Adapting System Software to
Evolving Memory Architectures

NVRAMOS 25

Soongsil University

Eunji Lee

Contents

* Avoiding Pitfalls in Networked Key-Value Store for Tiered Memory
(CLOUD ’25)

* Revisiting Trim for CXL Memory (HotStorage 25)

;“5 ,; y N\
. ° RN
N “x . . -\ u
ls || \: Desr);) UFADU

Avoiding Pitfalls in Networked
Key-Value Store for Tiered Memory

IEEE CLOUD 25

'Seungmin Shin, 'Leeju Kim, 'Wookyung Lee, Eyee Hyun Nam, Seungmin Kim,
Bryan S. Kim, Sungjin Lee, Eunji Lee

1 Equal Contribution / Soongsil University

In-memory Key-value Store

* Critical component in modern applications

* Redis, Memcached, MemC3
* Maintain ALL data in memory (DRAM)

* Widely used in web/ML service providers

3 YouTube

facebook ,
@alr nb
NETFLIX Uber

Objects are Getting Larger!

* Size of data is increasing to several KB
* Object size distribution in CDN (provided by WineSOFT)

Image server

* Also evident in ML-based systems

Data size

E-commerce

* GPTCache leverages KVS to cache embedding vectors
=>» 64—128 bytes (2018) to 16KB (2024)

¢ UP2X a distributed KVS in Meta, handles profile data for Al/ML inferences

=» average object size of 3.6KB, some exceeding 100KB

Tiered Memory is Commonplace

* Memory capacity can no longer meet data-centric
application demands

* Proper data placement across heterogeneous
memory is becoming important

* hot/ cold separation

Compute
‘ E<press
Link -

* promotion / demotion / migration

Motivation

e KVS for Tiered Memory

KVS | Tmpl. | Performance Tier | Capacity Tier | Threshold
Tair-Pmem [10] Variant of Redis [11] Index Value, Index N/A
Pmem-redis [12] Variant of Redis [11] Index, Small value Large value 64 bytes
TieredMemDB [13] Variant of Redis [11] Index, Small value Large value 64 bytes
X-mem [14] Integrated into MemC3 [15] | Index, Small value Large value 64 bytes
BonsaiKV [16] Custom Index Index, Small value in log, Large value | 256 bytes
FlatStore [17] Custom Index, Small value in buffer Small value in log, Large value 256 bytes
ListDB [18] Custom Index, Value Index, Value N/A
Pmem-rocksdb [19] RocksDB [20] - Index, Value N/A
BadgerDB [21] Wisckey [22] Index, Small value Large value 4 KB
Memcached Extstore [23] | Memcached [24] Index Value N/A
Cachelib [25] Memcached [24] Index, Frequently accessed value | Less frequently accessed value N/A

TABLE I: Data placement policies in key-value stores for tiered memory.

* Empirical study with Redis as case study é redis

* Pmem-redis (developed by Intel) |
* Supermicro SYS-1029U-TRT l < 64B l >= 64B
 128GB DRAM/512GB DCPMM DRAM (inteD OPTANE

MEMORY

Connected with 56 Gb Ethernet %

Performance Analysis

* Get operations are nearly identical

* Set operations are significantly different — large-sized data suffers from serious
performance drop

GET SET Why??
2.5 2.5 T
s DRAM s DRAM
0 (=)] 9] I~ —~ m m [~ — ™~ = m =
15_ oo o (=1} o0 (=3} w o o~ o 15- ™~ [Ty (o =t M =1})
v W W o~ & & = o~ W N v < ™~ ™ < o 9 m . v
a 4 ~ 4 © ~ © v in W o N o o _oh o) _ca Mo
oo ™ =~ [Ta] I~ = (! Tyl = O M (=] w o o0 :
e 5 8 3 CI S N S 5 8 0 1 :
1.0 - 1.0 -
0.5 A 0.5 -
0.0 - 0.0 -
0255 1 2 4 8 16 32 64 0255 1 2 4 8 16 32 64

Value Size (KB) Value Size (KB)

Latency Breakdown

* 64KB data size, average latency of 40K Ops.

* Steps

2.

