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In-memory Key-value Store

• Critical component in modern applications

• Redis, Memcached, MemC3 

• Maintain ALL data in memory (DRAM) 

• Widely used in web/ML service providers



Objects are Getting Larger! 

• Size of data is increasing to several KB

• Object size distribution in CDN (provided by WineSOFT) 

• Also evident in ML-based systems 

• GPTCache leverages KVS to cache embedding vectors 

➔ 64–128 bytes (2018) to 16KB (2024) 

• UP2X, a distributed KVS in Meta, handles profile data for AI/ML inferences 

➔ average object size of 3.6KB, some exceeding 100KB 



Tiered Memory is Commonplace 

• Memory capacity can no longer meet data-centric

application demands

• Proper data placement across heterogeneous 

memory is becoming important 

• hot / cold separation 

• promotion / demotion / migration 



Motivation 

• KVS for Tiered Memory

• Empirical study with Redis as case study

• Pmem-redis (developed by Intel) 

• Supermicro SYS-1029U-TRT

• 128GB DRAM / 512GB DCPMM

• Connected with 56 Gb Ethernet

DRAM

< 64B >= 64B



Performance Analysis

• Get operations are nearly identical 

• Set operations are significantly different – large-sized data suffers from serious 

performance drop 
SETGET Why??



Latency Breakdown

• 64KB data size, average latency of 40K Ops.

• Steps

1. Fetch-to-dram : Read packets from kernel’s 

socket buffer 

2. Process-command : Parse and handle data 

according to command

3. Mv-to-nvm : Copy the data to DCPMM 

if data size exceed threshold

4. Reply-to-client : Send reply to cleint after 

processing operations
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Three Performance-Degrading Pitfalls

1) Transient Data Staging 

• Requests are delivered via the network, 

encapsulated in packets in modern KVS 

• Determining final destination of a packet 

requires specific information (e.g. value size) 

• Socket interface hides these details 

until packets reaches user space

• Data for other tiers is redundantly copied in DRAM! 



Three Performance-Degrading Pitfalls

2) Repetitive Kernel/User Crossings 

• Unknown data size!  

• Heuristic buffer management 

• 16KB / 128KB / 32KB 

• Reallocating and merging memory for 

consecutive objects is costly 

• Repetitive read system calls 

• Redis fixes read calls at 16 KB

• Socket interface hides these details 

until packets reaches user space! 



Three Performance-Degrading Pitfalls

3) Zero-write bomb! 



Three Performance-Degrading Pitfalls

3) Zero-write bomb! 

• Memory initialization for anonymous pages

• Use memory-mapped file as a memory space in DCPMM  

(posix_ftruncate/mmap) 

• Extending file size using posix_fallocate

(by 2MB huge page)

• Page fault on first access causes physical block allocation 

and hundreds of zero-writes to block device for 

initialization! 

PMDK
memkind

Pmem-redis

DCPMM / CXL Device

jemalloc

Ext4-DAX

Software stack for DAX device



Three Performance-Degrading Pitfalls

• 3) Zero-write bomb! 



X-redis

• PPF (Packet Peek and Forward)

• Peek at packets in kernel layer with eBPF

• Streamline data placement decisions on tiered memory

• OMA (Opportune Memory Allocator)

• Move zeroing off the critical path with opportune pre-initialization 



PPF: Packet Peek and Forward

• Peek at packets in the kernel layer using Linux eBPF

• Get the information for data placement without popping 

• Eliminate unnecessary data copies and read system calls 

Pmem-redis (w.o. PPF) X-redis (w. PPF)



PPF: Packet Peek and Forward

• BPF Component Type 

• BPF_PROG_TYPE_SOCKET_FILTER

• Fully leverage in-kernel network layer 

• BPF Map 

• Accessible to both user and kernel

• Store value size and layout in eBPF map 

• BPF_MAP_TYPE_QUEUE (info_q)

• BPF_MAP_TYPE_HASH (mapping table)
PPF Framework Overview



PPF: Packet Peek and Forward

• Challenge 1. Order of Packet Processing 

• Information dequeued from Info-q must match packet waiting for processing

• Packet has no ID → Hard to match! 

• Allocate an info-queue per socket using its port number upon connection establishment
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PPF: Packet Peek and Forward

• Challenge 2. Concurrency control to shared eBPF map

• Dynamic allocation of info-q incurs R/W contention to mapping table

Shared data 

structure!



