
Adapting System Software to
Evolving Memory Architectures

NVRAMOS ‘25

Soongsil University

Eunji Lee

Contents

• Avoiding Pitfalls in Networked Key-Value Store for Tiered Memory

(CLOUD ’25)

• Revisiting Trim for CXL Memory (HotStorage ‘25)

Avoiding Pitfalls in Networked
Key-Value Store for Tiered Memory

IEEE CLOUD ‘25

1Seungmin Shin, 1Leeju Kim, 1Wookyung Lee, Eyee Hyun Nam, Seungmin Kim,

Bryan S. Kim, Sungjin Lee, Eunji Lee

1 Equal Contribution / Soongsil University

In-memory Key-value Store

• Critical component in modern applications

• Redis, Memcached, MemC3

• Maintain ALL data in memory (DRAM)

• Widely used in web/ML service providers

Objects are Getting Larger!

• Size of data is increasing to several KB

• Object size distribution in CDN (provided by WineSOFT)

• Also evident in ML-based systems

• GPTCache leverages KVS to cache embedding vectors

➔ 64–128 bytes (2018) to 16KB (2024)

• UP2X, a distributed KVS in Meta, handles profile data for AI/ML inferences

➔ average object size of 3.6KB, some exceeding 100KB

Tiered Memory is Commonplace

• Memory capacity can no longer meet data-centric

application demands

• Proper data placement across heterogeneous

memory is becoming important

• hot / cold separation

• promotion / demotion / migration

Motivation

• KVS for Tiered Memory

• Empirical study with Redis as case study

• Pmem-redis (developed by Intel)

• Supermicro SYS-1029U-TRT

• 128GB DRAM / 512GB DCPMM

• Connected with 56 Gb Ethernet

DRAM

< 64B >= 64B

Performance Analysis

• Get operations are nearly identical

• Set operations are significantly different – large-sized data suffers from serious

performance drop
SETGET Why??

Latency Breakdown

• 64KB data size, average latency of 40K Ops.

• Steps

1. Fetch-to-dram : Read packets from kernel’s

socket buffer

2. Process-command : Parse and handle data

according to command

3. Mv-to-nvm : Copy the data to DCPMM

if data size exceed threshold

4. Reply-to-client : Send reply to cleint after

processing operations

Latency Breakdown

• 64KB data size, average latency of 40K Ops.

• Steps

1. Fetch-to-dram : Read packets from kernel’s

socket buffer

2. Process-command : Parse and handle data

according to command

3. Mv-to-nvm : Copy the data to DCPMM

if data size exceed threshold

4. Reply-to-client : Send reply to client after

processing operations

Three Performance-Degrading Pitfalls

1) Transient Data Staging

• Requests are delivered via the network,

encapsulated in packets in modern KVS

• Determining final destination of a packet

requires specific information (e.g. value size)

• Socket interface hides these details

until packets reaches user space

• Data for other tiers is redundantly copied in DRAM!

Three Performance-Degrading Pitfalls

2) Repetitive Kernel/User Crossings

• Unknown data size!

• Heuristic buffer management

• 16KB / 128KB / 32KB

• Reallocating and merging memory for

consecutive objects is costly

• Repetitive read system calls

• Redis fixes read calls at 16 KB

• Socket interface hides these details

until packets reaches user space!

Three Performance-Degrading Pitfalls

3) Zero-write bomb!

Three Performance-Degrading Pitfalls

3) Zero-write bomb!

• Memory initialization for anonymous pages

• Use memory-mapped file as a memory space in DCPMM

(posix_ftruncate/mmap)

• Extending file size using posix_fallocate

(by 2MB huge page)

• Page fault on first access causes physical block allocation

and hundreds of zero-writes to block device for

initialization!

PMDK
memkind

Pmem-redis

DCPMM / CXL Device

jemalloc

Ext4-DAX

Software stack for DAX device

Three Performance-Degrading Pitfalls

• 3) Zero-write bomb!