Fetch-to-dram : Read packets from kernel’s
socket buffer

Process-commmand : Parse and handle data
according to command

Mv-to-nvm : Copy the data to DCPMM
if data size exceed threshold

Reply-to-client : Send reply to cleint after
processing operations

Latency (us)

120

100 A

80 A

60 A

20 A

B 1-fetch-to-dram

B 2-process-command

B 3-mv-to-nvm
4-reply-to-client

2.19 2.13

DRAM PMEM
GET

Latency (us)

160 A
140 A
120 A
100 A
80 A
60 -
40 A
20 A

DRAM PMEM
SET

Latency Breakdown

* 64KB data size, average latency of 40K Ops.

* Steps

2.

Fetch-to-dram : Read packets from kernel’s
socket buffer

Process-commmand : Parse and handle data
according to command

Mv-to-nvm : Copy the data to DCPMM
if data size exceed threshold

Reply-to-client : Send reply to client after
processing operations

Latency (us)

120

100 A

80 A

60 A

20 A

B 1-fetch-to-dram

B 2-process-command

B 3-mv-to-nvm
4-reply-to-client

2.19 2.13

DRAM PMEM
GET

Latency (us)

160 A
140 A
120 A
100 A
80 A
60 -
40 A
20 A

DRAM PMEM
SET

Three Performance-Degrading Pitfalls

Fast Slow
) Transient Data Staging e
. . Final :
* Requests are delivered via the network, 5| pedis Stepi@
. : 3 Q :
encapsulated in packets in modern KVS puffef :

Ste 0

Sock
TCP/IP buﬁjr\

Device driver

* Determining final destination of a packet

step @

kernel

requires specific information (e.g. value size)

NIC
NIC buffer

* Socket interface hides these details
until packets reaches user space

* Data for other tiers is redundantly copied in DRAM!

Three Performance-Degrading Pitfalls

Fast Slow

2) Repetitive Kernel/User Crossings memory_ gnemory

 Unknown data size!

2 | Redis
* Heuristic buffer management
TCP/IP
« 16KB/ 128KB/ 32KB T
: : g | Device driver step @
* Reallocating and merging memory for ~
consecutive objects is costly NIC e

* Repetitive read system calls

Read invocation frequency

* Redis fixes read calls at 16 KB = 90001
§ 8000 -
X 7000 A

* Socket interface hides these details % 6000

© 5000 -

until packets reaches user space! -
£ 2000 -

= 1000 -

256B 512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB
Value Size

Three Performance-Degrading Pitfalls

3) Zero-write bomb!

Final

. dest
Redis

user

Query
buffer

©
Socket
TCP/IP b?lf‘f:r
Device driver step @

buffer

kernel

Three Performance-Degrading Pitfalls

3) Zero-write bomb!
* Memory initialization for anonymous pages

* Use memory-mapped file as a memory space in DCPMM
(posix ftruncate/mmap)

* Extending file size using posix fallocate
(by 2MB huge page)

* Page fault on first access causes physical block allocation
and hundreds of zero-writes to block device for
initialization!

Pmem-redis

memkind

PMDK

jemalloc

Ext4-DAX

[@@]

Software stack for DAX device

11us

Three Performance-Degrading Pitfalls

* 3) Zero-write bomb!

function cumulative (function-specific)

A
[do_page_ fault] 1lus (1.5us)

[handle_mm_fault] 9.5us (4.5us)

[alloc_pages_vma]5US (4.5us)

[page_add _new_anon_rmap] ©.5us (@.2us)

[lru_cache_add] 0.3us

(a) DRAM

1700us

4

function cumulative (function-specific)

[do_page fault] 1700us (1.2us)

[handle mm_fault | 1698.8us (1.3us)

[ext4_dax_huge_ fault] 1697.5us (10.8us)

[dax_iomap_fault] 1686.7us (21.3us)

[ext4 issue_zeroout]1562-4US (195.5u

__blkdev_issue_zero_pages]lélEiD

(b) DCPMM

@ 1000

2

>

&)

[o

@

T 1004

= - doeld l ki ol VY0 HEO Y iz

0 200 400 600 800 1000
Operations

X-redis

* PPF (Packet Peek and Forward)

* Peek at packets in kernel layer with eBPF

* Streamline data placement decisions on tiered memory

* OMA (Opportune Memory Allocator)

* Move zeroing off the critical path with opportune pre-initialization

PPF: Packet Peek and Forward

* Peek at packets in the kernel layer using Linux eBPF
* Get the information for data placement without popping
* Eliminate unnecessary data copies and read system calls

Fast Slow Fast Slow
memory memory memory memory

Step,€) _
. Final
. dest.
Redis ?