PPF: Packet Peek and Forward

• Challenge 2. Concurrency control to shared eBPF map

• Dynamic allocation of info-q incurs R/W contention to mapping table
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OMA: Opportune Memory Allocator

• Lump-sum approach – initialization all at boot time or deallocation

• Incur unnecessary writes / external fragmentation! 

• OMA 

• Continuously monitors memory usage 

• Proactively allocates and initializes memory 

before available free space is exhausted

• Integrated into jemalloc! 

• Hard work

Internal structure of jemalloc



Evaluation 

• Workloads 

• Memtier Benchmark 

• Twitter cache trace

• 8 threads 

• Configurations 

• D : Original Redis

• P : Pmem-Redis (baseline)

• D-DPDK : Original Redis with DPDK

• P-DPDK : Pmem-redis with DPDK

• X-PPF : P with PPF, without OMA 

• X-PPF+OMA : P with PPF and OMA (X-Redis)



Memtier Benchmark (SET)

• X-Redis outperforms P (Redis using DRAM and DCPMM) in all range 

• Improve performance by 2.28x when value size reach 128KB 

• X-Redis performs better than D/P-DPDK for large-sized writes 

• Small-sized buffer of f-stack negatively impacts large write performance 

• Single-threaded packet processing in DPDK when integrated into Redis 

OMA

X-Redis



Memtier Benchmark (GET)

• Performance differences across versions is marginal

• No performance penalty for read requests in X-Redis 

OMA

X-Redis



Twitter Cache Trace

• 4 workload with high set ratio (cluster8, cluster37, cluster49, cluster50)

• 1 workload with small value size (cluster43)

• Mixed set and get operations



Twitter Cache Trace

• X-Redis provides average 32.7% higher IOPS compared to P

• X-Redis shows performance degradation of only 3.7% compared to DRAM-

only redis

X-Redis



Conclusion

• Uncover pitfalls in networked tiered-memory KVS 

• Unnecessary data fetches caused by limited socket interfaces

• Bulky block writes for on-demand memory initialization 

• X-Redis – an enhanced KVS for tiered memory employing two techniques 

• PPF: Packet Peek and Forward

• OMA: Opportune Memory Allocation 

• Improve write performance substantially while mitigating latency spikes

• Not limited to specific configuration 

• Memcached’s CacheLib / Extstore

• RDMA, CXL Memory, NUMA node 

• Data size / other policies 



Revisiting Trim for CXL Memory
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Rising Demand for High-capacity Memory in AI Era

• Fueled by data-centric and AI/ML applications 

• Memory disaggregation emerges as a key trend

• Realize scalable memory capacity by pooling distributed memory resources

• Interconnect technologies are attracting significant attention 

31



CXL-Flash 

• Compute Express Link (CXL)

• Driven by Intel (2019) 

• Cache-coherent interconnect technology

• Enables multi hosts and devices to share 

a common memory space 

• CXL-enabled flash memory 

• Provide high capacity 

• Hide long latency with intelligent prefetching 

and data placement 

• E. g. Samsung CMM-H

32

https://computeexpresslink.org/blog/explaining-cxl-memory-pooling-and-sharing-1049/

CXL Consortium



• CXL Type 3 Device

• CXL.io / CXL.mem protocols 

• Accessed in cache-line units (i.e., 64B) by host processor

CXL-Flash

33
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Mem
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Challenges of CXL-Flash as Memory Module
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Challenges of CXL-Flash as Memory Module
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Challenges of CXL-Flash as Memory Module
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Challenges of CXL-Flash as Memory Module
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• TRIM command

• Handle mismatch between file data and actual data on SSD

• Share validity information of data with the underlying device

TRIM for Conventional SSD
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Designing TRIM for CXL-Flash

• TRIM triggered by buddy system upon reclamation 

• Privileged operation

• Asynchronously via CXL.io protocol 
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Difficulties in Assessing TRIM Impact

• Simulation/emulation are not suitable for CXL-Flash

• Hard to capture traces during meaningful time window

• Excessive memory access

• # of Memory access ⋙ # of Storage access

• Emulators suffer from limited functionality or slow execution

• OpenCIS, Flight Simulator, CXLMemSim

• NUMA emulation

• Hard to conduct measurement study

• CXL-compliant devices have limited availability

• Profiling TRIM-related operations is challenging

41
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Analytic Model for CXL-flash