X-redis

• PPF (Packet Peek and Forward)

• Peek at packets in kernel layer with eBPF

• Streamline data placement decisions on tiered memory

• OMA (Opportune Memory Allocator)

• Move zeroing off the critical path with opportune pre-initialization

PPF: Packet Peek and Forward

• Peek at packets in the kernel layer using Linux eBPF

• Get the information for data placement without popping

• Eliminate unnecessary data copies and read system calls

Pmem-redis (w.o. PPF) X-redis (w. PPF)

PPF: Packet Peek and Forward

• BPF Component Type

• BPF_PROG_TYPE_SOCKET_FILTER

• Fully leverage in-kernel network layer

• BPF Map

• Accessible to both user and kernel

• Store value size and layout in eBPF map

• BPF_MAP_TYPE_QUEUE (info_q)

• BPF_MAP_TYPE_HASH (mapping table)
PPF Framework Overview

PPF: Packet Peek and Forward

• Challenge 1. Order of Packet Processing

• Information dequeued from Info-q must match packet waiting for processing

• Packet has no ID → Hard to match!

• Allocate an info-queue per socket using its port number upon connection establishment

2

4

Packet Info

Packet Data

K
e

rn
e

l
U

se
r

4

3

2

1

Socket Buffer

Pop

Info-q

Mismatch!
Read

1

2

3

4

Packet Info

Packet Data

K
e

rn
e

l
U

se
r

4

3

2

1

Socket Buffer

Read
Match! Pop dedicated queue

Socket Socket Socket Socket Socket Socket Info-q Info-q Info-q

Shared info-q Separate info-q per socket

PPF: Packet Peek and Forward

• Challenge 2. Concurrency control to shared eBPF map

• Dynamic allocation of info-q incurs R/W contention to mapping table

Shared data

structure!

PPF: Packet Peek and Forward

• Challenge 2. Concurrency control to shared eBPF map

• Dynamic allocation of info-q incurs R/W contention to mapping table

ServerClient

Listen

Connect

Accept

Info-q allocation

Request

ServerClient

Listen

Info-q allocation

Connect

Accept

Request Prevent conflicts

using rcu_read_lock

normal case
edge case

Packet arrives after

allocation

ServerClient

Listen

Connect

Accept

Info-q

allocation

Request

normal case

Packet arrives before

allocation

.

.

.

.

.

drop!

Packet arrives during

allocation

OMA: Opportune Memory Allocator

• Lump-sum approach – initialization all at boot time or deallocation

• Incur unnecessary writes / external fragmentation!

• OMA

• Continuously monitors memory usage

• Proactively allocates and initializes memory

before available free space is exhausted

• Integrated into jemalloc!

• Hard work

Internal structure of jemalloc

Evaluation

• Workloads

• Memtier Benchmark

• Twitter cache trace

• 8 threads

• Configurations

• D : Original Redis

• P : Pmem-Redis (baseline)

• D-DPDK : Original Redis with DPDK

• P-DPDK : Pmem-redis with DPDK

• X-PPF : P with PPF, without OMA

• X-PPF+OMA : P with PPF and OMA (X-Redis)

Memtier Benchmark (SET)

• X-Redis outperforms P (Redis using DRAM and DCPMM) in all range

• Improve performance by 2.28x when value size reach 128KB

• X-Redis performs better than D/P-DPDK for large-sized writes

• Small-sized buffer of f-stack negatively impacts large write performance

• Single-threaded packet processing in DPDK when integrated into Redis

OMA

X-Redis

Memtier Benchmark (GET)

• Performance differences across versions is marginal

• No performance penalty for read requests in X-Redis

OMA

X-Redis

Twitter Cache Trace

• 4 workload with high set ratio (cluster8, cluster37, cluster49, cluster50)

• 1 workload with small value size (cluster43)

• Mixed set and get operations

Twitter Cache Trace

• X-Redis provides average 32.7% higher IOPS compared to P

• X-Redis shows performance degradation of only 3.7% compared to DRAM-

only redis

X-Redis

Conclusion

• Uncover pitfalls in networked tiered-memory KVS

• Unnecessary data fetches caused by limited socket interfaces

• Bulky block writes for on-demand memory initialization

• X-Redis – an enhanced KVS for tiered memory employing two techniques

• PPF: Packet Peek and Forward

• OMA: Opportune Memory Allocation

• Improve write performance substantially while mitigating latency spikes

• Not limited to specific configuration

• Memcached’s CacheLib / Extstore

• RDMA, CXL Memory, NUMA node

• Data size / other policies

Revisiting Trim for CXL Memory

Hayan Lee1, Jungwoo Kim2, Wookyung Lee1, Juhyung Park2, Sanghyuk Jung3,

Jinki Han3, Bryan S. Kim4, Sungjin Lee5, Eunji Lee1

1Soongsil University, 2DGIST, 3 Eeum, 4Syracuse University, 5POSTECH

Contents

• Background

• Motivation

• Trim for CXL-flash

• Design

• Analytical Model

• Evaluation for real-world workloads

• Methodology

• Result

• Conclusion

• Future work

30

Rising Demand for High-capacity Memory in AI Era

• Fueled by data-centric and AI/ML applications

• Memory disaggregation emerges as a key trend

• Realize scalable memory capacity by pooling distributed memory resources

• Interconnect technologies are attracting significant attention

31

CXL-Flash

• Compute Express Link (CXL)