BPF

Final
dest

user

Redis

user

Query
buffer

Sock Socket map
ocket
_ TCP/IP o2 _ TCP/IP 2 e
c - . .
g | Device driver Step @ g | Device driver step @
NIC NIC
NIC buffer NIC buffer

Pmem-redis (w.o. PPF) X-redis (w. PPF)

PPF: Packet Peek and Forward

* BPF Component Type g (T eventioop)
- 11_ctl 11_ctl list
 BPF_PROG_TYPE_SOCKET_FILTER g PO U0 vt
° iN- E socket socket ket
Fully leverage in-kernel network layer ¢ [apr(usen | oed o7 oot) update/lookp
2
I
* BPF Map BPF map { info_a & | | info_afa]} I‘I’I‘I‘I@ ——
i o N =il e table
* Accessible to both user and kernel £ . e o= Q' logkup
. . % | BPF (kernel) [] X EE E
 Store value size and layout in eBPF map , T B] Socket buffer! |
dat | info_q pool
 BPF_MAP_TYPE_QUEUE (info_q) H transfer H connett ()

* BPF_MAP_TYPE_HASH (mapping table) e ek

PPF: Packet Peek and Forward

* Challenge |. Order of Packet Processing

* Information dequeued from Info-q must match packet waiting for processing
* Packet has no ID = Hard to match!

* Allocate an info-queue per socket using its port number upon connection establishment

@ PacketlInfo @ Packet Info
Read Mis;ato::! Pop Il Packet Data Read Match!. Pop dedicated queue HEl Packet Data
< — @«
§ Soclket Socket Socket esor 39-' Sotket Socket Sockefgﬁ -~ Infd-q Inf+-q Info-q
> HL B Ik ; =S H (m [0 [e] (@
_ | [o e e
2 - - | e— — w——
——BOEm——er Ao e
qE, - - a(’,BPF @ g - - ﬂwpp ? ’ ’
m 1™
~ H 'nm < q] F F
Socket Buffer Socket Buffer

Shared info-q Separate info-q per socket

PPF: Packet Peek and Forward

* Challenge 2. Concurrency control to shared eBPF map

* Dynamic allocation of info-q incurs R/W contention to mapping table

@ :’ event loop ! Shared data
- -+ |
?g epoll ctl() epoll_ctl() listen() structure:
a read() read() accept()
= —_—
§ socket socket socket
@ | BPF (user) | (port:3) (port: 7) (port: 3000y update /lookup
- L

BPF map i) / mapping
- i o) table
£ £3 Q2 kup
Q
= [0 —

| Bl Socket buffer

info_q pool

BPF (kernel) T

data E :
transfer conngtt()

[] data packet X
O control packet ! %

PPF: Packet Peek and Forward

* Challenge 2. Concurrency control to shared eBPF map

* Dynamic allocation of info-q incurs R/W contention to mapping table

Client Server Client Server Client Server

Listen Listen \ Listen
k k‘ Connect
A ' Accept Info-q allocation

Accept ccept

\ . drop! i
Request Request ' Request) Prevent conflicts

using rcu_read_lock

nfo-q
allocation
normal case normal case edge case
Packet arrives after Packet arrives before Packet arrives during

allocation allocation allocation

OMA: Opportune Memory Allocator

* Lump-sum approach — initialization all at boot time or deallocation

* Incur unnecessary writes / external fragmentation!

« OMA

* Continuously monitors memory usage

* Proactively allocates and initializes memory
before available free space is exhausted

* Integrated into jemalloc!

 Hard work

Arena

D :in-use

arena->bin-> runs (rb_tree)

mp AA-A

CHUNK_HEADER

CHUNK_HEADER arena -» runs_avail(rb_tree)

[Tt

..lrequested object

runs avail size

Internal structure of jemalloc

Evaluation

* Workloads
e Memtier Benchmark
e Twitter cache trace

e 8 threads

* Configurations

* D :Original Redis
P : Pmem-Redis (baseline)
D-DPDK : Original Redis with DPDK
P-DPDK :Pmem-redis with DPDK
X-PPF : P with PPF, without OMA
X-PPF+OMA : P with PPF and OMA (X-Redis)

Memtier Benchmark (SET)

