |

< NAND Read Sequence >

*1. SCA: Separated Command Address

7 27

Why the NAND Channel is the Bottleneck

legacy manner

Factors that reduce channel efficiency
1. Slow improvement of the CMD I/F speed with

CMD I/F ~{ Readcell }{ Status Read }{ Data Out }
Data I/F | | Datatoggleout | |-
< NAND Read Sequence >
Data I/F CMD I/F
CH Efficiency
NAND Interface Spec Data I/F Speed Data Transfer Time Pre-amble CMD&ADDR
4KB 5128 / Post-amble | Transfer AKB 512B
ONFi 2.0 NV-DDR 200 MT/s 23040 ns 2880 ns 90ns lus 95% 73%
ONFi 3.0 NV-DDR2 400 MT/s 11520 ns 1440 ns 90ns lus 91% 57%
ONFi 4.0 NV-DDR3 1200 MT/s 3840 us 480 us 90ns lus AL 78% 31%
ONFi 5.0 NV-LPDDR4 3600 MT/s 1280 us 160 us 90ns 500ns 20 93% 32%
ONFi 5.0 Enhanced 4800 MT/s 960 ns 120 ns 90ns 500ns 91% 24%

*1. SCA: Separated Command Address
-28-

Why the NAND Channel is the Bottleneck

Factors that reduce channel efficiency

2. Fixed overhead for data interfaces reliability
* Pre-amble, Post-amble

CMD |/F { Read cell }{StatusReadI Data Out }

Data I/F Data toggle-out
< NAND Read Sequence >
Data I/F CMD I/F
CH Efficiency

NAND Interface Spec Data I/F Speed Data Transfer Time Pre-amble CMD&ADDR

4KB 5128 / Post-amble | Transfer AKB 512B
ONFi 2.0 NV-DDR 200 MT/s 23040 ns 2880 ns 90ns lus 95% 73%
ONFi 3.0 NV-DDR2 400 MT/s 11520 ns 1440 ns 90ns lus 91% 57%
ONFi 4.0 NV-DDR3 1200 MT/s 3840 us 480 us 90ns lus AL 78% 31%
ONFi 5.0 NV-LPDDR4 3600 MT/s 1280 us 160 us 90ns 500ns 20 93% 32%
ONFi 5.0 Enhanced 4800 MT/s 960 ns 120 ns 90ns 500ns 91% 24%

*1. SCA: Separated Command Address
-29-

Why the NAND Channel is the Bottleneck

Factors that reduce channel efficiency

1. Slow improvement of the CMD I/F speed with
legacy manner
Fixed overhead for data interfaces reliability

* Pre-amble, Post-amble
3. The smaller the data size, the relatively higher
the fixed cost

2.

CMD |/F % Read cell }{Status Read I Data Out }

Channel Efficiency with Data | /F Speed & Data Size

100.0%

80.0%

60.0%

40.0%

20.0%

CH Efficiency 4KB

H CH Efficiency 512B

Data I/F | patatoggleout | | 0.0%
< NAND Read Sequence > . ONFi 2.0 ONFi 3.0 ONFi 4.0 ONFi 5.0 ONFI5.0
Sync DDR NV-DDR2 NV-DDR3 NV-LPDDR4 4800MT/s
Data |m : CMD I/F
7 Fixed Cost | CH Efficiency
NAND Interface Spec Data I/F Speed Data Transfgr Time Pre-amble CMD&ADDR
4KB 512B /Post-amble Transfer A4KB 512B
ONFi 2.0 NV-DDR 200 MT/s 23040 ns 2880 ns 90ns lus 95% 73%
ONFi 3.0 NV-DDR2 400 MT/s 11520 ns 1440 ns 90ns lus 91% 57%
ONFi 4.0 NV-DDR3 1200 MT/s 3840 us 480 us 90ns lus AL 78% 31%
ONFi 5.0 NV-LPDDR4 3600 MT/s 1280 us 160 us 90ns 500ns ‘ 93% 32%
ONFi 5.0 Enhanced 4800 MT/s 960 ns 120 ns \90ns 500ns) 91% 24% *1. SCA: Separated Command Address

-30-

Points to optimize for 100M IOPS

Goal to optimize

e Channel Efficiency of 75% or higher

* 6250K IOPS per Channel (=160 ns per single read command)

 CMD I/F occupancy time < 160 ns
* Data I/F occupancy time < 160 ns

2 Blockers

1. CMD I/F time: 500ns > 160 ns
2. Datal/F time: 210ns > 160 ns

Data I/F CMD I/F
CH Efficiency
NAND Interface Spec Data I/F Speed Data Transfer Time Pre-amble CMD&ADDR
4KB 512B /Post—amble Transfer AKB 512B
ONFi5.0 | Enhanced | 4800MT/s 960ns | 120ns 90ns)|('500ns 91% 24%