• Driven by Intel (2019)

• Cache-coherent interconnect technology

• Enables multi hosts and devices to share

a common memory space

• CXL-enabled flash memory

• Provide high capacity

• Hide long latency with intelligent prefetching

and data placement

• E. g. Samsung CMM-H

32

https://computeexpresslink.org/blog/explaining-cxl-memory-pooling-and-sharing-1049/

CXL Consortium

• CXL Type 3 Device

• CXL.io / CXL.mem protocols

• Accessed in cache-line units (i.e., 64B) by host processor

CXL-Flash

33

Type 3 Device

CXL-flash

CXL.io / CXL.mem

Main

Memory

Host

Processor

Mem

Mem Mem

Challenges of CXL-Flash as Memory Module

34

When DRAM used

V V V F V F

Buddy system

app A app B app C
user

kernel

device

app A app B app C
user

DRAM

free()

Buddy system

kernel

device
CXL-flash

malloc()

V V F F V F

V V V F V F

V V V F V F

freed!

Free page

free()malloc()

Zero cost for retaining invalid data

Challenges of CXL-Flash as Memory Module

35

When DRAM used When CXL-Flash used

Zero cost for retaining invalid data

V V V F V F

Buddy system

app A app B app C
user

kernel

device

app A app B app C
user

DRAM

Buddy system

kernel

device
CXL-flash

V V F F V F

V V V F V F

V V V F V F

freed!

Free page

free()malloc() free()malloc()

Challenges of CXL-Flash as Memory Module

36

When DRAM used When CXL-Flash used

Zero cost for retaining invalid data

V V V F V F

Buddy system

app A app B app C
user

kernel

device

app A app B app C
user

DRAM

Buddy system

kernel

device
CXL-flash

V V F F V F

V V V F V F

V V V F V F

freed! freed!

Free page Still valid!

free()malloc()free()malloc()

Challenges of CXL-Flash as Memory Module

37

When DRAM used When CXL-Flash used

V V V F V F

Buddy system

app A app B app C
user

kernel

device

app A app B app C
user

DRAM

Buddy system

kernel

device
CXL-flash

V V F F V F

V V V F V F

V V V F V F

freed! freed!

Free page Still valid!

Validity

mismatch

Zero cost for retaining invalid data

free()malloc()free()malloc()

Challenges of CXL-Flash as Memory Module

38

When DRAM used When CXL-Flash used

V V V F V F

Buddy system

app A app B app C

Need additional cost for invalid data!

• Write amplification problem

• Fatal to lifetime-limited flash

user

kernel

device

app A app B app C
user

DRAM

Buddy system

kernel

device
CXL-flash

Will be copied during GC !

V V F F V F

V V V F V F

V V V F V F

freed! freed!

Free page Still valid!

Validity

mismatch

free()malloc()free()malloc()

Zero cost for retaining invalid data

• TRIM command

• Handle mismatch between file data and actual data on SSD

• Share validity information of data with the underlying device

TRIM for Conventional SSD

39

file A file B

file C file D

free space

OS

logical view

SSD

logical view

A1 A2 B1 B2

C1 C2 D1 D2

file A file B

file D

A1 A2 B1 B2

C1 C2 D1 D2

file A file B

file D

A1 A2 B1 B2

D1 D2

rm “file C”

still valid

TRIM

rm “fileC”

invalidated

Designing TRIM for CXL-Flash

• TRIM triggered by buddy system upon reclamation

• Privileged operation

• Asynchronously via CXL.io protocol

40

C
X

L
-
fl

a
s

h

CPU

Root Complex

TRIM via CXL.io

Host

Memory

…
Page 0

Page 1

Page 2

Page 3

mapping table

200 1

100 1

81 1

762 1

TRIM (lpn,length)

900 0

30 1

999 1

605 1

app A app B app C
user

free()

(Buddy system)
kernel

device
CXL-flash

malloc()

V V V F V F

V V IV F V F

freed!