* X-Redis outperforms P (Redis using DRAM and DCPMM) in all range

* Improve performance by 2.28x when value size reach 128KB

* X-Redis performs better than D/P-DPDK for large-sized writes

* Small-sized buffer of f-stack negatively impacts large write performance

* Single-threaded packet processing in DPDK when integrated into Redis

X-Redis
3 SET
D 1 D-DPDK

I P-DPDK [X-PPF | B X-PPF+OMA

~— (o] [{e]
= - «
<t w0 o
w [s2] (=]
w 0 [20]

O < N
1 n < I__ - I a0 I I g - s
0 -
256 512 1024 2048 4096 8192 16384

71360.41

Value Size (Bytes)

;

32768

65536 131072

Memtier Benchmark (GET)

* Performance differences across versions is marginal

* No performance penalty for read requests in X-Redis

GET X-Redis

I B P 1 D-DPDK I P-DPDK 3 X-PPF B X-PPF+OMA

111819.77
1111094.74
111051.02
§102940.58
93183.85
78356.61

256 512 1024 2048 4096 8192 16384 32768 65536 131072
Value Size (Bytes)

Twitter Cache Trace

| workload with small value size (cluster43)

4 workload with high set ratio (cluster8, cluster37, cluster49, cluster50)

Trace Category Key Size Avg. Value Size = SET:GET
* Mixed set and get operations C008 Computation 23B 18.2KB 50:50
C037 Computation 72B 16.4KB 27:63
C043 Computation 44B 1.9KB 50:50
C049 Storage 44B 25.4KB 43:57
C050 Computation 18B 67.8KB 48:52
cluster008 cluster037 cluster043 cluster049 cluster050
400 250
A 200 _ 40 a
X X % 150 X %
> 200 > by & o
g 1007 g so g so g g
0 L T T T T 0 T T T 0 T T T T
0 250 500 750 1,000 0 100 200 300 0 5 10 15 0 20 40 0 100 200
Data Size (KB) Data Size (KB) Data Size (KB) Data Size (KB) Data Size (KB)

Twitter Cache Trace

* X-Redis provides average 32.7% higher IOPS compared to P

* X-Redis shows performance degradation of only 3.7% compared to DRAM-

only redis
X-Redis
2.0 1 1 D B P [D-DPDK---- I P-DPDK---- [X-PPF-- |- I X-PPF+
- 5 2 -
& § R 2 N
0.5 1
0.0

cluster008 cluster037 cluster043 cluster049 cluster050

Conclusion

* Uncover pitfalls in networked tiered-memory KVS
* Unnecessary data fetches caused by limited socket interfaces

* Bulky block writes for on-demand memory initialization

* X-Redis — an enhanced KVS for tiered memory employing two techniques

* PPF: Packet Peek and Forward
* OMA: Opportune Memory Allocation

* Improve write performance substantially while mitigating latency spikes

* Not limited to specific configuration

e Memcached’s CachelLib / Extstore
* RDMA, CXL Memory, NUMA node

 Data size / other policies

NHotStorage

2025

Revisiting Trim for CXL Memory

Hayan Lee!, Jungwoo Kim2,Wookyung Lee!, Juhyung Park?, Sanghyuk Jungs,
Jinki Han3, Bryan S. Kim*, Sungjin Lee?, Eunji Lee'

'Soongsil University, 2DGIST, 3 Eeum, *Syracuse University, POSTECH

Contents

Background

Motivation

Trim for CXL-flash
* Design
* Analytical Model

Evaluation for real-world workloads

* Methodology
* Result

Conclusion

e Future work

l‘ l. Soongsil University

30

Rising Demand for High-capacity Memory in Al Era

* Fueled by data-centric and Al/ML applications

&S redis 0Q LLaMA &

~ .. deepsecek
<@®)’ Milvus O

* Memory disaggregation emerges as a key trend
* Realize scalable memory capacity by pooling distributed memory resources
* Interconnect technologies are attracting significant attention

l‘ 'l Soongsil University

CXL-Flash

flz 1 Il ol Il '
- Compute Express Link (CXL) mibabacon cisco. DUALEMC
* Driven by Intel (2019) facebook Google ?mg;mm
* Cache-coherent interconnect technology g\@ tel) B \icrosoft

* Enables multi hosts and devices to share
a common memory space

 CXL-enabled flash memory | ; n H G

* Provide high capacity CXL Switch(es)