-31-

NAND Channel Optimization — Data I/F

Limitation

Pre-amble & Post-amble time is fixed

Approach to solve problem

Reducing the fixed overhead ratio
Data size @ Data-out Time @ Pre-amble Overhead Ratio Data I/F efficienty
+Post-amble time (= @ / (@ + @))
5128B 119ns 90ns 43% 57%
4K 955ns 90ns 8.6% 91.4%
16K 3820ns 90ns 2.3% 97.7%
AS-1S
CMD |/F { Read cell }[Status Read _—[Read cell }{ Status Read _ [Read cell }[Status Read r
Data I/F [ED @ @
TO_BE CMD |/F { Read cell }[Status Read }{ Read cell }{ Status Read } [Read cell }{ Status Read _
Data I/F B -

-32-

NAND Channel Optimization — Data I/F

Limitation

Pre-amble & Post-amble time is fixed

Approach to solve problem
Reducing the fixed overhead ratio

Data size @ Data-out Time @ Pre-amble Overhead Ratio Data I/F efficiency
+Post-amble time (= @ / (@ + @))
512B 119ns 90ns 43% 57%
4K 955ns 90ns 8.6% 91.4%
16K 3820ns 90ns 2.3% 97.7%
AS-IS

CMD |/F { Read cell }[Status Read _—[Read cell }{ Status Read _

Data I/F

TO-BE

Data I/F

a B

r

Improvement Effect
Data I/F

- Overhead sharing

a0

[Read cell }[Status Read r

e -

CMD |/F { Read cell }[Status Read }{ Read cell }{ Status Read }

(

L

Read cell }{ Status Read _

0

0

-33-

NAND Channel Optimization — Data I/F

Limitation

Pre-amble & Post-amble time is fixed

Approach to solve problem
Reducing the fixed overhead ratio

Data size @ Data-out Time @ Pre-amble Overhead Ratio Data I/F efficiency
+Post-amble time (= @ / (@ + @))
512B 119ns 90ns 43% 57%
4K 955ns 90ns 8.6% 91.4%
16K 3820ns 90ns 2.3% 97.7%
AS-IS

CMD |/F { Read cell }[Status Read _—[Read cell }{ Status Read _

Data I/F

TO-BE

Data I/F

a B

r

Improvement Effect

CMD I/F

Out commands

- Reduction in the number of Data

a0

[Read cell }[Status Read r

e -

CMD |/F { Read cell }[Status Read }{ Read cell }{ Status Read }

(

L

Read cell }{ Status Read -

il

-34-

NAND Channel Optimization — Data I/F

Limitation
Pre-amble & Post-amble time is fixed

Improvement Effect

Read cell }[Status Read r

=T

Approach to solve problem
Reducing the fixed overhead ratio
Data size @ Data-out Time @ Pre-amble Overhead Ratio Data I/F efficiency
+Post-amble time (= @ / (@ + @))
512B 119ns 90ns 43% 57%
4K 955ns 90ns 8.6% 91.4%
16K 3820ns 90ns 2.3% 97.7%
AS-IS
CMD |/F { Read cell }[Status Read _—[Read cell }{ Status Read _ [
Data I/F (1] B n
TO_BE CMD |/F { Read cell }[Status Read }{ Read cell }{ Status Read } [Read cell }{ Status Read _
Data I/F B
[Current NAND does not support this behavior]

-35-

NAND Channel Optimization — Data I/F

TO-BE

CMD |/F { Read cell J{ Status Read I Read cell I Status Read } [Read cell I Status Read I Data Out }

Required New NAND Command To-Be:
Read & Flexible load to cache register

* After cell sensing, data is copied to cache register with source & destination offset
* Cacheregisteris utilized like data FIFO
* Improve the constraint requiring loading to a fixed column address between the page register and cache register

Vs

Single data-out from multiple sensed data
LUN LUN LUN LUN LUN Controller
[Page Register] [Page Registar] [Page Register] [Page Register] [Page Register] ﬁ ?
[Cache Register] [Cdche Register] [Cdche ergister] [C3ache R egist}.r] [Cdche Register] [I I I]
Q@ 1t read () 21 read (3) 31 read (@) 4t read (5) Random Data-out
3rd sector data is copied to 15t sector data is copied to 4th sector data is copied to 3rd sector data is copied to Controller read-out data with
1st sector of cache register 2nd sector of cache register 3rd sector of cache register 4th sector of cache register legacy command

u -36-

NAND Channel Optimization — CMD I/F 1%t

]
Origin :
CMD I/F { Read cell }{ Status Read _—[Read cell }{ Status Read _ | Read cell }{ Status Read _7
Data I/F 3 8 Tl - B R
Data I/F CMD |/F { Read cell [Status Read][Read cell [Status Read } [Read cell I Status Read][Data Out }
A A
Opt. Data I/F 0 -

(Is it still needed? }

Expansion of Idea
- Why status read is always required?