Invalidate!

Notify

via CXL.io

Valid bit

Difficulties in Assessing TRIM Impact

• Simulation/emulation are not suitable for CXL-Flash

• Hard to capture traces during meaningful time window

• Excessive memory access

• # of Memory access ⋙ # of Storage access

• Emulators suffer from limited functionality or slow execution

• OpenCIS, Flight Simulator, CXLMemSim

• NUMA emulation

• Hard to conduct measurement study

• CXL-compliant devices have limited availability

• Profiling TRIM-related operations is challenging

41

CMM-H

Analytic Model for CXL-flash

• Previous work: Analytic Modeling of SSD Write Performance (SYSTOR’ 12)

• Modeling write amplification based on overprovisioning ratio with LRU cleaning policy

• No considerations on TRIM command

42

…

rate A

In Out

Queue

2 valid pages

will be copied

valid

write

valid

Eviction

position

𝑨 𝑊𝐴𝐹 =
𝑁𝑝

𝑁𝑝 − 𝐸(𝑣)

=
𝑁𝑝

𝑁𝑝 − 1 −
1

𝑈𝑁𝑝

𝑇𝑁𝑝
𝐴

𝑁𝑝

 =
1

1 −(1 – 1

𝑈𝑁𝑝

))
𝑇𝑁𝑝

𝐴

총 발생한 쓰기량

실제 사용
자가 쓴 량

Cleaning 시점에 valid page 수의기댓값

A(𝑊𝐴𝐹) =
𝜶

𝜶 +𝑾(−𝜶𝒆−𝜶)

Lambert’s W 함수를
이용해 풀면..

(overprovisioning ratio α)

Our Analytic Model for CXL-flash

• Extend analytical model to support TRIM

• New terminology 𝐷𝑟 : ratio of Trim traffic to write traffic

• Write amplification(A) prediction using # of valid pages in block

43

…

rate A

In Out

Queue

write

TRIM

Eviction

position

Our model:

TRIM 이 발생하면
invalidate 될 확률이 증가

Our Analytic Model for CXL-flash

• 협업의 중요성…

44

Our Analytic Model for CXL-flash

• Extend analytical model to support TRIM

• New terminology 𝐷𝑟 : ratio of Trim traffic to write traffic

• Write amplification(A) prediction using # of valid pages in block

45

…

rate A

In Out

Queue

write

No page

to be copied!TRIM

Higher chance that pages in block get invalidated

than the original model

Our model:

𝑨(𝑊𝐴𝐹) =
𝜶

𝜶+
𝑾(−𝜶 𝟏 +𝑫𝒓 𝒆−𝜶 𝟏+𝑫𝒓)

𝟏 +𝑫𝒓

(overprovisioning ratio α)
Eviction

position

Validation of Analytical Model

46

• Comparison between modeled(M) and simulated(S) WAF

• Methodology

• Implement TRIM command in FTLSim (SYSTOR’ 12)

• 106 logical blocks, 128 pages per block

• Synthetic workloads

• ⑴Write entire logical space for warm-up

• ⑵ Uniformly distributed writes (1/3 of total capacity)

+ TRIM issued every 10 writes (𝐷𝑟)

0.53x

0.39x

1x

0.32x

0.65x

0.51x

0.44x

1x

1x

0.72x

0.6x

0.54x

1x

0.61x

1x

0.7x

Validation of Analytical Model

47

0.53x

0.39x

1x

0.32x

0.65x

0.51x

0.44x

1x

1x

0.72x

0.6x

0.54x

1x

0.61x

1x

0.7x

M

M

M

M

• Comparison between modeled(M) and simulated(S) WAF

• Methodology

• Implement TRIM command in FTLSim (SYSTOR’ 12)

• 106 logical blocks, 128 pages per block

• Synthetic workloads

• ⑴Write entire logical space for warm-up

• ⑵ Uniformly distributed writes (1/3 of total capacity)

+ TRIM issued every 10 writes (𝐷𝑟)

M

M

M

M

Validation of Analytical Model

48

0.53x

0.39x

1x

0.32x

0.65x

0.51x

0.44x

1x

1x

0.72x

0.6x

0.54x

1x

0.61x

1x

0.7x

S

S

S

S

• Comparison between modeled(M) and simulated(S) WAF

• Methodology

• Implement TRIM command in FTLSim (SYSTOR’ 12)