CXLConsortium

* Hide long latency with intelligent prefetching
and data placement [T

CXL Attached Memory

* E.g.Samsung CMM-H EE MW e e G5 N EN ETm s

https://computeexpresslink.org/blog/explaining-cxl-memory-pooling-and-sharing-1049/

l‘ 'l Soongsil University

CXL-Flash

« CXLType 3 Device
« CXL.io/ CXL.mem protocols

* Accessed in cache-line units (i.e., 64B) by host processor

Type 3 Device

CXL.io/ CXL.mem

Host
Processor

l“' [Soongsil University

Challenges of CXL-Flash as Memory Module

When DRAM used

user

malloc() free()

Zero cost for retaining invalid data

l‘ 'l Soongsil University

34

Challenges of CXL-Flash as Memory Module

When CXL-Flash used

Buddy system

devi CXL-flash
evice
HEN N

l‘ 'l Soongsil University

35

Challenges of CXL-Flash as Memory Module

When CXL-Flash used

device
HEE - | -

Still valid!

l‘ 'l Soongsil University

36

Challenges of CXL-Flash as Memory Module

When CXL-Flash used

ker'nel Validity
mismatch

device
HEE - | -

Still valid!

l‘ 'l Soongsil University

37

Challenges of CXL-Flash as Memory Module

When CXL-Flash used

user

ker'nel Validity
mismatch

device

Still valid!
Will be copied during GC !

Need additional cost for invalid data!
* Write amplification problem

* Fatal to lifetime-limited flash

l‘ 'l Soongsil University

38

TRIM for Conventional SSD

 TRIM command

 Handle mismatch between file data and actual data on SSD

* Share validity information of data with the underlying device

rm “file C”

0s |

logical view ||

SSD

logical view

NN T

still valid

rm “fileC”

TRIM®--—----------------

=)

invalidated

l“' B soongsil university

Designing TRIM for CXL-Flash

 TRIM triggered by buddy system upon reclamation

* Privileged operation

* Asynchronously via CXL.io protocol

CPU

------------------- malloc() free() " Roox o .
(o]0} ompex ' I
kernel
(Buddy system) | TRIN TRIM via CXL.io
. Notify - freed! e
viaCXL.io~ —
£z .
CXL-flash /m mapping table L \
device S ® 200 |1 900 |o Page 0
-.. 7 - £ H_I- 100 |I1l30 | Page |
% [762 [1][e05 | S
@ Valid bit /

l‘t' B soongsil university

40

Difficulties in Assessing TRIM Impact

 Simulation/emulation are not suitable for CXL-Flash

* Hard to capture traces during meaningful time window
* Excessive memory access

* # of Memory access > # of Storage access

* Emulators suffer from limited functionality or slow execution
ﬁﬁ MemVerge

* OpenCIS, Flight Simulator, CXLMemSim
* NUMA emulation

* Hard to conduct measurement study

¢ CXL-compliant devices have limited availability
* Profiling TRIM-related operations is challenging

o

) @&
4

OpenCIS

l‘ 'l Soongsil University

41

Analytic Model for CXL-flash

* Previous work: Analytic Modeling of SSD Write Performance (SYSTOR’ 12)

* Modeling write amplification based on overprovisioning ratio with LRU cleaning policy

* No considerations on TRIM command = st M|
s rate A A(WAF) = L AR ALS
(N, —EW)] « mrtzz
h— — Out
R o N,
E o : : : 2 valid pages = T
o e will be copied 1\4
:_____' I__-_: I__-_: Np _(1 - UNp) Np
ﬂ Cleaning Al &0 valid page =2 7| S4%f
Queue Eviction
position 1 -
s

(overprovisioning ratio a)

2
l‘ ll Soongsil University

Our Analytic Model for CXL-flash

* Extend analytical model to support TRIM

* New terminology D,: ratio of Trim traffic to write traffic

* Write amplification(A) prediction using # of valid pages in block

In —

write E
N

TRIM “

4

Eviction
position

— Out

Our model:

A=

TRIM o &

l‘ ll Soongsil University

43

Our Analytic Model for CXL-flash

- @Yo Z84... e

‘—__”

—_

U2®? > poges) 4ok Yl mag) (4mB 4K pue
e
AU 30l Saske S 43

==

'-i}/vef"l".a-- The solution +o the equation
| dt=brtc ® ¢
|!‘1’

c
F QAR)by
— \Un (L %

l“l [Soongsil University

44

Our Analytic Model for CXL-flash

* Extend analytical model to support TRIM

* New terminology D,: ratio of Trim traffic to write traffic

* Write amplification(A) prediction using # of valid pages in block

In— _____ R | T e | — Out Our model:
B o No page A(WAF) =
! : : : [~ TRIM | : to be copied!
Loood Lo Lo
Queue Eviction
position