• Previous work: Analytic Modeling of SSD Write Performance (SYSTOR’ 12)

• Modeling write amplification based on overprovisioning ratio with LRU cleaning policy

• No considerations on TRIM command 
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Our Analytic Model for CXL-flash

• Extend analytical model to support TRIM 

• New terminology 𝐷𝑟 : ratio of Trim traffic to write traffic

• Write amplification(A) prediction using # of valid pages in block
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Our Analytic Model for CXL-flash

• 협업의 중요성… 
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Our Analytic Model for CXL-flash

• Extend analytical model to support TRIM 

• New terminology 𝐷𝑟 : ratio of Trim traffic to write traffic

• Write amplification(A) prediction using # of valid pages in block
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Validation of Analytical Model
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• Comparison between modeled(M) and simulated(S) WAF

• Methodology 

• Implement TRIM command in FTLSim (SYSTOR’ 12)

• 106 logical blocks, 128 pages per block
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• ⑴Write entire logical space for warm-up

• ⑵ Uniformly distributed writes (1/3 of total capacity)

+ TRIM issued every 10 writes (𝐷𝑟)
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Estimation of TRIM’s Effects in Real World

• Data centers running numerous VMs the need for CXL-Flash stands out most.

• Microsoft Azure VM Traces 5000 VMs sampled

• Each VM’s Lifetime, Memory (GB)

• YCSB (A-F) / DLRM (Train/Infer)

• TRIM is issued upon VM termination
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Estimation of TRIM’s Effects in Real World 
(cont’)

• Our model:   𝑨 =
𝜶

𝜶+
𝑾(−𝜶 𝟏+𝑫𝒓 𝒆−𝜶 𝟏+𝑫𝒓 )

𝟏+𝑫𝒓

• Defined as  𝐷𝑟 =
𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 𝑠𝑖𝑧𝑒

𝑙𝑜𝑎𝑑 𝑝ℎ𝑎𝑠𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 + 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑝ℎ𝑎𝑠𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

• d𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 𝑠𝑖𝑧𝑒 assumed to be equal to 𝑙𝑜𝑎𝑑 𝑝ℎ𝑎𝑠𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

• VM’s Memory(GB)

• Profiling LLC_misses.mem_write with linux perf tool

• No data of each VM’s memory write traffic

• Random mapping write traffic to VMs

• YCSB + DLRM mixed at different ratio 6:4 / 3:7
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Estimation of TRIM’s Effects in Real World 
(cont’)

• TRIM effect on CXL-Flash running VMs over time

• NT(No Trim): reaching a state fully occupied by fake valid data

• T(Trim): reduction in WAF
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Estimation of TRIM’s Effects in Real World 
(cont’)

• Memory Utilization : TRIM (T) vs. No TRIM (NT)

• Size of CXL-Flash (the max-memory simultaneously used): 22.75 GB

• Spare factor of CXL-Flash is set to 0.1

• CXL-Flash perceives available spaces are fully utilized beyond a certain point
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No Trim

Trim

Memory Utilization over time



Estimation of TRIM’s Effects in Real World 
(cont’)

• Average WAF in CXL-Flash running VMs

• WAF reduced by 11.56% on average, reaching a maximum of 19.69%
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Discussion

• Proper coordination is needed to prevent data loss

• Kernel must defer reallocating the TRIM-pending area until ACK is received

• Device must notify the kernel upon TRIM completion
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Discussion 

• Proper coordination is needed to prevent data loss

• Kernel must defer reallocating the TRIM-pending area until ACK is received

• Device must notify the kernel upon TRIM completion
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trim(4)

Kernel CXL-Flash

free(4)

alloc()

Coordinated out-of-order executio
n
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★ack(4)

alloc(4)

write
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My Tom is alive!

User



Conclusion

• Summary

• TRIM via CXL.io to invalidate fake valid data in CXL-Flash

• Near-exact extended analytical model for TRIM effect evaluation

• Demonstration of the necessity of TRIM on real-world scenarios using our model 

• TRIM-like mechanism is necessary for CXL-Flash!

• Synchronization issues should be considered

• Future work

• Identification of optimal host-side TRIM initiator and analysis of TRIM overhead

• Analysis of long-term impact of TRIM on memory performance and endurance in CXL-Flash

• Estimation of TRIM effectiveness via Workload- and GC policy-aware analytical model in real-world 

scenario
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