• 106 logical blocks, 128 pages per block

• Synthetic workloads

• ⑴Write entire logical space for warm-up

• ⑵ Uniformly distributed writes (1/3 of total capacity)

+ TRIM issued every 10 writes (𝐷𝑟)

M

M

M

M

Validation of Analytical Model

• Comparison between modeled(M) and simulated(S) WAF

• Methodology

• Implement TRIM command in FTLSim (SYSTOR’ 12)

• 106 logical blocks, 128 pages per block

• Synthetic workloads

• ⑴Write entire logical space for warm-up

• ⑵ Uniformly distributed writes (1/3 of total capacity)

+ TRIM issued every 10 writes (𝐷𝑟)

49

0.53x

0.39x

1x

0.32x

0.65x

0.51x

0.44x

1x

1x

0.72x

0.6x

0.54x

1x

0.61x

1x

0.7x

S

S

S

S

Closely aligned!

Estimation of TRIM’s Effects in Real World

• Data centers running numerous VMs the need for CXL-Flash stands out most.

• Microsoft Azure VM Traces 5000 VMs sampled

• Each VM’s Lifetime, Memory (GB)

• YCSB (A-F) / DLRM (Train/Infer)

• TRIM is issued upon VM termination

50

CXL-Flash

Host OS (buddy system)

・・・

VM2 VM4999 VM5000VM1

10GB 5GB 15GB 2GB

TRIM TRIMTRIM

Terminated Terminated Terminated

Estimation of TRIM’s Effects in Real World
(cont’)

• Our model: 𝑨 =
𝜶

𝜶+
𝑾(−𝜶 𝟏+𝑫𝒓 𝒆−𝜶 𝟏+𝑫𝒓)

𝟏+𝑫𝒓

• Defined as 𝐷𝑟 =
𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 𝑠𝑖𝑧𝑒

𝑙𝑜𝑎𝑑 𝑝ℎ𝑎𝑠𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 + 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑝ℎ𝑎𝑠𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

• d𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 𝑠𝑖𝑧𝑒 assumed to be equal to 𝑙𝑜𝑎𝑑 𝑝ℎ𝑎𝑠𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

• VM’s Memory(GB)

• Profiling LLC_misses.mem_write with linux perf tool

• No data of each VM’s memory write traffic

• Random mapping write traffic to VMs

• YCSB + DLRM mixed at different ratio 6:4 / 3:7

51

Time (s)

15 GB allocated to VM
VMs

DLRM-Train

CXL-Flash

Host OS (buddy system)

load-phase

(initialize for 15GB)

15GB

runtime-phase

discard

15GB

VM1

Memory access traffic (MB/s)

𝐷𝑟 =
15

15 + 0.5 ∗ 500
= 0.05

500s
↑

Estimation of TRIM’s Effects in Real World
(cont’)

• TRIM effect on CXL-Flash running VMs over time

• NT(No Trim): reaching a state fully occupied by fake valid data

• T(Trim): reduction in WAF

52

benefit area

Time (s)

10 GB

15 GB

2 GB

7 GB

VMs

VM1

VM2

VM5000

• • •
VM4999

YCSB-A

DLRM-Train

YCSB-F

DLRM-Infer

TRIM!

TRIM!

TRIM!

TRIM!

Estimation of TRIM’s Effects in Real World
(cont’)

• Memory Utilization : TRIM (T) vs. No TRIM (NT)

• Size of CXL-Flash (the max-memory simultaneously used): 22.75 GB

• Spare factor of CXL-Flash is set to 0.1

• CXL-Flash perceives available spaces are fully utilized beyond a certain point

53

No Trim

Trim

Memory Utilization over time

Estimation of TRIM’s Effects in Real World
(cont’)

• Average WAF in CXL-Flash running VMs

• WAF reduced by 11.56% on average, reaching a maximum of 19.69%

54

Discussion

• Proper coordination is needed to prevent data loss

• Kernel must defer reallocating the TRIM-pending area until ACK is received

• Device must notify the kernel upon TRIM completion

55

trim(4)

User Kernel CXL-Flash

free(4)

alloc()

alloc(4)

write
(4, “Tom”)

“Amy”: Valid

“Tom”: Valid

“Amy”: Invalid

lpn 4

In-order execution

CXL.io

CXL.mem

Where’s my Tom?

trim(4)