Higher chance that pages in block get invalidated
than the original model

(44

_ —a(1+D,)
a+W(a(l+D,)e)

1+ D,

(overprovisioning ratio o)

l‘ 'l Soongsil University

45

Validation of Analytical Model

« Comparison between modeled(M) and simulated(S) WAF

* Methodology

* Implement TRIM command in FTLSim (systor’ 12)
* 10° logical blocks, 128 pages per block

* Synthetic workloads

* (1) Write entire logical space for warm-up
¢ (2) Uniformly distributed writes (1/3 of total capacity)
+ TRIM issued every 10 writes (D)

~

Write Amplification (A)

-

[«)]
1

(9]
!

-
1

w
Il

N
1

=== M(Dr=0.0)

=== M(Dr=0.1)

M (Dr=0.2)

=== M (Dr=0.3)

1x

—e— S (Dr=0.0)

1x —e— S (Dr=0.1)

0.53 S(Dr=0.2)

X
s ~ 1x —0.

=TI 0.65x e, oo Sor=03)
0.39x TS Em—___ 0.7 \‘\L_\ 1x

—— O 51X ioﬁ_%;z‘::;;-—‘—“—*ar_.‘-,t_'_“::-‘
0.32x 0.44x 0.54x QBlx U
0.10 0.15 0.20 0.25 0.30

_T-U
Spare factor (Sf=—=+=)

l‘ ll Soongsil University

46

Validation of Analytical Model

« Comparison between modeled(M) and simulated(S) WAF

* Methodology

* Implement TRIM command in FTLSim (systor’ 12) === M(Dr=0.0)
| <6 ~~= M(D;=0.1)

* 10° logical blocks, 128 pages per block z M - M(D,=02)
. 2 54 ~== M (Dr=0.3)

* Synthetic workloads s —— S(D;=0.0)
. : : : = —— S(Dr=0.1)

(1) Write entire logical space for warm-up e 5 o

¢ (2) Uniformly distributed writes (1/3 of total capacity) ; B S(Dr=0.3)

+ TRIM issued every 10 writes (D) S, 1x
Lo e

0.10 0.15 0.20 0.25 0.30

_T-U
Spare factor (Sf=—=+=)

l‘ ll Soongsil University

Validation of Analytical Model

« Comparison between modeled(M) and simulated(S) WAF

* Methodology

* Implement TRIM command in FTLSim (systor’ 12) =w= M{(Dp=0.0)
: <6 ~~= M(D;=0.1)
* 10° logical blocks, 128 pages per block = M (Dr=0.2)
. 2 54 ~== M (Dr=0.3)
* Synthetic workloads s —— S(D;=0.0)
E 4 | == r=Vu.
* (1) Write entire logical space for warm-up e 1x zig =g;))
* (2) Uniformly distributed writes (1/3 of total capacity) T B I‘S/I'O'53X 0.65x 2 S (Dr=0.3)
: : £ [Mosox : 0.72x X
+ TRIM issued every 10 writes (D) S 2 MSIX == ;X
. 59'32" 0.44x 0.54x 0.61x ~T7x
0.10 0.15 0.20 0.25 0.30

Spare factor (S¢=T7Y)

l‘ ll Soongsil University

Validation of Analytical Model

« Comparison between modeled(M) and simulated(S) WAF

* Methodology

* Implement TRIM command in FTLSim (systor’ 12)
* 10° logical blocks, 128 pages per block
* Synthetic workloads

* (1) Write entire logical space for warm-up

¢ (2) Uniformly distributed writes (1/3 of total capacity)
+ TRIM issued every 10 writes (D)

Write Amplification (A)

=== M(Dr=0.0)

== M(Dr=0.1)
M (Dr=0.2)
Closely aligned! -~- M(Dr=0.3)
—— S (D;=0.0)
Ix —— S(D;=0.1)
S (Dr=0.2)
Mo.53x
1 'ed: 1x =
I‘S’I 0.65x 1 S(Dr=0.3)
0.39x 0.72x 2
7 Sw 1x
M ——=zs, 0.6X
S —
,0'32X 0',44" 0.54x 0.61x —0.7x
0.10 0.15 0.20 0.25 0.30

Spare factor (S¢=T7Y)

l‘ ll Soongsil University

49

Estimation of TRIM’s Effects in Real World

* Data centers running numerous VMs the need for CXL-Flash stands out most.