- Command input is not allowed during busy € Requires periodic status read
- There is no need to immediately perform data-out after reading the cell.

- The tasks that can be performed within the NAND if tasks are queued.

- Only last status read is required before ‘Data-out’
=>» NAND read command queueing

- Eliminate the status read command overhead

TO-BE b e —(Resdasin 7 e - et | statens | oo

Data I/F D(&

-37-

NAND Channel Optimization — CMD I/F 2"

|dea to reduce CMD |/F overhead
Coded CMD for Limited Column Address Usage
- The usage case for NAND column addresses is aligned to ECC units.

- 2Byte information is not required.
- Legacy confirm command(30h) is replaced by coded command include column address info(ex. 30h~4Fh)

=>» Reduction of CMD I/F occupancy time to send read command

CMD |/F [Read cell }[Status Read}{ Data Out }

Data I/F / l

/ -

l —

(00h)| Col.Addr || Col.Addr [Row.Addr || Row.Addr [| Row.Addr {(30h)

Coded
CMD

C 00h >{ Row.Addr H Row.Addr H Row.Addr K xxh)

Conclusion

The customized SSD market is rapidly growing.
* To meet the requirements of the custom SSD market, improvements are needed at each layer.

SSD solution & NAND vendors must jointly enhance the customized solutions.
 FADU is engaging to advance the future solutions with multiple NAND suppliers .

The NAND Legacy CMD I/F is somewhat unsuitable for Al SSD.

* The fixed overhead ratio will continue to increase.

Long-term, the NAND Command Interface requires innovative improvements.

BFADU

The SSD Expert

	Slide 1: Storage: The Quiet Engine of AI
	Slide 2: The Shift From Training to Inference
	Slide 3: Inference Server (w RAG) is Driving Explosive Data Demand
	Slide 4: Capital Flows Toward eSSDs in the GenAI Supercycle
	Slide 5: RAG Makes Storage the Bottleneck in Inference (1)
	Slide 6: RAG Makes Storage the Bottleneck in Inference (2)
	Slide 7: RAG Workloads Storage Must Face
	Slide 8: What to solve?
	Slide 9: Related work – Optimizing GPU-to-NVMe SSD Paths
	Slide 10: Future works
	Slide 11: Random Read Maximization for AI Storage Tech to overcome NAND Channel Bottleneck
	Slide 12: Contents
	Slide 13: Random Read IOPS Trend for AI Storage
	Slide 14: Target Random Read IOPS for Future Solution
	Slide 15: Target Random Read IOPS for Future Solution
	Slide 16: To achieve 100 Million IOPS of Random Read
	Slide 17: To achieve 100 Million IOPS of Random Read
	Slide 18: To achieve 100 Million IOPS of Random Read
	Slide 19: To achieve 100 Million IOPS of Random Read
	Slide 20: To achieve 100 Million IOPS of Random Read
	Slide 21: To achieve 100 Million IOPS of Random Read
	Slide 22: To achieve 100 Million IOPS of Random Read
	Slide 23: Background: NAND Read Operation Flow
	Slide 24: Background: NAND Read Operation Flow
	Slide 25: Background: NAND Read Operation Flow
	Slide 26: Background: NAND Read Operation Flow
	Slide 27: Background: NAND Read Operation Flow
	Slide 28: Why the NAND Channel is the Bottleneck
	Slide 29: Why the NAND Channel is the Bottleneck
	Slide 30: Why the NAND Channel is the Bottleneck
	Slide 31: Points to optimize for 100M IOPS
	Slide 32: NAND Channel Optimization – Data I/F
	Slide 33: NAND Channel Optimization – Data I/F
	Slide 34: NAND Channel Optimization – Data I/F
	Slide 35: NAND Channel Optimization – Data I/F
	Slide 36: NAND Channel Optimization – Data I/F
	Slide 37: NAND Channel Optimization – CMD I/F 1st
	Slide 38: NAND Channel Optimization – CMD I/F 2nd
	Slide 39: Conclusion
	Slide 40