User Kernel CXL-Flash

free(4)

alloc()

alloc(4)

write
(4, “Tom”)

Out-of-order execution

“Tom”: Valid

lpn 4

CXL.io

CXL.mem

“Amy”: Valid

Newly written data “Tom”: Invalid

Discussion

• Proper coordination is needed to prevent data loss

• Kernel must defer reallocating the TRIM-pending area until ACK is received

• Device must notify the kernel upon TRIM completion

56

trim(4)

Kernel CXL-Flash

free(4)

alloc()

Coordinated out-of-order executio
n

“Amy”, Valid

“Tom”, Valid

“Amy”, Invalid

lpn 4

CXL.io

★ack(4)

alloc(4)

write
(4, “Tom”) CXL.mem

My Tom is alive!

User

Conclusion

• Summary

• TRIM via CXL.io to invalidate fake valid data in CXL-Flash

• Near-exact extended analytical model for TRIM effect evaluation

• Demonstration of the necessity of TRIM on real-world scenarios using our model

• TRIM-like mechanism is necessary for CXL-Flash!

• Synchronization issues should be considered

• Future work

• Identification of optimal host-side TRIM initiator and analysis of TRIM overhead

• Analysis of long-term impact of TRIM on memory performance and endurance in CXL-Flash

• Estimation of TRIM effectiveness via Workload- and GC policy-aware analytical model in real-world

scenario

57

	Slide 1: Adapting System Software to Evolving Memory Architectures
	Slide 2: Contents
	Slide 3: Avoiding Pitfalls in Networked Key-Value Store for Tiered Memory
	Slide 4: In-memory Key-value Store
	Slide 5: Objects are Getting Larger!
	Slide 6: Tiered Memory is Commonplace
	Slide 7: Motivation
	Slide 8: Performance Analysis
	Slide 9: Latency Breakdown
	Slide 10: Latency Breakdown
	Slide 11: Three Performance-Degrading Pitfalls
	Slide 12: Three Performance-Degrading Pitfalls
	Slide 13: Three Performance-Degrading Pitfalls
	Slide 14: Three Performance-Degrading Pitfalls
	Slide 15: Three Performance-Degrading Pitfalls
	Slide 16: X-redis
	Slide 17: PPF: Packet Peek and Forward
	Slide 18: PPF: Packet Peek and Forward
	Slide 19: PPF: Packet Peek and Forward
	Slide 20: PPF: Packet Peek and Forward
	Slide 21: PPF: Packet Peek and Forward
	Slide 22: OMA: Opportune Memory Allocator
	Slide 23: Evaluation
	Slide 24: Memtier Benchmark (SET)
	Slide 25: Memtier Benchmark (GET)
	Slide 26: Twitter Cache Trace
	Slide 27: Twitter Cache Trace
	Slide 28: Conclusion
	Slide 29: Revisiting Trim for CXL Memory
	Slide 30: Contents
	Slide 31: Rising Demand for High-capacity Memory in AI Era
	Slide 32: CXL-Flash
	Slide 33: CXL-Flash
	Slide 34: Challenges of CXL-Flash as Memory Module
	Slide 35: Challenges of CXL-Flash as Memory Module
	Slide 36: Challenges of CXL-Flash as Memory Module
	Slide 37: Challenges of CXL-Flash as Memory Module
	Slide 38: Challenges of CXL-Flash as Memory Module
	Slide 39: TRIM for Conventional SSD
	Slide 40: Designing TRIM for CXL-Flash
	Slide 41: Difficulties in Assessing TRIM Impact
	Slide 42: Analytic Model for CXL-flash
	Slide 43: Our Analytic Model for CXL-flash
	Slide 44: Our Analytic Model for CXL-flash
	Slide 45: Our Analytic Model for CXL-flash
	Slide 46: Validation of Analytical Model
	Slide 47: Validation of Analytical Model
	Slide 48: Validation of Analytical Model
	Slide 49: Validation of Analytical Model
	Slide 50: Estimation of TRIM’s Effects in Real World
	Slide 51: Estimation of TRIM’s Effects in Real World (cont’)
	Slide 52: Estimation of TRIM’s Effects in Real World (cont’)
	Slide 53: Estimation of TRIM’s Effects in Real World (cont’)
	Slide 54: Estimation of TRIM’s Effects in Real World (cont’)
	Slide 55: Discussion
	Slide 56: Discussion
	Slide 57: Conclusion