* Microsoft Azure VM Traces 5000 VMs sampled

* Each VM’s Lifetime, Memory (GB)
* YCSB (A-F) / DLRM (Train/Infer)

* TRIM is issued upon VM termination

(VMI VM2
10GB 5GB ..
Termir:ted Terminated Terminated

\/ N6 M

TRIM TRIM TRIM
y y

VM4999) (VM5000)
= [|I5GB 2GB

J

l‘ l [Soongsil University

Estimation of TRIM’s Effects in Real World

(cont’)

a
* Our model: A4 =
W(—a(1+D)e-a1+Dr), WK A B C D E F TR F
a+ 14D R 262 296 226 524 79 190 1200 380
r W 147 154 94 388 40 101 500 267
discarded size
* Definedas D, =
r load phase traf fic + runtime phase traf fic Memory access traffic (MB/s)
* discarded size assumed to be equal to load phase traf fic
* VM’s Memory(GB) D. = 15 — 0.05
o1 " 154 0.5%500 '
* Profiling LLC_misses.mem_write with linux perf tool load-phase
(initialize for 15GB)
* No data of eachVM’s memory write traffic | birwtran /
VMs 7
* Random mapping write traffic toVMs Vi o GBallocated fo VA

500s

* YCSB + DLRM mixed at different ratio 6:4/ 3:7 T htime-phase

i runtime-phase

15GB discard
15GB

>Time (s)

l‘ l [Soongsil University 51

Estimation of TRIM’s Effects in Real World

(cont’)

* TRIM effect on CXL-Flash running VMs over time

* NT(No Trim): reaching a state fully occupied by fake valid data

* T(Trim): reduction in WAF

YCSB (30%) / DLRM (70%)

1000

2000 3000 4000

Time (s)

5000

WA
= N W sn

VMs

VM4999 | 15 GB

YCSB-A

vM5000 [1068w TRIM!

DLRM-Train

‘/TRIM!

YCSB-F

VM2 /TRIM!

DLRM-Infer

vM1[T7GB s TV

YCSB (30%) / DLRM (70%)

Time (s)

> benefit area

Time (s)

1000 2000 3000 4000 5000

l‘ ll Soongsil University

52

Estimation of TRIM’s Effects in Real World
(cont’)

* Memory Utilization : TRIM (T) vs. NoTRIM (NT)
* Size of CXL-Flash (the max-memory simultaneously used): 22.75 GB
* Spare factor of CXL-Flash is set to 0.1

* CXL-Flash perceives available spaces are fully utilized beyond a certain point

YCSB (30%) / DLRM (70%)

1.0 4 §_¥— —x-x—x—x-u—st--se—u---x-x-x-m/v No Trim
=
i [

0.8 - == NT

- T — .
3-2 > Trim
0.2 1
0.0

Mem.Utilization

0 1000 2000 3000 4000 5000
Time (s)

Memory Utilization over time

l‘ ll Soongsil University

Estimation of TRIM’s Effects in Real World

(cont’)

* Average WAF in CXL-Flash runningVMs
* WAF reduced by 11.56% on average, reaching a maximum of 19.69%

YCSB (60%) / DLRM (40%) YCSB (30%) / DLRM (70%)

— 1 NT 1 NT
/T /T

0 i (

0.10 0.15 0.20 0.25 0.30 0.10 0.15 0.20 0.25 0.30
Spare Factor Spare Factor

N
|
N
1

N
1
N
I

WAF (Average)
I
WAF (Average)

l‘ l [Soongsil University

54

Discussion

* Proper coordination is needed to prevent data loss

* Kernel must defer reallocating the TRIM-pending area until ACK is received

* Device must notify the kernel upon TRIM completion

User Kernel
free(4)

alloc()

alloc(4)

write
(4, “Tom»)

CXL-Flash
1pn 4
“Amy”: Valid
trim(4)
“Amy”: Invalid
“Tom”: Valid

Newly written data

In-order execution

User

Kernel
free(4)

alloc()

alloc(4)

write
(4, “Tom™)

CXL-Flash

trim(4)

lpn 4
“Amy”’: Valid

Where’s my Tom?

\\\\ “Tom™: Valid (_

“Tom”: Invalid

Out-of-order execution

l‘ 'l Soongsil University

55

Discussion

* Proper coordination is needed to prevent data loss

* Kernel must defer reallocating the TRIM-pending area until ACK is received

* Device must notify the kernel upon TRIM completion

User Kernel
free(4)

alloc()

alloc(4)

write
(4, “Tom™)

CXL-Flash

trim(4)

*ack(4)

lpn 4
“Amy”’, Valid

“Amy”, Invalid

My Tom is alive!

~~
“Tom”, Valid -

Coordinated out-of-order executio

l‘ ll Soongsil University

56

Conclusion

* Summary
* TRIM via CXL.io to invalidate fake valid data in CXL-Flash
* Near-exact extended analytical model for TRIM effect evaluation
* Demonstration of the necessity of TRIM on real-world scenarios using our model

* TRIM-like mechanism is necessary for CXL-Flash!

* Synchronization issues should be considered

* Future work
* ldentification of optimal host-side TRIM initiator and analysis of TRIM overhead
* Analysis of long-term impact of TRIM on memory performance and endurance in CXL-Flash

 Estimation of TRIM effectiveness via Workload- and GC policy-aware analytical model in real-world
scenario

l‘ ll Soongsil University

57

	Slide 1: Adapting System Software to Evolving Memory Architectures
	Slide 2: Contents
	Slide 3: Avoiding Pitfalls in Networked Key-Value Store for Tiered Memory
	Slide 4: In-memory Key-value Store
	Slide 5: Objects are Getting Larger!
	Slide 6: Tiered Memory is Commonplace
	Slide 7: Motivation
	Slide 8: Performance Analysis
	Slide 9: Latency Breakdown
	Slide 10: Latency Breakdown
	Slide 11: Three Performance-Degrading Pitfalls
	Slide 12: Three Performance-Degrading Pitfalls
	Slide 13: Three Performance-Degrading Pitfalls
	Slide 14: Three Performance-Degrading Pitfalls
	Slide 15: Three Performance-Degrading Pitfalls
	Slide 16: X-redis
	Slide 17: PPF: Packet Peek and Forward
	Slide 18: PPF: Packet Peek and Forward
	Slide 19: PPF: Packet Peek and Forward
	Slide 20: PPF: Packet Peek and Forward
	Slide 21: PPF: Packet Peek and Forward
	Slide 22: OMA: Opportune Memory Allocator
	Slide 23: Evaluation
	Slide 24: Memtier Benchmark (SET)
	Slide 25: Memtier Benchmark (GET)
	Slide 26: Twitter Cache Trace
	Slide 27: Twitter Cache Trace
	Slide 28: Conclusion
	Slide 29: Revisiting Trim for CXL Memory
	Slide 30: Contents
	Slide 31: Rising Demand for High-capacity Memory in AI Era
	Slide 32: CXL-Flash
	Slide 33: CXL-Flash
	Slide 34: Challenges of CXL-Flash as Memory Module
	Slide 35: Challenges of CXL-Flash as Memory Module
	Slide 36: Challenges of CXL-Flash as Memory Module
	Slide 37: Challenges of CXL-Flash as Memory Module
	Slide 38: Challenges of CXL-Flash as Memory Module
	Slide 39: TRIM for Conventional SSD
	Slide 40: Designing TRIM for CXL-Flash
	Slide 41: Difficulties in Assessing TRIM Impact
	Slide 42: Analytic Model for CXL-flash
	Slide 43: Our Analytic Model for CXL-flash
	Slide 44: Our Analytic Model for CXL-flash
	Slide 45: Our Analytic Model for CXL-flash
	Slide 46: Validation of Analytical Model
	Slide 47: Validation of Analytical Model
	Slide 48: Validation of Analytical Model
	Slide 49: Validation of Analytical Model
	Slide 50: Estimation of TRIM’s Effects in Real World
	Slide 51: Estimation of TRIM’s Effects in Real World (cont’)
	Slide 52: Estimation of TRIM’s Effects in Real World (cont’)
	Slide 53: Estimation of TRIM’s Effects in Real World (cont’)
	Slide 54: Estimation of TRIM’s Effects in Real World (cont’)
	Slide 55: Discussion
	Slide 56: Discussion
	Slide 57: Conclusion

